organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,21-Di­methyl-2,7,13,18-tetra­phenyl-3,6,14,17-tetra­azatri­cyclo[17.3.1.18,12]tetracosa-1(23),2,6,8(24),9,11,13,17,19,21-deca­ene-23,24-diol cyclo­hexane 0.33-solvate

aDepartment of Chemistry, Dish Institute of Management and Technology, Raipur 492101(C.G.), India, bDirectorate of ER & IPR, Defence Research and Development Organisation, New Delhi 110105, India, cSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and dDepartment of Chemistry, Howard University, Washington DC 20059, USA
*Correspondence e-mail: rbutcher@howard.edu

(Received 7 September 2011; accepted 8 September 2011; online 30 September 2011)

The title compound, C46H40N4O2·0.33C6H12, was obtained unintentionally as a product of an attempted synthesis of a cadmium(II) complex of the [2,6-{PhSe(CH2)2N=CPh}2C6H2(4-Me)(OH)] ligand. The full tetra­imino­diphenol macrocyclic ligand is generated by the application of an inversion centre. The macrocyclic ligand features strong intra­molecular O—H⋯N hydrogen bonds. The dihedral angles formed between the phenyl ring incorporated within the macrocycle and the peripheral phenyl rings are 82.99 (8) and 88.20 (8)°. The cyclo­hexane solvent mol­ecule lies about a site of [\overline{3}] symmetry. Other solvent within the lattice was disordered and was treated with the SQUEEZE routine [Spek (2009). Acta Cryst. D65, 148–155].

Related literature

For information on phenol-based Schiff base ligands, complexes and their applications, see: Vigato et al. (2007[Vigato, P. A., Tamburini, S. & Bartolo, L. (2007). Coord. Chem. Rev. 251, 1311-1492.]); Fenton et al. (2010[Fenton, H., Tidmash, I. S. & Ward, M. D. (2010). Dalton Trans. 39, 3805-3815.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Na et al. (2006[Na, S. J., Joe, D. J., Sujith, S., Han, W.-S., Kang, S. O. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 611-620.]); Dutta et al. (2004[Dutta, B., Bag, P., Adhikary, B., Flörke, U. & Nag, K. (2004). J. Org. Chem. 69, 5419-5427.]); Mandal et al. (1989[Mandal, S. T., Thomson, L. K., Newlands, M. J., Biswas, A. K., Adhikari, B., Nag, K., Gabe, E. J. & Lee, F. L. (1989). Can. J. Chem. 67, 662-670.]); Gupta et al. (2002[Gupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787-1793.], 2010[Gupta, S. K., Anjana, C., Butcher, R. J. & Sen, N. (2010). Acta Cryst. E66, m1531-m1532.]).

[Scheme 1]

Experimental

Crystal data
  • 3C46H40N4O2·C6H12

  • Mr = 2126.62

  • Rhombohedral, [R \overline 3]

  • a = 28.0966 (2) Å

  • c = 16.0265 (2) Å

  • α = 90°

  • γ = 120°

  • V = 10956.6 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 295 K

  • 0.44 × 0.41 × 0.32 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.173, Tmax = 1.000

  • 10270 measured reflections

  • 5016 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.222

  • S = 0.93

  • 5016 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1A 0.82 1.81 2.532 (2) 146

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have played an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and supramolecular architectures (Vigato et al., 2007; Fenton et al., 2010; Avaji et al., 2009; Na et al., 2006; Dutta et al., 2004; Mandal et al., 1989). Very recently we have reported a dinuclear copper (II) complex with a neutral tetraiminodiphenol macrocycle with a C2 lateral chain (Gupta et al., 2010). We herein report the synthesis and crystal structure of its Schiff base ligand, Fig. 1. The phenolic hydrogen forms an intramolecular hydrogen bond with N1 of the imino group, Table 1. The C1—O1 bond [1.342 (2) Å] appears to be shorter than the equivalent bond in the related structure, (PhCO)2C6H2(OH)(4-Me) [1.360 (4) Å] (Gupta et al., 2002). The imino groups are coplanar with the phenyl ring to which they are attached. The dihedral angles between the phenyl moiety which is part of the macrocycle and the peripheral phenyl rings are 82.99 (8) and 88.20 (8) °. The crystals contain cyclohexane solvent molecules which lie on a site of 3 symmetry and thus only one atom is unique and a chair conformation is imposed.

Related literature top

For information on phenol-based Schiff base ligands, complexes and their applications, see: Vigato et al. (2007); Fenton et al. (2010); Avaji et al. (2009); Na et al. (2006); Dutta et al. (2004); Mandal et al. (1989); Gupta et al. (2002, 2010).

Experimental top

A methanolic solution of ethylenediamine (0.13 ml, 1.94 mmol) was added drop wise to a suspension of CdCl2.H2O (0.194 g, 0.97 mmol) in methanol and stirred for 5 min. A methanolic solution of [2,6-{PhSe(CH2)2N CPh}2C6H2(4-Me)(OH)] (0.66 g, 0.97 mmol) was added drop wise to the above reaction mixture with constant stirring under Ar atmosphere. The reaction was carried out at room temperature while stirring vigorously. After stirring the reaction mixture for 12 h, the precipitate thus obtained was filtered, dried under vacuum and isolated as the mixture of solid compounds. The macrocycle from the mixture was separated by dissolving it in warm chloroform. Crystals suitable were grown by slow evaporation of its solution in chloroform-cyclohexane mixture (9:1 v/v), giving rise to yellow regular cubic crystals in 45% yield. Anal. Calcd. for C48H44N4O2: C, 81.30; H, 6.21; N, 7.90%. Found: C, 81.61; H, 6.41; N, 8.02.

Refinement top

C-bound H atoms were located at their idealized positions and were included in the final structural model in riding-motion approximation with d(C—H) = 0.93 Å for aromatic CH, 0.97 Å for CH2 groups, 0.96 Å for CH3 groups, and d(O—H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl-C and O). The structure contained disordered solvent molecules located near symmetry elements. These were not able to be resolved and so were removed using the SQUEEZE routine in PLATON (Spek, 2009).

Structure description top

Schiff bases have played an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and supramolecular architectures (Vigato et al., 2007; Fenton et al., 2010; Avaji et al., 2009; Na et al., 2006; Dutta et al., 2004; Mandal et al., 1989). Very recently we have reported a dinuclear copper (II) complex with a neutral tetraiminodiphenol macrocycle with a C2 lateral chain (Gupta et al., 2010). We herein report the synthesis and crystal structure of its Schiff base ligand, Fig. 1. The phenolic hydrogen forms an intramolecular hydrogen bond with N1 of the imino group, Table 1. The C1—O1 bond [1.342 (2) Å] appears to be shorter than the equivalent bond in the related structure, (PhCO)2C6H2(OH)(4-Me) [1.360 (4) Å] (Gupta et al., 2002). The imino groups are coplanar with the phenyl ring to which they are attached. The dihedral angles between the phenyl moiety which is part of the macrocycle and the peripheral phenyl rings are 82.99 (8) and 88.20 (8) °. The crystals contain cyclohexane solvent molecules which lie on a site of 3 symmetry and thus only one atom is unique and a chair conformation is imposed.

For information on phenol-based Schiff base ligands, complexes and their applications, see: Vigato et al. (2007); Fenton et al. (2010); Avaji et al. (2009); Na et al. (2006); Dutta et al. (2004); Mandal et al. (1989); Gupta et al. (2002, 2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. The cyclohexane ring has 3 symmetry.
10,21-dimethyl-2,7,13,18-tetraphenyl-3,6,14,17- tetraazatricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8(24),9,11,13,17,19,21- decaene-23,24-diol cyclohexane 0.33-solvate top
Crystal data top
3C46H40N4O2·C6H12F(000) = 3384
Mr = 2126.62Dx = 0.967 Mg m3
Rhombohedral, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 3689 reflections
a = 28.0966 (2) Åθ = 4.2–77.4°
c = 16.0265 (2) ŵ = 0.06 mm1
α = 90°T = 295 K
γ = 120°Block, yellow
V = 10956.6 (2) Å30.44 × 0.41 × 0.32 mm
Z = 3
Data collection top
Oxford Diffraction Gemini R
diffractometer
5016 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 26.8°, θmin = 2.1°
φ and ω scansh = 3433
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 3531
Tmin = 0.173, Tmax = 1.000l = 1719
10270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1584P)2]
where P = (Fo2 + 2Fc2)/3
5016 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
3C46H40N4O2·C6H12V = 10956.6 (2) Å3
Mr = 2126.62Z = 3
Rhombohedral, R3Mo Kα radiation
a = 28.0966 (2) ŵ = 0.06 mm1
c = 16.0265 (2) ÅT = 295 K
α = 90°0.44 × 0.41 × 0.32 mm
γ = 120°
Data collection top
Oxford Diffraction Gemini R
diffractometer
5016 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3022 reflections with I > 2σ(I)
Tmin = 0.173, Tmax = 1.000Rint = 0.020
10270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 0.93Δρmax = 0.85 e Å3
5016 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00757 (6)0.45286 (6)0.94763 (8)0.0730 (4)
H1O0.00350.44230.99520.088*
N1A0.01498 (8)0.43270 (7)1.09956 (10)0.0711 (4)
N1B0.04471 (7)0.53952 (7)0.76712 (10)0.0743 (5)
C10.06233 (8)0.48575 (8)0.94867 (12)0.0624 (4)
C20.09343 (8)0.49450 (8)1.02149 (12)0.0645 (5)
C30.15063 (9)0.52866 (9)1.01686 (13)0.0724 (5)
H3A0.17140.53431.06480.087*
C40.17723 (9)0.55424 (9)0.94371 (14)0.0757 (5)
C50.14523 (9)0.54553 (9)0.87394 (13)0.0752 (5)
H5A0.16240.56290.82440.090*
C60.08866 (8)0.51206 (8)0.87453 (12)0.0669 (5)
C70.23917 (11)0.59108 (13)0.9403 (2)0.1046 (9)
H7A0.25480.57400.90680.157*
H7B0.25390.59680.99580.157*
H7C0.24800.62580.91610.157*
C1A0.01466 (10)0.40063 (10)1.17263 (14)0.0781 (6)
H1AA0.01000.41211.22020.094*
H1AB0.02750.36201.16240.094*
C2A0.06650 (9)0.46672 (8)1.10066 (12)0.0663 (5)
C3A0.10126 (9)0.48103 (9)1.17789 (12)0.0694 (5)
C4A0.11904 (9)0.44689 (10)1.20864 (14)0.0775 (6)
H4AA0.11070.41471.18060.093*
C5A0.14966 (11)0.46100 (12)1.28222 (16)0.0909 (7)
H5AA0.16210.43821.30300.109*
C6A0.16148 (12)0.50778 (13)1.32378 (18)0.0991 (8)
H6AA0.18170.51681.37300.119*
C7A0.14353 (14)0.54175 (13)1.29287 (19)0.1052 (9)
H7AA0.15170.57381.32140.126*
C8A0.11359 (12)0.52882 (11)1.22012 (15)0.0878 (7)
H8AA0.10170.55211.19950.105*
C1B0.06337 (9)0.59170 (9)0.80786 (13)0.0762 (6)
H1BA0.08900.62120.77190.091*
H1BB0.08240.59310.85910.091*
C2B0.05487 (8)0.50364 (8)0.79799 (12)0.0689 (5)
C3B0.03317 (10)0.45037 (9)0.75241 (13)0.0770 (6)
C4B0.00983 (11)0.43386 (12)0.69686 (16)0.0958 (8)
H4BA0.02620.45530.68920.115*
C5B0.02877 (14)0.38494 (14)0.6522 (2)0.1131 (10)
H5BA0.05840.37360.61610.136*
C6B0.00516 (16)0.35455 (13)0.6604 (2)0.1179 (12)
H6BA0.01720.32300.62830.141*
C7B0.03724 (17)0.36951 (12)0.7163 (2)0.1160 (11)
H7BA0.05330.34770.72290.139*
C8B0.05599 (13)0.41755 (11)0.76307 (17)0.0957 (8)
H8BA0.08410.42740.80160.115*
C1S0.2722 (4)0.6162 (8)1.1813 (4)0.244 (6)
H1SA0.26860.61321.24160.293*
H1SB0.23790.58791.15730.293*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0741 (8)0.0811 (9)0.0525 (7)0.0303 (7)0.0009 (6)0.0076 (6)
N1A0.0838 (11)0.0741 (10)0.0554 (9)0.0395 (9)0.0047 (8)0.0089 (7)
N1B0.0852 (11)0.0795 (10)0.0536 (9)0.0378 (9)0.0032 (8)0.0041 (7)
C10.0697 (11)0.0624 (9)0.0551 (10)0.0330 (9)0.0014 (8)0.0006 (7)
C20.0766 (11)0.0649 (10)0.0563 (10)0.0387 (9)0.0002 (8)0.0008 (8)
C30.0747 (12)0.0779 (12)0.0679 (12)0.0407 (10)0.0049 (9)0.0011 (9)
C40.0710 (12)0.0788 (12)0.0751 (13)0.0358 (10)0.0028 (10)0.0010 (10)
C50.0795 (13)0.0786 (12)0.0645 (12)0.0372 (10)0.0110 (9)0.0067 (10)
C60.0750 (11)0.0684 (10)0.0557 (10)0.0347 (9)0.0045 (8)0.0023 (8)
C70.0771 (15)0.119 (2)0.1015 (19)0.0369 (14)0.0056 (13)0.0134 (16)
C1A0.0922 (14)0.0802 (13)0.0623 (12)0.0433 (11)0.0065 (10)0.0161 (9)
C2A0.0833 (13)0.0694 (11)0.0554 (10)0.0452 (10)0.0006 (8)0.0010 (8)
C3A0.0833 (12)0.0795 (12)0.0524 (9)0.0460 (10)0.0008 (8)0.0044 (8)
C4A0.0883 (14)0.0843 (13)0.0722 (13)0.0523 (12)0.0018 (10)0.0034 (10)
C5A0.0928 (15)0.1126 (19)0.0818 (15)0.0622 (14)0.0079 (12)0.0121 (14)
C6A0.1021 (18)0.120 (2)0.0752 (15)0.0557 (17)0.0221 (13)0.0040 (14)
C7A0.133 (2)0.1024 (18)0.0819 (16)0.0597 (18)0.0228 (16)0.0222 (14)
C8A0.1165 (18)0.0890 (15)0.0726 (13)0.0622 (14)0.0160 (13)0.0088 (11)
C1B0.0842 (13)0.0747 (12)0.0632 (11)0.0349 (10)0.0047 (10)0.0084 (9)
C2B0.0748 (11)0.0757 (11)0.0480 (9)0.0315 (9)0.0094 (8)0.0048 (8)
C3B0.0891 (14)0.0745 (12)0.0540 (10)0.0309 (11)0.0141 (9)0.0006 (9)
C4B0.0947 (16)0.1020 (17)0.0703 (14)0.0340 (14)0.0022 (12)0.0152 (12)
C5B0.107 (2)0.109 (2)0.0857 (18)0.0260 (17)0.0073 (15)0.0288 (16)
C6B0.124 (2)0.0865 (18)0.098 (2)0.0187 (17)0.0379 (19)0.0227 (15)
C7B0.156 (3)0.0860 (17)0.099 (2)0.0557 (19)0.036 (2)0.0008 (15)
C8B0.125 (2)0.0843 (15)0.0737 (15)0.0490 (15)0.0074 (14)0.0013 (12)
C1S0.195 (7)0.318 (16)0.099 (4)0.037 (6)0.012 (4)0.054 (8)
Geometric parameters (Å, º) top
O1—C11.342 (2)C4A—H4AA0.9300
O1—H1O0.8200C5A—C6A1.358 (4)
N1A—C2A1.275 (3)C5A—H5AA0.9300
N1A—C1A1.458 (2)C6A—C7A1.375 (4)
N1B—C2B1.277 (3)C6A—H6AA0.9300
N1B—C1B1.443 (3)C7A—C8A1.376 (4)
C1—C61.400 (3)C7A—H7AA0.9300
C1—C21.404 (3)C8A—H8AA0.9300
C2—C31.402 (3)C1B—C1Ai1.521 (3)
C2—C2A1.484 (3)C1B—H1BA0.9700
C3—C41.383 (3)C1B—H1BB0.9700
C3—H3A0.9300C2B—C3B1.494 (3)
C4—C51.378 (3)C3B—C8B1.372 (4)
C4—C71.517 (3)C3B—C4B1.381 (4)
C5—C61.384 (3)C4B—C5B1.398 (4)
C5—H5A0.9300C4B—H4BA0.9300
C6—C2B1.496 (3)C5B—C6B1.324 (5)
C7—H7A0.9600C5B—H5BA0.9300
C7—H7B0.9600C6B—C7B1.378 (5)
C7—H7C0.9600C6B—H6BA0.9300
C1A—C1Bi1.520 (3)C7B—C8B1.396 (4)
C1A—H1AA0.9700C7B—H7BA0.9300
C1A—H1AB0.9700C8B—H8BA0.9300
C2A—C3A1.502 (3)C1S—C1Sii1.657 (7)
C3A—C4A1.375 (3)C1S—C1Siii1.658 (7)
C3A—C8A1.384 (3)C1S—H1SA0.9700
C4A—C5A1.395 (3)C1S—H1SB0.9700
C1—O1—H1O109.5C4A—C5A—H5AA119.8
C2A—N1A—C1A122.38 (18)C5A—C6A—C7A119.9 (2)
C2B—N1B—C1B121.06 (18)C5A—C6A—H6AA120.1
O1—C1—C6118.32 (17)C7A—C6A—H6AA120.1
O1—C1—C2122.01 (17)C6A—C7A—C8A120.7 (3)
C6—C1—C2119.67 (18)C6A—C7A—H7AA119.7
C3—C2—C1118.41 (18)C8A—C7A—H7AA119.7
C3—C2—C2A120.92 (18)C7A—C8A—C3A119.6 (2)
C1—C2—C2A120.65 (18)C7A—C8A—H8AA120.2
C4—C3—C2122.5 (2)C3A—C8A—H8AA120.2
C4—C3—H3A118.8N1B—C1B—C1Ai109.98 (19)
C2—C3—H3A118.8N1B—C1B—H1BA109.7
C5—C4—C3117.41 (19)C1Ai—C1B—H1BA109.7
C5—C4—C7121.1 (2)N1B—C1B—H1BB109.7
C3—C4—C7121.5 (2)C1Ai—C1B—H1BB109.7
C4—C5—C6122.7 (2)H1BA—C1B—H1BB108.2
C4—C5—H5A118.6N1B—C2B—C3B117.44 (19)
C6—C5—H5A118.6N1B—C2B—C6124.58 (19)
C5—C6—C1119.25 (19)C3B—C2B—C6117.94 (19)
C5—C6—C2B121.62 (18)C8B—C3B—C4B118.6 (2)
C1—C6—C2B119.13 (17)C8B—C3B—C2B121.2 (2)
C4—C7—H7A109.5C4B—C3B—C2B120.1 (2)
C4—C7—H7B109.5C3B—C4B—C5B120.0 (3)
H7A—C7—H7B109.5C3B—C4B—H4BA120.0
C4—C7—H7C109.5C5B—C4B—H4BA120.0
H7A—C7—H7C109.5C6B—C5B—C4B121.1 (3)
H7B—C7—H7C109.5C6B—C5B—H5BA119.5
N1A—C1A—C1Bi110.73 (17)C4B—C5B—H5BA119.5
N1A—C1A—H1AA109.5C5B—C6B—C7B120.2 (3)
C1Bi—C1A—H1AA109.5C5B—C6B—H6BA119.9
N1A—C1A—H1AB109.5C7B—C6B—H6BA119.9
C1Bi—C1A—H1AB109.5C6B—C7B—C8B119.6 (3)
H1AA—C1A—H1AB108.1C6B—C7B—H7BA120.2
N1A—C2A—C2118.15 (18)C8B—C7B—H7BA120.2
N1A—C2A—C3A123.70 (18)C3B—C8B—C7B120.4 (3)
C2—C2A—C3A118.15 (18)C3B—C8B—H8BA119.8
C4A—C3A—C8A119.9 (2)C7B—C8B—H8BA119.8
C4A—C3A—C2A121.5 (2)C1Sii—C1S—C1Siii112.3 (4)
C8A—C3A—C2A118.47 (18)C1Sii—C1S—H1SA109.1
C3A—C4A—C5A119.5 (2)C1Siii—C1S—H1SA109.1
C3A—C4A—H4AA120.3C1Sii—C1S—H1SB109.1
C5A—C4A—H4AA120.3C1Siii—C1S—H1SB109.1
C6A—C5A—C4A120.5 (2)H1SA—C1S—H1SB107.9
C6A—C5A—H5AA119.8
O1—C1—C2—C3178.78 (18)C8A—C3A—C4A—C5A0.3 (4)
C6—C1—C2—C31.5 (3)C2A—C3A—C4A—C5A177.8 (2)
O1—C1—C2—C2A0.8 (3)C3A—C4A—C5A—C6A0.6 (4)
C6—C1—C2—C2A179.53 (17)C4A—C5A—C6A—C7A0.5 (4)
C1—C2—C3—C40.6 (3)C5A—C6A—C7A—C8A0.1 (5)
C2A—C2—C3—C4178.54 (19)C6A—C7A—C8A—C3A0.3 (5)
C2—C3—C4—C50.7 (3)C4A—C3A—C8A—C7A0.2 (4)
C2—C3—C4—C7179.9 (2)C2A—C3A—C8A—C7A177.4 (2)
C3—C4—C5—C61.0 (3)C2B—N1B—C1B—C1Ai122.1 (2)
C7—C4—C5—C6179.8 (2)C1B—N1B—C2B—C3B178.98 (18)
C4—C5—C6—C10.0 (3)C1B—N1B—C2B—C63.4 (3)
C4—C5—C6—C2B179.6 (2)C5—C6—C2B—N1B73.2 (3)
O1—C1—C6—C5179.04 (18)C1—C6—C2B—N1B106.3 (2)
C2—C1—C6—C51.3 (3)C5—C6—C2B—C3B104.3 (2)
O1—C1—C6—C2B1.4 (3)C1—C6—C2B—C3B76.1 (2)
C2—C1—C6—C2B178.29 (18)N1B—C2B—C3B—C8B158.1 (2)
C2A—N1A—C1A—C1Bi126.2 (2)C6—C2B—C3B—C8B19.6 (3)
C1A—N1A—C2A—C2175.90 (17)N1B—C2B—C3B—C4B20.4 (3)
C1A—N1A—C2A—C3A5.3 (3)C6—C2B—C3B—C4B161.9 (2)
C3—C2—C2A—N1A174.41 (18)C8B—C3B—C4B—C5B0.8 (4)
C1—C2—C2A—N1A3.5 (3)C2B—C3B—C4B—C5B177.8 (2)
C3—C2—C2A—C3A6.7 (3)C3B—C4B—C5B—C6B1.9 (4)
C1—C2—C2A—C3A175.39 (17)C4B—C5B—C6B—C7B2.9 (5)
N1A—C2A—C3A—C4A78.9 (3)C5B—C6B—C7B—C8B1.4 (5)
C2—C2A—C3A—C4A102.2 (2)C4B—C3B—C8B—C7B2.3 (4)
N1A—C2A—C3A—C8A98.6 (3)C2B—C3B—C8B—C7B176.3 (2)
C2—C2A—C3A—C8A80.2 (3)C6B—C7B—C8B—C3B1.3 (4)
Symmetry codes: (i) x, y+1, z+2; (ii) xy+2/3, x+1/3, z+7/3; (iii) y1/3, x+y+1/3, z+7/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.821.812.532 (2)146

Experimental details

Crystal data
Chemical formula3C46H40N4O2·C6H12
Mr2126.62
Crystal system, space groupRhombohedral, R3
Temperature (K)295
a, c (Å)28.0966 (2), 16.0265 (2)
V3)10956.6 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.44 × 0.41 × 0.32
Data collection
DiffractometerOxford Diffraction Gemini R
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.173, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10270, 5016, 3022
Rint0.020
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.222, 0.93
No. of reflections5016
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.821.812.532 (2)145.8
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. The authors are grateful to Defence Research and Development Organization (DRDO), New Delhi, for financial assistance and for the award of a fellowship to AKA. They thank Professor B. L. Khandelwal, DIMAT, Raipur, for helpful discussions.

References

First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutta, B., Bag, P., Adhikary, B., Flörke, U. & Nag, K. (2004). J. Org. Chem. 69, 5419–5427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFenton, H., Tidmash, I. S. & Ward, M. D. (2010). Dalton Trans. 39, 3805–3815.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGupta, S. K., Anjana, C., Butcher, R. J. & Sen, N. (2010). Acta Cryst. E66, m1531–m1532.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787–1793.  Web of Science CrossRef CAS Google Scholar
First citationMandal, S. T., Thomson, L. K., Newlands, M. J., Biswas, A. K., Adhikari, B., Nag, K., Gabe, E. J. & Lee, F. L. (1989). Can. J. Chem. 67, 662–670.  CrossRef CAS Web of Science Google Scholar
First citationNa, S. J., Joe, D. J., Sujith, S., Han, W.-S., Kang, S. O. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 611–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A., Tamburini, S. & Bartolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds