metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,5′-Bis(di­ethyl­amino)-2,2′-[(2,2-di­methyl­propane-1,3-di­yl)bis­­(nitrilo­methanylyl­­idene)]diphenolato}dioxido­molybdenum(VI)

aChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hkargar@pnu.ac.ir

(Received 22 August 2011; accepted 26 August 2011; online 14 September 2011)

In the title compound, [Mo(C27H38N4O2)O2], the MoVI atom is coordinated by two oxide O atoms and by two O and two N atoms of the tetra­dentate Schiff base ligand in a distorted octa­hedral geometry. The Mo—N bond trans to a terminal oxide group is significantly longer than the other Mo—N bond, which is attributed to the strong trans effect of the oxide O atom. The dihedral angle formed between the substituted benzene rings is 71.79 (14)°. One of the ethyl groups is disordered over two sets of sites, with a refined site-occupancy ratio of 0.588 (18):0.412 (18).

Related literature

For the chemistry and biochemistry of molybdenum(VI)–Schiff base complexes, see: Enemark et al. (2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Mancka & Plass (2007[Mancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677-680.]); Majumdar & Sarkar (2011[Majumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039-1054.]). For related structures with MoO2 units (metal oxidation state +VI), see: Abbasi et al. (2008[Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.]); Monadi et al. (2009[Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124-m1125.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C27H38N4O2)O2]

  • Mr = 578.55

  • Orthorhombic, P b c a

  • a = 9.1561 (9) Å

  • b = 20.6965 (16) Å

  • c = 28.482 (2) Å

  • V = 5397.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 291 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.918, Tmax = 1.000

  • 23235 measured reflections

  • 7253 independent reflections

  • 3501 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.085

  • S = 0.80

  • 7253 reflections

  • 349 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O3 1.701 (2)
Mo1—O4 1.710 (2)
Mo1—O2 1.949 (2)
Mo1—O1 2.0875 (18)
Mo1—N1 2.151 (3)
Mo1—N2 2.335 (3)

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The element molybdenum is unique among metals due to its varied roles with probably the most prominent role of this element is in the form of bio-catalysts as found in the enzymatic reactions in several molybdoproteins in nature (Majumdar & Sarkar, 2011). The coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004; Holm et al., 1996) and their application in various catalytic oxidation reactions (Mancka & Plass, 2007).

In the title compound, Fig. 1, the MoVI centre is coordinated by two oxide-O atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral configuration. The dihedral angle between the substituted benzene rings is 71.79 (14) °. The bond lengths and angles are within the normal ranges and comparable to previously reported structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N2 bond length trans to the terminal oxido group is significantly longer than the Mo1—N1 bond, a result attributed to the strong trans effect of the oxido group (Table 1).

Related literature top

For the chemistry and biochemistry of molybdenum(VI)–Schiff base complexes, see: Enemark et al. (2004); Holm et al. (1996); Mancka & Plass (2007); Majumdar & Sarkar (2011). For related structures with MoO2 units (metal oxidation state +VI), see: Abbasi et al. (2008); Monadi et al. (2009).

Experimental top

The title complex was prepared by refluxing (3 h) a 1:1 molar ratio of MoO2(acac)2 and 2,2'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)(diethylamino)]dinaphtholate in dry methanol (25 ml). The dark-red crystals were obtained from slow evaporation (several days) of an ethanol solution of the isolated product.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93–0.97 Å and included in a riding model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups of the diethylamino substituents. One of the ethyl groups was disordered over two positions with a refined site occupancy ratio of 0.588 (18)/0.412 (18).

Structure description top

The element molybdenum is unique among metals due to its varied roles with probably the most prominent role of this element is in the form of bio-catalysts as found in the enzymatic reactions in several molybdoproteins in nature (Majumdar & Sarkar, 2011). The coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004; Holm et al., 1996) and their application in various catalytic oxidation reactions (Mancka & Plass, 2007).

In the title compound, Fig. 1, the MoVI centre is coordinated by two oxide-O atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral configuration. The dihedral angle between the substituted benzene rings is 71.79 (14) °. The bond lengths and angles are within the normal ranges and comparable to previously reported structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N2 bond length trans to the terminal oxido group is significantly longer than the Mo1—N1 bond, a result attributed to the strong trans effect of the oxido group (Table 1).

For the chemistry and biochemistry of molybdenum(VI)–Schiff base complexes, see: Enemark et al. (2004); Holm et al. (1996); Mancka & Plass (2007); Majumdar & Sarkar (2011). For related structures with MoO2 units (metal oxidation state +VI), see: Abbasi et al. (2008); Monadi et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. The atoms with additional labels, A or B, belong to the disordered component of the structure.
{5,5'-Bis(diethylamino)-2,2'-[(2,2-dimethylpropane-1,3- diyl)bis(nitrilomethanylylidene)]diphenolato}dioxidomolybdenum(VI) top
Crystal data top
[Mo(C27H38N4O2)O2]F(000) = 2416
Mr = 578.55Dx = 1.424 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 76.43 reflections
a = 9.1561 (9) Åθ = 1.8–29.5°
b = 20.6965 (16) ŵ = 0.53 mm1
c = 28.482 (2) ÅT = 291 K
V = 5397.4 (8) Å3Block, dark-red
Z = 80.23 × 0.21 × 0.18 mm
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
7253 independent reflections
Radiation source: fine-focus sealed tube3501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.1°
ω scansh = 1012
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
k = 2328
Tmin = 0.918, Tmax = 1.000l = 3832
23235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
7253 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Mo(C27H38N4O2)O2]V = 5397.4 (8) Å3
Mr = 578.55Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1561 (9) ŵ = 0.53 mm1
b = 20.6965 (16) ÅT = 291 K
c = 28.482 (2) Å0.23 × 0.21 × 0.18 mm
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
7253 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
3501 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.083
23235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.80Δρmax = 0.63 e Å3
7253 reflectionsΔρmin = 0.62 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.49195 (3)0.442570 (12)0.139197 (9)0.03834 (7)
O10.4476 (2)0.54138 (9)0.13559 (7)0.0380 (5)
O20.3715 (2)0.43150 (10)0.08334 (8)0.0435 (5)
O30.3721 (2)0.43668 (12)0.18463 (8)0.0553 (6)
O40.5773 (2)0.36911 (10)0.13823 (10)0.0583 (6)
N10.6703 (3)0.47939 (12)0.18040 (10)0.0391 (6)
N20.6620 (3)0.47492 (12)0.08281 (9)0.0369 (6)
N30.2751 (3)0.73949 (13)0.19983 (10)0.0462 (7)
N40.2220 (3)0.30286 (16)0.04657 (12)0.0670 (10)
C10.4504 (3)0.58292 (14)0.17016 (11)0.0332 (7)
C20.3614 (3)0.63792 (14)0.16787 (11)0.0344 (7)
H2A0.29770.64240.14270.041*
C30.3648 (3)0.68669 (15)0.20226 (11)0.0371 (7)
C40.4634 (3)0.67881 (15)0.24025 (11)0.0440 (8)
H4A0.46770.71000.26370.053*
C50.5515 (3)0.62622 (16)0.24259 (11)0.0437 (8)
H5A0.61630.62300.26760.052*
C60.5496 (3)0.57600 (14)0.20878 (11)0.0360 (7)
C70.6614 (3)0.52931 (16)0.20827 (11)0.0413 (8)
H7A0.73640.53460.23000.050*
C80.8160 (3)0.45126 (17)0.17236 (13)0.0522 (9)
H8A0.80600.40520.16690.063*
H8B0.87500.45710.20030.063*
C90.8949 (3)0.48238 (17)0.13003 (13)0.0501 (9)
C100.7854 (3)0.51603 (15)0.09690 (12)0.0434 (8)
H10A0.74750.55430.11240.052*
H10B0.83680.53010.06890.052*
C110.6523 (3)0.45916 (14)0.03940 (12)0.0391 (8)
H11A0.72500.47420.01940.047*
C120.5390 (3)0.42037 (14)0.01886 (11)0.0362 (7)
C130.5568 (3)0.39713 (16)0.02727 (11)0.0427 (8)
H13A0.64150.40780.04360.051*
C140.4546 (3)0.35966 (16)0.04896 (12)0.0477 (9)
H14A0.47210.34450.07920.057*
C150.3227 (3)0.34347 (17)0.02622 (12)0.0432 (8)
C160.2983 (3)0.37042 (15)0.01826 (11)0.0381 (7)
H16A0.20910.36350.03310.046*
C170.4042 (3)0.40730 (14)0.04073 (11)0.0350 (7)
C180.9790 (4)0.4305 (2)0.10277 (15)0.0779 (13)
H18A1.02740.45000.07640.117*
H18B0.91210.39820.09180.117*
H18C1.05020.41090.12300.117*
C191.0010 (4)0.5349 (2)0.14705 (15)0.0786 (12)
H19A0.94790.56720.16430.118*
H19B1.04770.55460.12050.118*
H19C1.07350.51580.16700.118*
C200.2832 (4)0.79287 (17)0.23365 (14)0.0596 (10)
H20A0.29770.77500.26480.072*
H20B0.19060.81560.23370.072*
C210.4011 (5)0.8398 (2)0.22395 (16)0.0779 (13)
H21A0.41030.86890.25000.117*
H21B0.37800.86370.19610.117*
H21C0.49150.81710.21950.117*
C220.1724 (4)0.74766 (17)0.16090 (13)0.0528 (9)
H22A0.09580.77720.17060.063*
H22B0.12710.70630.15420.063*
C230.2410 (4)0.77286 (18)0.11687 (14)0.0657 (11)
H23A0.16800.77640.09280.099*
H23B0.31630.74370.10680.099*
H23C0.28260.81470.12280.099*
C240.0879 (4)0.2846 (2)0.02313 (14)0.0633 (11)
H24A0.10850.27820.01000.076*
H24B0.05530.24350.03580.076*
C250.0340 (4)0.3327 (2)0.02772 (16)0.0821 (14)
H25A0.11940.31640.01210.123*
H25B0.05540.33950.06030.123*
H25C0.00530.37280.01360.123*
C26A0.2695 (11)0.2569 (6)0.0854 (3)0.060 (3)0.588 (18)
H26A0.37280.24740.08230.072*0.588 (18)
H26B0.21590.21660.08280.072*0.588 (18)
C27A0.2401 (10)0.2877 (5)0.1326 (4)0.085 (4)0.588 (18)
H27A0.26560.25790.15720.127*0.588 (18)
H27B0.29770.32620.13570.127*0.588 (18)
H27C0.13840.29840.13510.127*0.588 (18)
C27B0.3204 (19)0.2334 (7)0.1047 (8)0.104 (7)0.412 (18)
H27D0.34170.22540.13720.155*0.412 (18)
H27E0.26720.19740.09200.155*0.412 (18)
H27F0.41010.23870.08770.155*0.412 (18)
C26B0.2313 (13)0.2929 (7)0.1004 (6)0.064 (4)0.412 (18)
H26C0.13510.28700.11400.076*0.412 (18)
H26D0.27870.32930.11560.076*0.412 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03924 (12)0.03549 (11)0.04029 (13)0.00411 (14)0.00207 (15)0.00126 (15)
O10.0455 (10)0.0372 (11)0.0313 (11)0.0045 (8)0.0070 (9)0.0051 (10)
O20.0376 (11)0.0498 (14)0.0430 (13)0.0068 (10)0.0013 (10)0.0123 (11)
O30.0568 (14)0.0621 (16)0.0469 (14)0.0094 (13)0.0114 (11)0.0036 (14)
O40.0646 (15)0.0350 (12)0.0753 (17)0.0016 (11)0.0033 (15)0.0014 (14)
N10.0414 (15)0.0372 (16)0.0386 (16)0.0064 (12)0.0060 (12)0.0040 (13)
N20.0335 (13)0.0349 (15)0.0423 (17)0.0025 (11)0.0008 (12)0.0025 (13)
N30.0547 (17)0.0393 (16)0.0447 (18)0.0062 (13)0.0016 (14)0.0032 (14)
N40.056 (2)0.093 (3)0.052 (2)0.0285 (18)0.0033 (15)0.0278 (19)
C10.0314 (14)0.0345 (15)0.0338 (17)0.0039 (12)0.0011 (12)0.0007 (14)
C20.0333 (15)0.0413 (18)0.0285 (17)0.0002 (13)0.0013 (13)0.0017 (14)
C30.0385 (16)0.0388 (18)0.0339 (18)0.0004 (14)0.0032 (13)0.0012 (15)
C40.054 (2)0.0400 (18)0.0379 (19)0.0007 (15)0.0071 (14)0.0084 (15)
C50.0487 (19)0.0503 (19)0.0321 (17)0.0063 (15)0.0086 (14)0.0014 (16)
C60.0392 (16)0.0363 (16)0.0324 (16)0.0031 (12)0.0040 (13)0.0008 (14)
C70.0409 (18)0.0488 (19)0.0342 (18)0.0032 (15)0.0070 (14)0.0038 (16)
C80.0419 (18)0.047 (2)0.067 (3)0.0110 (16)0.0086 (17)0.004 (2)
C90.0333 (16)0.059 (2)0.059 (2)0.0013 (15)0.0030 (16)0.0093 (19)
C100.0398 (17)0.0400 (18)0.050 (2)0.0094 (14)0.0000 (15)0.0072 (16)
C110.0362 (16)0.0352 (19)0.046 (2)0.0001 (13)0.0059 (14)0.0000 (15)
C120.0345 (17)0.0358 (16)0.0382 (17)0.0017 (12)0.0039 (13)0.0004 (14)
C130.0404 (17)0.053 (2)0.0343 (18)0.0016 (15)0.0044 (14)0.0036 (16)
C140.051 (2)0.058 (2)0.0347 (18)0.0049 (16)0.0017 (15)0.0079 (17)
C150.0405 (18)0.051 (2)0.038 (2)0.0048 (15)0.0045 (15)0.0028 (17)
C160.0358 (16)0.0417 (18)0.0368 (19)0.0050 (14)0.0009 (14)0.0007 (16)
C170.0357 (16)0.0327 (17)0.0365 (19)0.0005 (13)0.0021 (13)0.0018 (14)
C180.063 (3)0.092 (3)0.079 (3)0.033 (2)0.004 (2)0.012 (2)
C190.060 (2)0.098 (3)0.078 (3)0.023 (2)0.022 (2)0.002 (2)
C200.064 (3)0.055 (2)0.059 (3)0.0127 (19)0.0056 (19)0.0100 (19)
C210.078 (3)0.064 (3)0.091 (4)0.005 (2)0.020 (3)0.008 (2)
C220.049 (2)0.043 (2)0.067 (3)0.0097 (16)0.0022 (18)0.0001 (19)
C230.086 (3)0.053 (2)0.059 (3)0.005 (2)0.003 (2)0.012 (2)
C240.059 (2)0.071 (3)0.059 (3)0.027 (2)0.006 (2)0.011 (2)
C250.067 (3)0.103 (4)0.077 (3)0.013 (3)0.001 (2)0.009 (3)
C26A0.076 (6)0.054 (7)0.049 (6)0.018 (5)0.006 (4)0.008 (5)
C27A0.094 (6)0.115 (8)0.045 (7)0.025 (5)0.017 (5)0.006 (6)
C27B0.104 (12)0.076 (10)0.132 (16)0.005 (8)0.018 (10)0.056 (10)
C26B0.065 (7)0.072 (9)0.055 (12)0.020 (6)0.018 (6)0.007 (7)
Geometric parameters (Å, º) top
Mo1—O31.701 (2)C13—H13A0.9300
Mo1—O41.710 (2)C14—C151.410 (4)
Mo1—O21.949 (2)C14—H14A0.9300
Mo1—O12.0875 (18)C15—C161.402 (4)
Mo1—N12.151 (3)C16—C171.390 (4)
Mo1—N22.335 (3)C16—H16A0.9300
O1—C11.307 (3)C18—H18A0.9600
O2—C171.346 (3)C18—H18B0.9600
N1—C71.305 (4)C18—H18C0.9600
N1—C81.473 (4)C19—H19A0.9600
N2—C111.282 (4)C19—H19B0.9600
N2—C101.470 (4)C19—H19C0.9600
N3—C31.369 (4)C20—C211.477 (5)
N3—C221.464 (4)C20—H20A0.9700
N3—C201.468 (4)C20—H20B0.9700
N4—C151.376 (4)C21—H21A0.9600
N4—C241.448 (4)C21—H21B0.9600
N4—C26A1.521 (11)C21—H21C0.9600
N4—C26B1.550 (17)C22—C231.496 (5)
C1—C21.402 (4)C22—H22A0.9700
C1—C61.434 (4)C22—H22B0.9700
C2—C31.407 (4)C23—H23A0.9600
C2—H2A0.9300C23—H23B0.9600
C3—C41.419 (4)C23—H23C0.9600
C4—C51.356 (4)C24—C251.501 (5)
C4—H4A0.9300C24—H24A0.9700
C5—C61.417 (4)C24—H24B0.9700
C5—H5A0.9300C25—H25A0.9600
C6—C71.408 (4)C25—H25B0.9600
C7—H7A0.9300C25—H25C0.9600
C8—C91.546 (5)C26A—C27A1.514 (16)
C8—H8A0.9700C26A—H26A0.9700
C8—H8B0.9700C26A—H26B0.9700
C9—C181.532 (5)C27A—H27A0.9600
C9—C191.536 (5)C27A—H27B0.9600
C9—C101.543 (4)C27A—H27C0.9600
C10—H10A0.9700C27B—C26B1.48 (2)
C10—H10B0.9700C27B—H27D0.9600
C11—C121.436 (4)C27B—H27E0.9600
C11—H11A0.9300C27B—H27F0.9600
C12—C131.409 (4)C26B—H26C0.9700
C12—C171.409 (4)C26B—H26D0.9700
C13—C141.363 (4)
O3—Mo1—O4104.10 (12)C13—C14—C15121.0 (3)
O3—Mo1—O2104.32 (10)C13—C14—H14A119.5
O4—Mo1—O298.11 (11)C15—C14—H14A119.5
O3—Mo1—O188.97 (10)N4—C15—C16121.1 (3)
O4—Mo1—O1163.60 (9)N4—C15—C14121.7 (3)
O2—Mo1—O187.99 (9)C16—C15—C14117.2 (3)
O3—Mo1—N195.75 (11)C17—C16—C15121.5 (3)
O4—Mo1—N188.67 (11)C17—C16—H16A119.2
O2—Mo1—N1156.44 (10)C15—C16—H16A119.2
O1—Mo1—N180.07 (9)O2—C17—C16117.7 (3)
O3—Mo1—N2166.90 (10)O2—C17—C12121.4 (3)
O4—Mo1—N286.50 (10)C16—C17—C12120.9 (3)
O2—Mo1—N281.35 (9)C9—C18—H18A109.5
O1—Mo1—N279.35 (8)C9—C18—H18B109.5
N1—Mo1—N276.55 (10)H18A—C18—H18B109.5
C1—O1—Mo1127.10 (19)C9—C18—H18C109.5
C17—O2—Mo1130.82 (18)H18A—C18—H18C109.5
C7—N1—C8117.7 (3)H18B—C18—H18C109.5
C7—N1—Mo1124.4 (2)C9—C19—H19A109.5
C8—N1—Mo1117.6 (2)C9—C19—H19B109.5
C11—N2—C10117.7 (3)H19A—C19—H19B109.5
C11—N2—Mo1123.0 (2)C9—C19—H19C109.5
C10—N2—Mo1119.4 (2)H19A—C19—H19C109.5
C3—N3—C22121.1 (3)H19B—C19—H19C109.5
C3—N3—C20122.5 (3)N3—C20—C21114.1 (3)
C22—N3—C20116.3 (3)N3—C20—H20A108.7
C15—N4—C24122.3 (3)C21—C20—H20A108.7
C15—N4—C26A119.8 (4)N3—C20—H20B108.7
C24—N4—C26A114.4 (4)C21—C20—H20B108.7
C15—N4—C26B117.5 (5)H20A—C20—H20B107.6
C24—N4—C26B117.9 (5)C20—C21—H21A109.5
O1—C1—C2119.2 (3)C20—C21—H21B109.5
O1—C1—C6121.7 (3)H21A—C21—H21B109.5
C2—C1—C6119.0 (3)C20—C21—H21C109.5
C1—C2—C3122.5 (3)H21A—C21—H21C109.5
C1—C2—H2A118.7H21B—C21—H21C109.5
C3—C2—H2A118.7N3—C22—C23113.9 (3)
N3—C3—C2121.6 (3)N3—C22—H22A108.8
N3—C3—C4120.8 (3)C23—C22—H22A108.8
C2—C3—C4117.6 (3)N3—C22—H22B108.8
C5—C4—C3120.5 (3)C23—C22—H22B108.8
C5—C4—H4A119.7H22A—C22—H22B107.7
C3—C4—H4A119.7C22—C23—H23A109.5
C4—C5—C6123.2 (3)C22—C23—H23B109.5
C4—C5—H5A118.4H23A—C23—H23B109.5
C6—C5—H5A118.4C22—C23—H23C109.5
C7—C6—C5120.1 (3)H23A—C23—H23C109.5
C7—C6—C1121.4 (3)H23B—C23—H23C109.5
C5—C6—C1117.1 (3)N4—C24—C25114.7 (4)
N1—C7—C6126.5 (3)N4—C24—H24A108.6
N1—C7—H7A116.7C25—C24—H24A108.6
C6—C7—H7A116.7N4—C24—H24B108.6
N1—C8—C9112.3 (3)C25—C24—H24B108.6
N1—C8—H8A109.1H24A—C24—H24B107.6
C9—C8—H8A109.1C24—C25—H25A109.5
N1—C8—H8B109.1C24—C25—H25B109.5
C9—C8—H8B109.1H25A—C25—H25B109.5
H8A—C8—H8B107.9C24—C25—H25C109.5
C18—C9—C19109.8 (3)H25A—C25—H25C109.5
C18—C9—C10109.4 (3)H25B—C25—H25C109.5
C19—C9—C10106.5 (3)C27A—C26A—N4109.4 (11)
C18—C9—C8109.8 (3)C27A—C26A—H26A109.8
C19—C9—C8110.1 (3)N4—C26A—H26A109.8
C10—C9—C8111.2 (3)C27A—C26A—H26B109.8
N2—C10—C9113.9 (3)N4—C26A—H26B109.8
N2—C10—H10A108.8H26A—C26A—H26B108.2
C9—C10—H10A108.8C26B—C27B—H27D109.5
N2—C10—H10B108.8C26B—C27B—H27E109.5
C9—C10—H10B108.8H27D—C27B—H27E109.5
H10A—C10—H10B107.7C26B—C27B—H27F109.5
N2—C11—C12125.8 (3)H27D—C27B—H27F109.5
N2—C11—H11A117.1H27E—C27B—H27F109.5
C12—C11—H11A117.1C27B—C26B—N4102.8 (16)
C13—C12—C17116.6 (3)C27B—C26B—H26C111.2
C13—C12—C11119.2 (3)N4—C26B—H26C111.2
C17—C12—C11124.1 (3)C27B—C26B—H26D111.2
C14—C13—C12122.5 (3)N4—C26B—H26D111.2
C14—C13—H13A118.7H26C—C26B—H26D109.1
C12—C13—H13A118.7
O3—Mo1—O1—C151.0 (2)C5—C6—C7—N1177.3 (3)
O4—Mo1—O1—C192.3 (4)C1—C6—C7—N116.4 (5)
O2—Mo1—O1—C1155.4 (2)C7—N1—C8—C989.8 (4)
N1—Mo1—O1—C145.0 (2)Mo1—N1—C8—C983.1 (3)
N2—Mo1—O1—C1123.1 (2)N1—C8—C9—C18141.6 (3)
O3—Mo1—O2—C17150.9 (3)N1—C8—C9—C1997.5 (3)
O4—Mo1—O2—C1744.0 (3)N1—C8—C9—C1020.3 (4)
O1—Mo1—O2—C17120.7 (3)C11—N2—C10—C9114.2 (3)
N1—Mo1—O2—C1761.5 (4)Mo1—N2—C10—C966.7 (3)
N2—Mo1—O2—C1741.2 (3)C18—C9—C10—N270.1 (4)
O3—Mo1—N1—C752.2 (3)C19—C9—C10—N2171.2 (3)
O4—Mo1—N1—C7156.3 (3)C8—C9—C10—N251.3 (4)
O2—Mo1—N1—C796.3 (3)C10—N2—C11—C12179.0 (3)
O1—Mo1—N1—C735.7 (3)Mo1—N2—C11—C120.0 (4)
N2—Mo1—N1—C7117.0 (3)N2—C11—C12—C13168.3 (3)
O3—Mo1—N1—C8135.4 (2)N2—C11—C12—C1716.4 (5)
O4—Mo1—N1—C831.3 (2)C17—C12—C13—C144.8 (5)
O2—Mo1—N1—C876.1 (3)C11—C12—C13—C14179.5 (3)
O1—Mo1—N1—C8136.7 (2)C12—C13—C14—C151.5 (5)
N2—Mo1—N1—C855.4 (2)C24—N4—C15—C161.4 (6)
O3—Mo1—N2—C11137.7 (4)C26A—N4—C15—C16159.0 (6)
O4—Mo1—N2—C1177.8 (3)C26B—N4—C15—C16160.8 (7)
O2—Mo1—N2—C1120.9 (2)C24—N4—C15—C14178.4 (3)
O1—Mo1—N2—C11110.5 (2)C26A—N4—C15—C1420.8 (7)
N1—Mo1—N2—C11167.3 (3)C26B—N4—C15—C1419.4 (8)
O3—Mo1—N2—C1041.3 (5)C13—C14—C15—N4176.4 (3)
O4—Mo1—N2—C10103.1 (2)C13—C14—C15—C163.4 (5)
O2—Mo1—N2—C10158.1 (2)N4—C15—C16—C17174.8 (3)
O1—Mo1—N2—C1068.5 (2)C14—C15—C16—C175.1 (5)
N1—Mo1—N2—C1013.7 (2)Mo1—O2—C17—C16142.5 (2)
Mo1—O1—C1—C2152.4 (2)Mo1—O2—C17—C1239.5 (4)
Mo1—O1—C1—C632.0 (4)C15—C16—C17—O2179.8 (3)
O1—C1—C2—C3176.1 (3)C15—C16—C17—C121.7 (5)
C6—C1—C2—C30.4 (4)C13—C12—C17—O2174.8 (3)
C22—N3—C3—C20.5 (5)C11—C12—C17—O20.6 (5)
C20—N3—C3—C2176.0 (3)C13—C12—C17—C163.2 (4)
C22—N3—C3—C4179.5 (3)C11—C12—C17—C16178.6 (3)
C20—N3—C3—C45.0 (5)C3—N3—C20—C2180.7 (4)
C1—C2—C3—N3178.8 (3)C22—N3—C20—C2195.0 (4)
C1—C2—C3—C40.2 (4)C3—N3—C22—C2379.7 (4)
N3—C3—C4—C5179.6 (3)C20—N3—C22—C2396.1 (4)
C2—C3—C4—C50.6 (5)C15—N4—C24—C2583.1 (5)
C3—C4—C5—C61.3 (5)C26A—N4—C24—C25118.2 (6)
C4—C5—C6—C7168.0 (3)C26B—N4—C24—C2579.0 (8)
C4—C5—C6—C11.1 (5)C15—N4—C26A—C27A95.0 (7)
O1—C1—C6—C78.6 (4)C24—N4—C26A—C27A105.7 (6)
C2—C1—C6—C7167.0 (3)C26B—N4—C26A—C27A1.3 (9)
O1—C1—C6—C5175.4 (3)C15—N4—C26B—C27B94.7 (10)
C2—C1—C6—C50.2 (4)C24—N4—C26B—C27B102.3 (9)
C8—N1—C7—C6156.9 (3)C26A—N4—C26B—C27B8.8 (10)
Mo1—N1—C7—C615.4 (5)

Experimental details

Crystal data
Chemical formula[Mo(C27H38N4O2)O2]
Mr578.55
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)9.1561 (9), 20.6965 (16), 28.482 (2)
V3)5397.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerStoe IPDS 2T Image Plate
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2009)]
Tmin, Tmax0.918, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23235, 7253, 3501
Rint0.083
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.085, 0.80
No. of reflections7253
No. of parameters349
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.62

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mo1—O31.701 (2)Mo1—O12.0875 (18)
Mo1—O41.710 (2)Mo1—N12.151 (3)
Mo1—O21.949 (2)Mo1—N22.335 (3)
 

Acknowledgements

HK thanks PNU and RK thanks the Science and Research Branch, Islamic Azad University, for support.

References

First citationAbbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMajumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039–1054.  Web of Science CrossRef CAS Google Scholar
First citationMancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677–680.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds