organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[4-(2-Chloro­phen­yl)but-3-en-2-yl­­idene]malono­nitrile

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@sina.com

(Received 11 September 2011; accepted 13 September 2011; online 17 September 2011)

There are two independent but virtually identical mol­ecules in the asymmetric unit of the title compound, C13H19ClN2. Each mol­ecular skeleton displays an approximately planar structure except for the methyl group [the r.m.s. deviations for all 16 non-H atoms are 0.039 (mol­ecule 1) and 0.056 Å (mol­ecule 2)]. An E configuration is found about each of the C=C bonds. The crystal packing is stabilized by C—H⋯N inter­actions that connect the independent mol­ecules into supra­molecular chains along the c-axis direction.

Related literature

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002[Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019-7028.]); Sepiol & Milart (1985[Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261-5265.]); Zhang et al. (2003[Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295-3298.]). For a related structure, see: Kang & Chen (2009[Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2

  • Mr = 228.67

  • Triclinic, [P \overline 1]

  • a = 7.7177 (2) Å

  • b = 11.0539 (5) Å

  • c = 14.7236 (5) Å

  • α = 91.260 (3)°

  • β = 103.992 (3)°

  • γ = 106.357 (3)°

  • V = 1163.99 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 291 K

  • 0.35 × 0.32 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.455, Tmax = 0.502

  • 9739 measured reflections

  • 4135 independent reflections

  • 3770 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.04

  • 4135 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯N3i 0.96 2.62 3.564 (3) 166 (1)
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ylidene malononitrile has been studied extensively for ring closure reactions, with compounds containing newly formed five- or six-membered rings, such as indanes (Zhang et al., 2003), naphthalenes (Liu et al., 2002) and benzenes (Sepiol & Milart, 1985) being obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of (I).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The molecular skeleton displays an approximately planar arrangement in each case. The chlorobenzene ring and 2-propylidenemalononitrile groups are located on opposite sides of the double bond to which they are attached, showing an E configuration. The crystal packing is stabilized by C—H···N interactions (Table 1).

Related literature top

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).

Experimental top

2-(Propan-2-ylidene)malononitrile (0.212 g, 2 mmol) and 2-chlorobenzaldehyde (0.28 g, 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol). The solution was then stirred for 24 h at 343 K. The reaction mixture was cooled to room temperature and the solution was filtered to obtain a white solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) were obtained by slow evaporation of its ethyl acetate solution.

Refinement top

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the others.

Structure description top

The chemistry of ylidene malononitrile has been studied extensively for ring closure reactions, with compounds containing newly formed five- or six-membered rings, such as indanes (Zhang et al., 2003), naphthalenes (Liu et al., 2002) and benzenes (Sepiol & Milart, 1985) being obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of (I).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The molecular skeleton displays an approximately planar arrangement in each case. The chlorobenzene ring and 2-propylidenemalononitrile groups are located on opposite sides of the double bond to which they are attached, showing an E configuration. The crystal packing is stabilized by C—H···N interactions (Table 1).

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
(E)-2-[4-(2-Chlorophenyl)but-3-en-2-ylidene]malononitrile top
Crystal data top
C13H9ClN2Z = 4
Mr = 228.67F(000) = 472
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.7177 (2) ÅCell parameters from 6315 reflections
b = 11.0539 (5) Åθ = 3.1–72.1°
c = 14.7236 (5) ŵ = 2.67 mm1
α = 91.260 (3)°T = 291 K
β = 103.992 (3)°Block, yellow
γ = 106.357 (3)°0.35 × 0.32 × 0.30 mm
V = 1163.99 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
4135 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3770 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 67.1°, θmin = 3.1°
ω scansh = 97
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.455, Tmax = 0.502l = 1717
9739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.290P]
where P = (Fo2 + 2Fc2)/3
4135 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H9ClN2γ = 106.357 (3)°
Mr = 228.67V = 1163.99 (7) Å3
Triclinic, P1Z = 4
a = 7.7177 (2) ÅCu Kα radiation
b = 11.0539 (5) ŵ = 2.67 mm1
c = 14.7236 (5) ÅT = 291 K
α = 91.260 (3)°0.35 × 0.32 × 0.30 mm
β = 103.992 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
4135 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3770 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.502Rint = 0.027
9739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
4135 reflectionsΔρmin = 0.20 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C240.5347 (2)0.25777 (17)0.36952 (12)0.0541 (4)
C90.6600 (2)0.30400 (18)0.94779 (12)0.0536 (4)
C80.6947 (3)0.43885 (18)0.96046 (13)0.0562 (4)
H80.64950.47860.90880.067*
C10.9378 (3)0.71648 (18)1.14140 (13)0.0569 (4)
C230.5469 (3)0.2649 (2)0.53865 (14)0.0670 (5)
H23A0.47030.17910.51940.100*
H23C0.47960.31060.56560.100*
H23B0.65920.26540.58460.100*
C220.5964 (3)0.32662 (18)0.45502 (13)0.0551 (4)
N10.4827 (4)0.0031 (2)0.83682 (16)0.0942 (7)
C110.5561 (3)0.23861 (18)0.86407 (13)0.0574 (4)
C190.8945 (3)0.66283 (18)0.55896 (14)0.0588 (5)
C60.8253 (2)0.64747 (17)1.05665 (12)0.0524 (4)
C260.4247 (3)0.1281 (2)0.35739 (15)0.0697 (5)
C120.5155 (3)0.1042 (2)0.84862 (15)0.0679 (5)
C250.5774 (3)0.30988 (19)0.28661 (13)0.0600 (5)
C140.9546 (3)0.7332 (2)0.64619 (15)0.0651 (5)
C50.7504 (3)0.71784 (19)0.98811 (14)0.0613 (5)
H50.67380.67590.93070.074*
C40.7863 (3)0.8465 (2)1.00278 (17)0.0716 (6)
H40.73470.89030.95570.086*
N20.4120 (3)0.3468 (2)0.72447 (14)0.0907 (6)
C100.7382 (3)0.2352 (2)1.02658 (14)0.0645 (5)
H10A0.69690.14601.00730.097*
H10C0.69550.25061.08060.097*
H10B0.87230.26501.04230.097*
C200.7793 (3)0.53241 (19)0.54577 (13)0.0594 (5)
H200.74890.49720.59870.071*
C210.7120 (3)0.45749 (18)0.46499 (13)0.0577 (4)
H210.74120.49150.41140.069*
C70.7870 (2)0.51104 (18)1.04108 (13)0.0544 (4)
H70.83120.47011.09220.065*
C180.9567 (3)0.7248 (2)0.48501 (16)0.0703 (5)
H180.91970.68150.42540.084*
C171.0704 (3)0.8474 (2)0.4987 (2)0.0855 (7)
H171.10800.88630.44840.103*
C20.9749 (3)0.8458 (2)1.15697 (17)0.0730 (6)
H21.05070.88881.21420.088*
C130.4755 (3)0.2988 (2)0.78642 (14)0.0661 (5)
C151.0718 (3)0.8564 (2)0.6601 (2)0.0844 (7)
H151.11190.90080.71940.101*
C30.8988 (3)0.9107 (2)1.08720 (19)0.0776 (6)
H30.92330.99801.09710.093*
C161.1285 (4)0.9126 (3)0.5857 (3)0.0941 (8)
H161.20680.99540.59470.113*
N30.6097 (3)0.3519 (2)0.22018 (13)0.0802 (5)
N40.3349 (4)0.0253 (2)0.34942 (17)0.1014 (8)
Cl11.03787 (8)0.63948 (6)1.23196 (4)0.0778 (2)
Cl20.88209 (9)0.66910 (6)0.74273 (4)0.0836 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C240.0527 (9)0.0603 (10)0.0449 (9)0.0145 (8)0.0070 (7)0.0042 (8)
C90.0564 (10)0.0620 (10)0.0417 (9)0.0157 (8)0.0137 (8)0.0040 (7)
C80.0603 (10)0.0620 (11)0.0433 (9)0.0149 (8)0.0113 (8)0.0084 (8)
C10.0525 (9)0.0617 (11)0.0491 (10)0.0086 (8)0.0089 (8)0.0051 (8)
C230.0747 (12)0.0774 (13)0.0473 (10)0.0197 (10)0.0156 (9)0.0124 (9)
C220.0581 (10)0.0639 (11)0.0451 (9)0.0240 (8)0.0093 (8)0.0088 (8)
N10.1175 (17)0.0700 (13)0.0813 (14)0.0206 (12)0.0100 (12)0.0096 (11)
C110.0626 (10)0.0653 (11)0.0435 (9)0.0187 (9)0.0129 (8)0.0020 (8)
C190.0597 (10)0.0621 (11)0.0544 (11)0.0267 (9)0.0044 (8)0.0055 (8)
C60.0483 (9)0.0575 (10)0.0474 (9)0.0100 (7)0.0115 (7)0.0075 (7)
C260.0694 (12)0.0719 (14)0.0546 (11)0.0062 (10)0.0094 (10)0.0008 (9)
C120.0750 (13)0.0696 (13)0.0526 (11)0.0178 (10)0.0094 (10)0.0039 (9)
C250.0649 (11)0.0634 (11)0.0440 (10)0.0142 (9)0.0062 (8)0.0008 (8)
C140.0636 (11)0.0714 (12)0.0598 (11)0.0322 (10)0.0011 (9)0.0005 (9)
C50.0567 (10)0.0682 (12)0.0538 (11)0.0139 (9)0.0093 (8)0.0133 (9)
C40.0713 (13)0.0674 (13)0.0790 (15)0.0220 (10)0.0216 (11)0.0246 (11)
N20.1135 (16)0.1141 (17)0.0487 (11)0.0514 (14)0.0078 (10)0.0067 (10)
C100.0774 (13)0.0643 (12)0.0482 (10)0.0223 (10)0.0082 (9)0.0066 (9)
C200.0618 (11)0.0675 (11)0.0475 (10)0.0225 (9)0.0074 (8)0.0068 (8)
C210.0598 (10)0.0646 (11)0.0473 (10)0.0191 (9)0.0102 (8)0.0077 (8)
C70.0527 (9)0.0619 (11)0.0448 (9)0.0133 (8)0.0094 (7)0.0065 (8)
C180.0731 (13)0.0788 (14)0.0644 (13)0.0338 (11)0.0136 (10)0.0138 (10)
C170.0732 (14)0.0788 (16)0.110 (2)0.0272 (12)0.0273 (14)0.0291 (15)
C20.0726 (13)0.0618 (12)0.0689 (13)0.0011 (10)0.0125 (11)0.0047 (10)
C130.0773 (13)0.0785 (13)0.0411 (10)0.0257 (11)0.0104 (9)0.0009 (9)
C150.0735 (14)0.0753 (15)0.0921 (18)0.0239 (12)0.0022 (13)0.0113 (13)
C30.0828 (15)0.0555 (12)0.0920 (17)0.0122 (10)0.0276 (13)0.0094 (11)
C160.0732 (15)0.0717 (15)0.127 (3)0.0179 (12)0.0117 (16)0.0060 (16)
N30.0992 (14)0.0858 (13)0.0485 (10)0.0164 (11)0.0189 (9)0.0050 (9)
N40.1103 (17)0.0789 (14)0.0845 (15)0.0136 (13)0.0191 (13)0.0043 (11)
Cl10.0806 (4)0.0843 (4)0.0513 (3)0.0177 (3)0.0067 (2)0.0067 (2)
Cl20.0973 (4)0.1005 (5)0.0477 (3)0.0347 (3)0.0035 (3)0.0035 (3)
Geometric parameters (Å, º) top
C24—C221.362 (3)C25—N31.144 (3)
C24—C261.427 (3)C14—C151.386 (3)
C24—C251.432 (3)C14—Cl21.744 (2)
C9—C111.357 (3)C5—C41.372 (3)
C9—C81.438 (3)C5—H50.9300
C9—C101.499 (3)C4—C31.377 (3)
C8—C71.335 (3)C4—H40.9300
C8—H80.9300N2—C131.143 (3)
C1—C21.379 (3)C10—H10A0.9600
C1—C61.398 (3)C10—H10C0.9600
C1—Cl11.738 (2)C10—H10B0.9600
C23—C221.498 (3)C20—C211.336 (3)
C23—H23A0.9600C20—H200.9300
C23—H23C0.9600C21—H210.9300
C23—H23B0.9600C7—H70.9300
C22—C211.453 (3)C18—C171.370 (3)
N1—C121.141 (3)C18—H180.9300
C11—C121.430 (3)C17—C161.365 (4)
C11—C131.435 (3)C17—H170.9300
C19—C141.391 (3)C2—C31.376 (3)
C19—C181.409 (3)C2—H20.9300
C19—C201.445 (3)C15—C161.372 (4)
C6—C51.401 (3)C15—H150.9300
C6—C71.454 (3)C3—H30.9300
C26—N41.139 (3)C16—H160.9300
C22—C24—C26121.80 (17)C6—C5—H5118.9
C22—C24—C25122.40 (17)C5—C4—C3120.0 (2)
C26—C24—C25115.80 (17)C5—C4—H4120.0
C11—C9—C8119.85 (17)C3—C4—H4120.0
C11—C9—C10119.80 (18)C9—C10—H10A109.5
C8—C9—C10120.35 (16)C9—C10—H10C109.5
C7—C8—C9124.63 (17)H10A—C10—H10C109.5
C7—C8—H8117.7C9—C10—H10B109.5
C9—C8—H8117.7H10A—C10—H10B109.5
C2—C1—C6122.53 (19)H10C—C10—H10B109.5
C2—C1—Cl1117.46 (16)C21—C20—C19126.43 (19)
C6—C1—Cl1120.01 (15)C21—C20—H20116.8
C22—C23—H23A109.5C19—C20—H20116.8
C22—C23—H23C109.5C20—C21—C22124.53 (18)
H23A—C23—H23C109.5C20—C21—H21117.7
C22—C23—H23B109.5C22—C21—H21117.7
H23A—C23—H23B109.5C8—C7—C6126.29 (17)
H23C—C23—H23B109.5C8—C7—H7116.9
C24—C22—C21120.17 (17)C6—C7—H7116.9
C24—C22—C23119.18 (18)C17—C18—C19121.7 (2)
C21—C22—C23120.64 (17)C17—C18—H18119.1
C9—C11—C12121.86 (18)C19—C18—H18119.1
C9—C11—C13122.42 (18)C16—C17—C18120.3 (3)
C12—C11—C13115.70 (18)C16—C17—H17119.9
C14—C19—C18116.2 (2)C18—C17—H17119.9
C14—C19—C20121.75 (19)C3—C2—C1119.5 (2)
C18—C19—C20122.03 (19)C3—C2—H2120.3
C1—C6—C5115.78 (18)C1—C2—H2120.3
C1—C6—C7122.04 (17)N2—C13—C11179.7 (2)
C5—C6—C7122.18 (17)C16—C15—C14119.6 (3)
N4—C26—C24178.2 (3)C16—C15—H15120.2
N1—C12—C11179.5 (3)C14—C15—H15120.2
N3—C25—C24179.2 (2)C2—C3—C4120.0 (2)
C15—C14—C19121.9 (2)C2—C3—H3120.0
C15—C14—Cl2117.28 (19)C4—C3—H3120.0
C19—C14—Cl2120.77 (17)C17—C16—C15120.3 (2)
C4—C5—C6122.21 (19)C17—C16—H16119.9
C4—C5—H5118.9C15—C16—H16119.9
C11—C9—C8—C7176.58 (19)C1—C6—C5—C40.6 (3)
C10—C9—C8—C73.4 (3)C7—C6—C5—C4179.95 (18)
C26—C24—C22—C21178.43 (18)C6—C5—C4—C30.3 (3)
C25—C24—C22—C210.8 (3)C14—C19—C20—C21178.88 (19)
C26—C24—C22—C230.3 (3)C18—C19—C20—C212.9 (3)
C25—C24—C22—C23179.49 (18)C19—C20—C21—C22179.99 (17)
C8—C9—C11—C12179.02 (18)C24—C22—C21—C20179.91 (19)
C10—C9—C11—C121.0 (3)C23—C22—C21—C201.2 (3)
C8—C9—C11—C130.8 (3)C9—C8—C7—C6179.82 (17)
C10—C9—C11—C13179.17 (19)C1—C6—C7—C8174.14 (19)
C2—C1—C6—C50.6 (3)C5—C6—C7—C86.5 (3)
Cl1—C1—C6—C5179.76 (14)C14—C19—C18—C170.2 (3)
C2—C1—C6—C7179.94 (18)C20—C19—C18—C17178.10 (19)
Cl1—C1—C6—C70.4 (3)C19—C18—C17—C160.8 (3)
C22—C24—C26—N435 (9)C6—C1—C2—C30.2 (3)
C25—C24—C26—N4146 (9)Cl1—C1—C2—C3179.92 (18)
C9—C11—C12—N156 (43)C9—C11—C13—N285 (47)
C13—C11—C12—N1122 (43)C12—C11—C13—N296 (47)
C22—C24—C25—N390 (17)C19—C14—C15—C161.2 (3)
C26—C24—C25—N391 (17)Cl2—C14—C15—C16178.09 (19)
C18—C19—C14—C151.2 (3)C1—C2—C3—C40.1 (4)
C20—C19—C14—C15177.10 (19)C5—C4—C3—C20.1 (4)
C18—C19—C14—Cl2178.12 (14)C18—C17—C16—C150.8 (4)
C20—C19—C14—Cl23.6 (3)C14—C15—C16—C170.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N3i0.962.623.564 (3)166 (1)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H9ClN2
Mr228.67
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7177 (2), 11.0539 (5), 14.7236 (5)
α, β, γ (°)91.260 (3), 103.992 (3), 106.357 (3)
V3)1163.99 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.67
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.455, 0.502
No. of measured, independent and
observed [I > 2σ(I)] reflections
9739, 4135, 3770
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.04
No. of reflections4135
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N3i0.962.623.564 (3)165.6 (7)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Testing Centre of Sichuan University for the diffraction measurements and are grateful for financial support from China West Normal University (No. 10ZB016).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019–7028.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295–3298.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds