organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[1-(1-Benzo­thio­phen-2-yl)ethyl­­idene]-N-phenyl­hydrazinecarboxamide

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*Correspondence e-mail: safaafaris@yahoo.com

(Received 2 September 2011; accepted 14 September 2011; online 20 September 2011)

The title compound, C17H15N3OS, crystallizes with two unique mol­ecules, denoted 1 and 2, in the asymmetric unit. The two mol­ecules are closely similar and overlay with an r.m.s. deviation of 0.053 Å. Both mol­ecules adopt E configurations with respect to the C=N bonds. The dihedral angles between the benzothio­phene groups and N-bound phenyl rings are 36.36 (9)° for mol­ecule 1 and 29.71 (9)° for mol­ecule 2. The C=N—NH—C(O)NH ethyl­idene–hydrazinecarboxamide units are also reasonably planar, with r.m.s. deviations of 0.061 and 0.056 Å, respectively, for the two mol­ecules. The methyl substituents lie 0.338 (3) and 0.396 (3) Å, respectively, from these planes. The C=N—NH—C(O)NH planes are inclined to the phenyl rings at 13.65 (11) and 15.56 (11)°, respectively, in mol­ecules 1 and 2. This conformation is enhanced by weak intra­molecular C—H⋯O hydrogen bonds between ortho-H atoms of the two phenyl rings and the carbonyl O atoms, which generate S(6) rings in each mol­ecule. In the crystal, pairs of mol­ecules are linked by pairs of inter­molecular N—H⋯O hydrogen bonds into dimers. Alternating dimers are further inter­connected by weak C—H⋯O contacts into zigzag rows along b. The rows are stacked along a by C—H⋯π contacts involving the benzene ring from molecule 2 and the thiophene ring from molecule 1 of adjacent benzothio­phene units.

Related literature

For background to the biological activity of semicarbazones, see: Alam et al. (2010[Alam, O., Mullick, P., Verma, S. P., Gilani, S. J., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 2467-2472.]); Sharma et al. (2006[Sharma, R., Agarwal, S. K., Rawat, S. & Nagar, M. (2006). Transition Met. Chem. 31, 201-206.]); Siji et al. (2010[Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22-28.]); Sriram et al. (2004[Sriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923-3924.]). For related structures, see: Beraldo et al. (2001[Beraldo, H., Nacif, W. F. & West, D. X. (2001). Spectrochim. Acta A, 57, 1847-1854.]); Fun et al. (2009a[Fun, H.-K., Balasubramani, K., Vijesh, A. M., Malladii, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o2072.],b[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1807-o1808.]); Mendoza-Meroño et al. (2011[Mendoza-Meroño, R., Menéndez-Taboada, L., Fernández-Zapico, E. & García-Granda, S. (2011). Acta Cryst. E67, o1135.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3OS

  • Mr = 309.38

  • Triclinic, [P \overline 1]

  • a = 9.8858 (3) Å

  • b = 13.2737 (5) Å

  • c = 13.6121 (8) Å

  • α = 113.961 (3)°

  • β = 98.153 (3)°

  • γ = 107.778 (2)°

  • V = 1480.02 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 89 K

  • 0.38 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 1.000

  • 25263 measured reflections

  • 8650 independent reflections

  • 5747 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.147

  • S = 1.07

  • 8650 reflections

  • 411 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S11, C11, C12, C13, C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12N⋯O21 0.97 (2) 1.91 (2) 2.847 (2) 162.1 (19)
N22—H22N⋯O11 0.89 (2) 1.99 (2) 2.840 (2) 158 (2)
C113—H113⋯O11 0.95 2.29 2.886 (2) 120
C213—H213⋯O21 0.95 2.26 2.871 (2) 121
C15—H15⋯O11i 0.95 2.62 3.435 (2) 144
C24—H24⋯Cg1ii 0.95 2.80 3.482 (2) 130
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Semicarbazones are of considerable interest because of their wide spectrum of biological applications, and display anticonvulsant (Alam et al., 2010), antitubercular (Sriram et al., 2004) and antimicrobial activity (Siji et al., 2010). The biological activity of semicarbazones is considered to be due to their ability to form chelate complexes with transition metals (Sharma et al., 2006).In view of the importance of these compounds, we report here the structure of the title semicarbazone derivative (Fig. 1).

The asymmetric unit of the title compound contains two molecules, 1 and 2. The benzothiophene group and the C9=N1—N2—C11(O1)N3 semicarbazone units are almost coplanar with N1—C9—C1—S1 torsion angles of -13.0 (2)° for 1 and -9.3 (2)° for 2. The phenyl rings show somewhat greater coplanarity with the semicarbazone linking units the C11—N3—C12—C13 angles being -13.3 (3)° for 1 and 5.4 (3)° for 2. The dihedral angles between the benzothiophene groups and the phenyl rings are 36.36 (7)° for 1 and 29.71 (8)° for 2. Both molecules adopt E configurations with respect to the C=N bonds. There are no important differences in the bond lengths and angles between the two unique molecules which overlay with an r.m.s. deviation of 0.053 Å (Macrae et al., 2008). The bond distances and angles are in a good agreement with values reported for similar structures (Beraldo et al., 2001; Fun et al., 2009a,b; Mendoza-Meroño et al. 2011). Intramolecular C113–H113···O11 and C113–H113···O11 hydrogen bonds are observed in both molecules and generate S(6) rings (Bernstein et al. 1995).

In the crystal structure, intermolecular N12—H12N···O21 and N22—H22N···O11 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). A weak C110—H11A..O21 interaction further strengthens the dimer unit for molecule 1. Alternating dimers are further interconnected by weak C15–H15···O11 contacts generating zigzag rows along b. C24—H24..π contacts to the S11, C11, C12, C13, C18 thiophene rings of adjacent molecules form stacks along a, (Fig. 3).

Related literature top

For background to the biological activity of semicarbazones, see: Alam et al. (2010); Sharma et al. (2006); Siji et al. (2010); Sriram et al. (2004). For related structures, see: Beraldo et al. (2001); Fun et al. (2009a,b); Mendoza-Meroño et al. (2011). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

4-Phenyl-3-semicarbazide (1.51 g, 10 mmol) was dissolved in boiling ethanol (40 ml). A solution of 2-acetylbenzothiophene (1.77 g, 10 mmol) in ethanol (30 ml) was added to the 4-phenylsemicarbazide solution followed by the addition of three drops of sulphuric acid. The mixture was heated under reflux with stirring for 2 h. The solid product which separated upon cooling was filtered and recrystallized from a 1:1 mixture of dimethylsulphoxide and ethanol.

Refinement top

H atoms bound to N1 and N3 were located in an electron density map and their coordinates were refined freely with Uiso= 1.2Ueq (N). All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for the CH3 H atoms.

Structure description top

Semicarbazones are of considerable interest because of their wide spectrum of biological applications, and display anticonvulsant (Alam et al., 2010), antitubercular (Sriram et al., 2004) and antimicrobial activity (Siji et al., 2010). The biological activity of semicarbazones is considered to be due to their ability to form chelate complexes with transition metals (Sharma et al., 2006).In view of the importance of these compounds, we report here the structure of the title semicarbazone derivative (Fig. 1).

The asymmetric unit of the title compound contains two molecules, 1 and 2. The benzothiophene group and the C9=N1—N2—C11(O1)N3 semicarbazone units are almost coplanar with N1—C9—C1—S1 torsion angles of -13.0 (2)° for 1 and -9.3 (2)° for 2. The phenyl rings show somewhat greater coplanarity with the semicarbazone linking units the C11—N3—C12—C13 angles being -13.3 (3)° for 1 and 5.4 (3)° for 2. The dihedral angles between the benzothiophene groups and the phenyl rings are 36.36 (7)° for 1 and 29.71 (8)° for 2. Both molecules adopt E configurations with respect to the C=N bonds. There are no important differences in the bond lengths and angles between the two unique molecules which overlay with an r.m.s. deviation of 0.053 Å (Macrae et al., 2008). The bond distances and angles are in a good agreement with values reported for similar structures (Beraldo et al., 2001; Fun et al., 2009a,b; Mendoza-Meroño et al. 2011). Intramolecular C113–H113···O11 and C113–H113···O11 hydrogen bonds are observed in both molecules and generate S(6) rings (Bernstein et al. 1995).

In the crystal structure, intermolecular N12—H12N···O21 and N22—H22N···O11 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). A weak C110—H11A..O21 interaction further strengthens the dimer unit for molecule 1. Alternating dimers are further interconnected by weak C15–H15···O11 contacts generating zigzag rows along b. C24—H24..π contacts to the S11, C11, C12, C13, C18 thiophene rings of adjacent molecules form stacks along a, (Fig. 3).

For background to the biological activity of semicarbazones, see: Alam et al. (2010); Sharma et al. (2006); Siji et al. (2010); Sriram et al. (2004). For related structures, see: Beraldo et al. (2001); Fun et al. (2009a,b); Mendoza-Meroño et al. (2011). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009) and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Dimers formed by the two unique molecules.Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal packing with hydrogen bonds drawn as dashed lines.
(E)-2-[1-(1-Benzothiophen-2-yl)ethylidene]- N-phenylhydrazinecarboxamide top
Crystal data top
C17H15N3OSZ = 4
Mr = 309.38F(000) = 648
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8858 (3) ÅCell parameters from 3121 reflections
b = 13.2737 (5) Åθ = 2.3–24.7°
c = 13.6121 (8) ŵ = 0.22 mm1
α = 113.961 (3)°T = 89 K
β = 98.153 (3)°Rectangular plate, colourless
γ = 107.778 (2)°0.38 × 0.14 × 0.05 mm
V = 1480.02 (11) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8650 independent reflections
Radiation source: fine-focus sealed tube5747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.826, Tmax = 1.000k = 1818
25263 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
8650 reflections(Δ/σ)max < 0.001
411 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H15N3OSγ = 107.778 (2)°
Mr = 309.38V = 1480.02 (11) Å3
Triclinic, P1Z = 4
a = 9.8858 (3) ÅMo Kα radiation
b = 13.2737 (5) ŵ = 0.22 mm1
c = 13.6121 (8) ÅT = 89 K
α = 113.961 (3)°0.38 × 0.14 × 0.05 mm
β = 98.153 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5747 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.052
25263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.70 e Å3
8650 reflectionsΔρmin = 0.37 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.31292 (6)1.02673 (4)0.78076 (4)0.02141 (13)
C110.2261 (2)0.93460 (17)0.63600 (16)0.0182 (4)
C120.1846 (2)0.99340 (18)0.58266 (17)0.0199 (4)
H120.13510.95630.50410.024*
C130.2253 (2)1.11904 (17)0.66052 (16)0.0180 (4)
C140.2057 (2)1.20934 (18)0.63901 (18)0.0223 (4)
H140.15681.19060.56470.027*
C150.2576 (2)1.32550 (19)0.72612 (18)0.0251 (5)
H150.24511.38660.71120.030*
C160.3287 (2)1.35423 (18)0.83629 (18)0.0240 (4)
H160.36401.43470.89510.029*
C170.3481 (2)1.26718 (18)0.86079 (17)0.0221 (4)
H170.39521.28660.93580.027*
C180.2966 (2)1.14948 (18)0.77204 (17)0.0201 (4)
C190.2066 (2)0.80832 (17)0.58560 (16)0.0181 (4)
C1100.1043 (2)0.72127 (18)0.46823 (16)0.0237 (4)
H11A0.15620.67660.42400.035*
H11B0.07400.76530.43280.035*
H11C0.01570.66490.47100.035*
N110.28160 (17)0.78150 (14)0.64940 (13)0.0190 (3)
N120.26205 (18)0.66309 (15)0.60819 (14)0.0200 (4)
H12N0.193 (2)0.6052 (19)0.5336 (18)0.024*
C1110.3580 (2)0.63400 (17)0.66381 (16)0.0189 (4)
O110.34514 (15)0.52858 (12)0.62557 (11)0.0231 (3)
N130.46505 (19)0.72820 (15)0.75850 (14)0.0212 (4)
H13N0.460 (2)0.798 (2)0.7734 (18)0.025*
C1120.5902 (2)0.72786 (18)0.82322 (16)0.0200 (4)
C1130.6083 (2)0.62516 (19)0.81270 (19)0.0298 (5)
H1130.53270.54790.76110.036*
C1140.7391 (3)0.6363 (2)0.8788 (2)0.0356 (6)
H1140.75240.56560.87030.043*
C1150.8490 (2)0.74708 (19)0.95598 (17)0.0246 (4)
H1150.93720.75321.00070.030*
C1160.8291 (2)0.84825 (19)0.96713 (17)0.0277 (5)
H1160.90380.92531.02050.033*
C1170.7008 (2)0.83968 (19)0.90140 (18)0.0300 (5)
H1170.68870.91080.91000.036*
S210.10557 (5)0.03449 (5)0.26492 (4)0.02144 (13)
C210.2802 (2)0.07844 (17)0.35461 (15)0.0183 (4)
C220.3828 (2)0.03329 (17)0.37642 (16)0.0172 (4)
H220.48290.08200.42380.021*
C230.3203 (2)0.09632 (18)0.31879 (16)0.0195 (4)
C240.3903 (2)0.17387 (18)0.31967 (17)0.0229 (4)
H240.49200.14170.36250.027*
C250.3106 (2)0.29689 (19)0.25799 (17)0.0248 (4)
H250.35770.34940.25830.030*
C260.1598 (2)0.34491 (19)0.19454 (17)0.0247 (4)
H260.10620.42970.15230.030*
C270.0886 (2)0.27078 (18)0.19275 (17)0.0233 (4)
H270.01340.30380.15020.028*
C280.1692 (2)0.14626 (18)0.25469 (16)0.0193 (4)
C290.3002 (2)0.20465 (18)0.40077 (16)0.0191 (4)
C2100.4392 (2)0.30265 (18)0.49234 (16)0.0228 (4)
H21A0.47280.37030.47640.034*
H21B0.51730.27200.49560.034*
H21C0.41860.32980.56490.034*
N210.18945 (18)0.22163 (14)0.35750 (13)0.0202 (4)
N220.19800 (19)0.33747 (15)0.40139 (14)0.0225 (4)
H22N0.261 (2)0.388 (2)0.4711 (19)0.027*
C2110.0935 (2)0.36293 (18)0.34891 (16)0.0207 (4)
O210.09507 (17)0.46410 (13)0.38988 (12)0.0291 (4)
N230.00679 (18)0.26752 (15)0.25064 (14)0.0203 (4)
H23N0.005 (2)0.201 (2)0.2342 (18)0.024*
C2120.1117 (2)0.26998 (18)0.17048 (16)0.0198 (4)
C2130.1193 (2)0.37503 (19)0.17685 (17)0.0238 (4)
H2130.05780.45080.24060.029*
C2140.2185 (2)0.3675 (2)0.08827 (18)0.0287 (5)
H2140.22280.43930.09150.034*
C2150.3112 (2)0.25807 (19)0.00446 (17)0.0254 (5)
H2150.37810.25440.06450.030*
C2160.3048 (2)0.15487 (19)0.00818 (18)0.0297 (5)
H2160.36850.07910.07110.036*
C2170.2063 (2)0.15971 (19)0.07875 (17)0.0270 (5)
H2170.20380.08750.07550.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0247 (3)0.0198 (3)0.0174 (3)0.0095 (2)0.0014 (2)0.0079 (2)
C110.0149 (9)0.0197 (10)0.0162 (10)0.0056 (8)0.0016 (7)0.0072 (8)
C120.0156 (9)0.0264 (11)0.0246 (11)0.0092 (8)0.0068 (8)0.0175 (9)
C130.0146 (9)0.0204 (10)0.0204 (10)0.0076 (8)0.0056 (7)0.0106 (8)
C140.0181 (9)0.0284 (11)0.0273 (11)0.0108 (9)0.0081 (8)0.0181 (10)
C150.0233 (10)0.0234 (11)0.0344 (12)0.0106 (9)0.0091 (9)0.0179 (10)
C160.0242 (10)0.0192 (10)0.0279 (11)0.0118 (9)0.0076 (9)0.0085 (9)
C170.0208 (10)0.0242 (11)0.0217 (10)0.0107 (9)0.0064 (8)0.0101 (9)
C180.0179 (9)0.0236 (10)0.0217 (10)0.0097 (8)0.0053 (8)0.0126 (9)
C190.0161 (9)0.0199 (10)0.0166 (9)0.0067 (8)0.0057 (7)0.0072 (8)
C1100.0255 (10)0.0209 (10)0.0196 (10)0.0084 (9)0.0013 (8)0.0077 (9)
N110.0190 (8)0.0154 (8)0.0192 (8)0.0058 (7)0.0046 (7)0.0065 (7)
N120.0219 (9)0.0159 (8)0.0167 (8)0.0064 (7)0.0006 (7)0.0054 (7)
C1110.0181 (9)0.0190 (10)0.0142 (9)0.0046 (8)0.0008 (7)0.0066 (8)
O110.0287 (8)0.0139 (7)0.0172 (7)0.0068 (6)0.0029 (6)0.0035 (6)
N130.0250 (9)0.0142 (8)0.0180 (9)0.0091 (7)0.0022 (7)0.0039 (7)
C1120.0215 (10)0.0221 (10)0.0132 (9)0.0091 (8)0.0020 (8)0.0063 (8)
C1130.0295 (12)0.0174 (10)0.0288 (12)0.0068 (9)0.0057 (9)0.0055 (9)
C1140.0383 (13)0.0270 (12)0.0319 (13)0.0187 (11)0.0051 (10)0.0064 (10)
C1150.0231 (10)0.0307 (12)0.0180 (10)0.0124 (9)0.0029 (8)0.0097 (9)
C1160.0242 (11)0.0255 (11)0.0193 (11)0.0023 (9)0.0041 (8)0.0070 (9)
C1170.0320 (12)0.0183 (11)0.0265 (12)0.0069 (9)0.0064 (9)0.0061 (9)
S210.0167 (2)0.0221 (3)0.0208 (3)0.0069 (2)0.00048 (19)0.0083 (2)
C210.0158 (9)0.0215 (10)0.0134 (9)0.0058 (8)0.0021 (7)0.0066 (8)
C220.0146 (9)0.0168 (9)0.0165 (9)0.0046 (7)0.0052 (7)0.0057 (8)
C230.0162 (9)0.0224 (10)0.0168 (10)0.0068 (8)0.0037 (7)0.0076 (8)
C240.0168 (9)0.0274 (11)0.0228 (11)0.0101 (9)0.0051 (8)0.0099 (9)
C250.0256 (11)0.0264 (11)0.0251 (11)0.0152 (9)0.0074 (9)0.0113 (9)
C260.0244 (11)0.0212 (11)0.0223 (11)0.0063 (9)0.0053 (8)0.0075 (9)
C270.0216 (10)0.0245 (11)0.0188 (10)0.0067 (9)0.0019 (8)0.0090 (9)
C280.0192 (9)0.0231 (10)0.0154 (9)0.0088 (8)0.0046 (8)0.0088 (8)
C290.0190 (9)0.0234 (10)0.0173 (10)0.0095 (8)0.0078 (8)0.0104 (8)
C2100.0207 (10)0.0242 (11)0.0179 (10)0.0072 (9)0.0030 (8)0.0075 (9)
N210.0248 (9)0.0180 (8)0.0154 (8)0.0088 (7)0.0044 (7)0.0061 (7)
N220.0244 (9)0.0187 (9)0.0146 (8)0.0083 (7)0.0023 (7)0.0019 (7)
C2110.0213 (10)0.0197 (10)0.0152 (10)0.0059 (8)0.0009 (8)0.0062 (8)
O210.0336 (9)0.0218 (8)0.0188 (8)0.0127 (7)0.0054 (6)0.0009 (6)
N230.0224 (8)0.0167 (8)0.0165 (9)0.0082 (7)0.0003 (7)0.0049 (7)
C2120.0189 (9)0.0213 (10)0.0160 (10)0.0064 (8)0.0021 (8)0.0081 (8)
C2130.0245 (10)0.0223 (11)0.0197 (10)0.0087 (9)0.0012 (8)0.0079 (9)
C2140.0308 (12)0.0301 (12)0.0303 (12)0.0173 (10)0.0054 (10)0.0166 (10)
C2150.0237 (10)0.0325 (12)0.0194 (10)0.0127 (9)0.0021 (8)0.0123 (9)
C2160.0280 (11)0.0238 (12)0.0215 (11)0.0049 (9)0.0059 (9)0.0050 (9)
C2170.0295 (11)0.0203 (11)0.0220 (11)0.0068 (9)0.0027 (9)0.0077 (9)
Geometric parameters (Å, º) top
S11—C181.734 (2)S21—C281.745 (2)
S11—C111.7427 (19)S21—C211.7473 (19)
C11—C121.369 (2)C21—C221.381 (2)
C11—C191.466 (3)C21—C291.466 (3)
C12—C131.449 (3)C22—C231.440 (3)
C12—H120.9500C22—H220.9500
C13—C141.404 (3)C23—C241.407 (3)
C13—C181.410 (3)C23—C281.410 (3)
C14—C151.380 (3)C24—C251.380 (3)
C14—H140.9500C24—H240.9500
C15—C161.400 (3)C25—C261.408 (3)
C15—H150.9500C25—H250.9500
C16—C171.383 (3)C26—C271.379 (3)
C16—H160.9500C26—H260.9500
C17—C181.402 (3)C27—C281.397 (3)
C17—H170.9500C27—H270.9500
C19—N111.289 (2)C29—N211.293 (2)
C19—C1101.496 (3)C29—C2101.497 (3)
C110—H11A0.9800C210—H21A0.9800
C110—H11B0.9800C210—H21B0.9800
C110—H11C0.9800C210—H21C0.9800
N11—N121.375 (2)N21—N221.374 (2)
N12—C1111.371 (2)N22—C2111.376 (2)
N12—H12N0.97 (2)N22—H22N0.89 (2)
C111—O111.235 (2)C211—O211.221 (2)
C111—N131.357 (2)C211—N231.363 (2)
N13—C1121.416 (2)N23—C2121.413 (2)
N13—H13N0.89 (2)N23—H23N0.87 (2)
C112—C1131.382 (3)C212—C2171.387 (3)
C112—C1171.388 (3)C212—C2131.388 (3)
C113—C1141.396 (3)C213—C2141.390 (3)
C113—H1130.9500C213—H2130.9500
C114—C1151.376 (3)C214—C2151.383 (3)
C114—H1140.9500C214—H2140.9500
C115—C1161.368 (3)C215—C2161.372 (3)
C115—H1150.9500C215—H2150.9500
C116—C1171.389 (3)C216—C2171.387 (3)
C116—H1160.9500C216—H2160.9500
C117—H1170.9500C217—H2170.9500
C18—S11—C1191.28 (9)C28—S21—C2191.28 (9)
C12—C11—C19127.84 (18)C22—C21—C29128.03 (17)
C12—C11—S11113.22 (15)C22—C21—S21112.81 (14)
C19—C11—S11118.94 (14)C29—C21—S21119.10 (14)
C11—C12—C13111.86 (18)C21—C22—C23112.03 (17)
C11—C12—H12124.1C21—C22—H22124.0
C13—C12—H12124.1C23—C22—H22124.0
C14—C13—C18118.69 (18)C24—C23—C28119.07 (18)
C14—C13—C12129.36 (18)C24—C23—C22128.48 (18)
C18—C13—C12111.93 (17)C28—C23—C22112.45 (17)
C15—C14—C13119.85 (19)C25—C24—C23119.75 (18)
C15—C14—H14120.1C25—C24—H24120.1
C13—C14—H14120.1C23—C24—H24120.1
C14—C15—C16120.69 (19)C24—C25—C26120.27 (19)
C14—C15—H15119.7C24—C25—H25119.9
C16—C15—H15119.7C26—C25—H25119.9
C17—C16—C15121.00 (19)C27—C26—C25121.06 (19)
C17—C16—H16119.5C27—C26—H26119.5
C15—C16—H16119.5C25—C26—H26119.5
C16—C17—C18118.25 (19)C26—C27—C28118.75 (18)
C16—C17—H17120.9C26—C27—H27120.6
C18—C17—H17120.9C28—C27—H27120.6
C17—C18—C13121.51 (18)C27—C28—C23121.10 (18)
C17—C18—S11126.77 (15)C27—C28—S21127.46 (15)
C13—C18—S11111.71 (15)C23—C28—S21111.44 (15)
N11—C19—C11115.21 (17)N21—C29—C21114.78 (17)
N11—C19—C110124.97 (18)N21—C29—C210124.63 (18)
C11—C19—C110119.82 (16)C21—C29—C210120.58 (17)
C19—C110—H11A109.5C29—C210—H21A109.5
C19—C110—H11B109.5C29—C210—H21B109.5
H11A—C110—H11B109.5H21A—C210—H21B109.5
C19—C110—H11C109.5C29—C210—H21C109.5
H11A—C110—H11C109.5H21A—C210—H21C109.5
H11B—C110—H11C109.5H21B—C210—H21C109.5
C19—N11—N12117.57 (16)C29—N21—N22117.60 (16)
C111—N12—N11119.32 (16)N21—N22—C211119.89 (16)
C111—N12—H12N121.2 (13)N21—N22—H22N115.3 (14)
N11—N12—H12N118.4 (13)C211—N22—H22N123.5 (14)
O11—C111—N13124.78 (17)O21—C211—N23124.92 (18)
O11—C111—N12120.06 (17)O21—C211—N22120.69 (18)
N13—C111—N12115.14 (17)N23—C211—N22114.39 (18)
C111—N13—C112127.34 (17)C211—N23—C212127.10 (17)
C111—N13—H13N113.6 (14)C211—N23—H23N113.9 (14)
C112—N13—H13N118.4 (14)C212—N23—H23N118.6 (14)
C113—C112—C117119.18 (18)C217—C212—C213119.81 (18)
C113—C112—N13124.47 (18)C217—C212—N23116.38 (18)
C117—C112—N13116.35 (18)C213—C212—N23123.75 (18)
C112—C113—C114119.2 (2)C212—C213—C214118.85 (19)
C112—C113—H113120.4C212—C213—H213120.6
C114—C113—H113120.4C214—C213—H213120.6
C115—C114—C113121.6 (2)C215—C214—C213121.6 (2)
C115—C114—H114119.2C215—C214—H214119.2
C113—C114—H114119.2C213—C214—H214119.2
C116—C115—C114118.76 (19)C216—C215—C214118.77 (19)
C116—C115—H115120.6C216—C215—H215120.6
C114—C115—H115120.6C214—C215—H215120.6
C115—C116—C117120.8 (2)C215—C216—C217120.9 (2)
C115—C116—H116119.6C215—C216—H216119.6
C117—C116—H116119.6C217—C216—H216119.6
C112—C117—C116120.4 (2)C216—C217—C212120.05 (19)
C112—C117—H117119.8C216—C217—H217120.0
C116—C117—H117119.8C212—C217—H217120.0
C18—S11—C11—C120.58 (16)C28—S21—C21—C220.23 (15)
C18—S11—C11—C19178.95 (16)C28—S21—C21—C29177.63 (16)
C19—C11—C12—C13178.81 (18)C29—C21—C22—C23177.56 (18)
S11—C11—C12—C130.7 (2)S21—C21—C22—C230.4 (2)
C11—C12—C13—C14178.41 (19)C21—C22—C23—C24179.47 (19)
C11—C12—C13—C180.4 (2)C21—C22—C23—C280.5 (2)
C18—C13—C14—C150.8 (3)C28—C23—C24—C250.1 (3)
C12—C13—C14—C15177.90 (19)C22—C23—C24—C25179.82 (19)
C13—C14—C15—C160.6 (3)C23—C24—C25—C260.1 (3)
C14—C15—C16—C170.2 (3)C24—C25—C26—C270.2 (3)
C15—C16—C17—C180.8 (3)C25—C26—C27—C280.5 (3)
C16—C17—C18—C130.6 (3)C26—C27—C28—C230.5 (3)
C16—C17—C18—S11177.95 (15)C26—C27—C28—S21179.33 (15)
C14—C13—C18—C170.2 (3)C24—C23—C28—C270.2 (3)
C12—C13—C18—C17178.72 (17)C22—C23—C28—C27179.86 (17)
C14—C13—C18—S11178.98 (14)C24—C23—C28—S21179.65 (15)
C12—C13—C18—S110.0 (2)C22—C23—C28—S210.3 (2)
C11—S11—C18—C17178.33 (19)C21—S21—C28—C27179.87 (19)
C11—S11—C18—C130.33 (15)C21—S21—C28—C230.05 (15)
C12—C11—C19—N11166.45 (19)C22—C21—C29—N21173.78 (18)
S11—C11—C19—N1113.0 (2)S21—C21—C29—N219.3 (2)
C12—C11—C19—C11013.9 (3)C22—C21—C29—C2107.3 (3)
S11—C11—C19—C110166.64 (15)S21—C21—C29—C210169.70 (15)
C11—C19—N11—N12177.05 (16)C21—C29—N21—N22176.63 (16)
C110—C19—N11—N122.6 (3)C210—C29—N21—N222.3 (3)
C19—N11—N12—C111168.46 (17)C29—N21—N22—C211171.23 (18)
N11—N12—C111—O11177.39 (17)N21—N22—C211—O21176.31 (18)
N11—N12—C111—N131.1 (3)N21—N22—C211—N234.0 (3)
O11—C111—N13—C1128.0 (3)O21—C211—N23—C2129.9 (3)
N12—C111—N13—C112170.44 (18)N22—C211—N23—C212169.85 (18)
C111—N13—C112—C11313.3 (3)C211—N23—C212—C217177.5 (2)
C111—N13—C112—C117166.3 (2)C211—N23—C212—C2135.4 (3)
C117—C112—C113—C1141.6 (3)C217—C212—C213—C2142.5 (3)
N13—C112—C113—C114177.9 (2)N23—C212—C213—C214174.54 (19)
C112—C113—C114—C1151.4 (4)C212—C213—C214—C2151.3 (3)
C113—C114—C115—C1160.3 (4)C213—C214—C215—C2160.3 (3)
C114—C115—C116—C1170.4 (3)C214—C215—C216—C2170.6 (3)
C113—C112—C117—C1160.9 (3)C215—C216—C217—C2120.7 (3)
N13—C112—C117—C116178.7 (2)C213—C212—C217—C2162.2 (3)
C115—C116—C117—C1120.2 (3)N23—C212—C217—C216175.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S11, C11, C12, C13, C18 ring.
D—H···AD—HH···AD···AD—H···A
N12—H12N···O210.97 (2)1.91 (2)2.847 (2)162.1 (19)
N22—H22N···O110.89 (2)1.99 (2)2.840 (2)158 (2)
C113—H113···O110.952.292.886 (2)120
C213—H213···O210.952.262.871 (2)121
C15—H15···O11i0.952.623.435 (2)144
C24—H24···Cg1ii0.952.803.482 (2)130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3OS
Mr309.38
Crystal system, space groupTriclinic, P1
Temperature (K)89
a, b, c (Å)9.8858 (3), 13.2737 (5), 13.6121 (8)
α, β, γ (°)113.961 (3), 98.153 (3), 107.778 (2)
V3)1480.02 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25263, 8650, 5747
Rint0.052
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.07
No. of reflections8650
No. of parameters411
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.37

Computer programs: APEX2 (Bruker, 2009) and SAINT (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S11, C11, C12, C13, C18 ring.
D—H···AD—HH···AD···AD—H···A
N12—H12N···O210.97 (2)1.91 (2)2.847 (2)162.1 (19)
N22—H22N···O110.89 (2)1.99 (2)2.840 (2)158 (2)
C113—H113···O110.952.292.886 (2)119.8
C213—H213···O210.952.262.871 (2)121.1
C15—H15···O11i0.952.623.435 (2)144.1
C24—H24···Cg1ii0.952.803.482 (2)130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We wish to thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAlam, O., Mullick, P., Verma, S. P., Gilani, S. J., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 2467–2472.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeraldo, H., Nacif, W. F. & West, D. X. (2001). Spectrochim. Acta A, 57, 1847–1854.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Balasubramani, K., Vijesh, A. M., Malladii, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o2072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1807–o1808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMendoza-Meroño, R., Menéndez-Taboada, L., Fernández-Zapico, E. & García-Granda, S. (2011). Acta Cryst. E67, o1135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, R., Agarwal, S. K., Rawat, S. & Nagar, M. (2006). Transition Met. Chem. 31, 201–206.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22–28.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds