organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Bromo­pyridin-3-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal, India, cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing & Media, Manipal Institute of Technology, Manipal, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 September 2011; accepted 20 September 2011; online 30 September 2011)

In the title compound, C18H13BrN4O3S3, the tetra­hydro­pyridine ring adopts a half-chair conformation with the central methyl­ene-C atom of the NCH2CH2 unit at the flap. The dihedral angles between the tetra­hydro­pyridine ring and the pyridine and two thio­phene rings are 69.34 (13) 5.66 (13) and 68.63 (13)°, respectively, while the dihedral angle between the 1,3,4-oxadiazole and tetra­hydro­pyridine rings is 54.76 (13)°. The mol­ecule is stabilized by an intra­molecular C—H⋯N inter­action. In the crystal, adjacent mol­ecules are connected via bifurcated C—H⋯(N,O) hydrogen bonds, forming a chain along the b axis.

Related literature

For applications of 4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001[Lopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807-2811.]); Roth et al. (1994[Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403-1410.]); Ying & Rusak (1997[Ying, S. W. & Rusak, B. (1997). Brain Res. 755, 246-254.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13BrN4O3S3

  • Mr = 509.41

  • Monoclinic, P 21 /c

  • a = 7.0327 (14) Å

  • b = 7.6488 (15) Å

  • c = 36.939 (7) Å

  • β = 91.315 (5)°

  • V = 1986.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 296 K

  • 0.35 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.482, Tmax = 0.885

  • 22958 measured reflections

  • 7230 independent reflections

  • 4160 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.02

  • 7230 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N2 0.97 2.52 3.283 (4) 136
C10—H10A⋯O3i 0.93 2.49 3.330 (3) 150
C10—H10A⋯N2i 0.93 2.42 3.183 (3) 139
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives are extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997).

The molecular structure of the title compound, Fig. 1, contains five rings, namely, A (N3/C1,C2,C5–C7), B (N1/N2/O1/C12,C13), C (S3/C2–C5), D (S1/C8–C11) and E (N4/C14–C18). The tetrahydropyridine (N3/C1,C2,C5–C7) ring adopts a half-chair conformation with puckering parameters Q = 0.497 (3) Å, θ = 131.5 (3)° and φ = 141.6 (4)° with the flap atom at C7 [maximum deviation of -0.338 (3) Å]. The dihedral angle between the least-squares planes of the rings are A/B = 54.76 (13)°, A/C = 5.66 (13)°, A/D = 68.63 (13)°, A/E = 69.34 (13)°, B/C = 56.97 (14)°, B/D = 13.90 (14)°, B/E = 15.62 (13)°, C/D = 70.85 (13)°, and C/E = 70.88 (13)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via bifurcated C—H···N and C—H···O (Table 1) hydrogen bonds forming one-dimensional chains along the b-axis.

Related literature top

For applications of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

To a mixture of 3-(6,7-dihydrothieno[3,2-c]pyridine-5(4H)-ylsulfonyl) thiophene-2-carbohydrazide (0.5 g, 0.0014 mol) and 5-bromopyridine-3-carboxylic acid (0.29 g, 0.0014 mol), neutral alumina (0.5 g) and POCl3, (1.1 g, 0.007 mol) were added. The resulting mixture was irradiated in a microwave oven for 5 min. Mass analysis of the crude reaction mixture confirmed completion of the reaction. The reaction mixture was concentrated and the residue was purified by column chromatography to get title compound which was recrystallised using acetone. Yield: 68%, m.p. 429–431 K.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives are extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997).

The molecular structure of the title compound, Fig. 1, contains five rings, namely, A (N3/C1,C2,C5–C7), B (N1/N2/O1/C12,C13), C (S3/C2–C5), D (S1/C8–C11) and E (N4/C14–C18). The tetrahydropyridine (N3/C1,C2,C5–C7) ring adopts a half-chair conformation with puckering parameters Q = 0.497 (3) Å, θ = 131.5 (3)° and φ = 141.6 (4)° with the flap atom at C7 [maximum deviation of -0.338 (3) Å]. The dihedral angle between the least-squares planes of the rings are A/B = 54.76 (13)°, A/C = 5.66 (13)°, A/D = 68.63 (13)°, A/E = 69.34 (13)°, B/C = 56.97 (14)°, B/D = 13.90 (14)°, B/E = 15.62 (13)°, C/D = 70.85 (13)°, and C/E = 70.88 (13)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via bifurcated C—H···N and C—H···O (Table 1) hydrogen bonds forming one-dimensional chains along the b-axis.

For applications of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For ring conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing 30% probability displacement ellipsoids. The dashed line represents a C—H···N interaction.
[Figure 2] Fig. 2. A view of the crystal packing for the title compound (I). The dashed lines represent C—H···O and C—H···N hydrogen bonds.
2-(5-Bromopyridin-3-yl)-5-[3-(4,5,6,7-tetrahydrothieno[3,2-c]pyridine- 5-ylsulfonyl)thiophen-2-yl]-1,3,4-oxadiazole top
Crystal data top
C18H13BrN4O3S3F(000) = 1024
Mr = 509.41Dx = 1.703 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3605 reflections
a = 7.0327 (14) Åθ = 2.7–25.9°
b = 7.6488 (15) ŵ = 2.41 mm1
c = 36.939 (7) ÅT = 296 K
β = 91.315 (5)°Plate, colourless
V = 1986.5 (7) Å30.35 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7230 independent reflections
Radiation source: fine-focus sealed tube4160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 32.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 108
Tmin = 0.482, Tmax = 0.885k = 1111
22958 measured reflectionsl = 5552
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.8759P]
where P = (Fo2 + 2Fc2)/3
7230 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C18H13BrN4O3S3V = 1986.5 (7) Å3
Mr = 509.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0327 (14) ŵ = 2.41 mm1
b = 7.6488 (15) ÅT = 296 K
c = 36.939 (7) Å0.35 × 0.13 × 0.05 mm
β = 91.315 (5)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7230 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4160 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.885Rint = 0.051
22958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
7230 reflectionsΔρmin = 0.73 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93996 (10)0.96690 (8)0.10025 (2)0.04559 (16)
S21.36853 (8)0.62674 (8)0.146401 (17)0.03714 (14)
S31.17503 (12)0.51687 (12)0.30392 (2)0.0593 (2)
Br10.24445 (4)0.00049 (4)0.017218 (10)0.06497 (12)
O10.7735 (2)0.6343 (2)0.07860 (4)0.0371 (4)
O21.5532 (2)0.7035 (3)0.14769 (5)0.0505 (5)
O31.3410 (3)0.4632 (2)0.12866 (5)0.0464 (4)
N10.7985 (3)0.3595 (3)0.09508 (7)0.0503 (6)
N20.9456 (3)0.4530 (3)0.11199 (7)0.0513 (6)
N31.3043 (3)0.6029 (3)0.18809 (5)0.0358 (4)
N40.2436 (3)0.5346 (4)0.02560 (8)0.0582 (6)
C11.3498 (4)0.7466 (3)0.21341 (7)0.0443 (6)
H1A1.27360.84850.20730.053*
H1B1.48290.77810.21170.053*
C21.3091 (3)0.6885 (3)0.25127 (7)0.0397 (5)
C31.3612 (4)0.7808 (4)0.28326 (8)0.0555 (7)
H3A1.43130.88390.28330.067*
C41.2989 (4)0.7039 (5)0.31349 (9)0.0619 (8)
H4A1.32060.74720.33680.074*
C51.2078 (3)0.5430 (4)0.25829 (7)0.0426 (5)
C61.1309 (4)0.4206 (4)0.22997 (8)0.0515 (7)
H6A1.00540.38040.23650.062*
H6B1.21340.31950.22810.062*
C71.1199 (4)0.5162 (4)0.19417 (8)0.0453 (6)
H7A1.09200.43430.17470.054*
H7B1.01900.60260.19450.054*
C81.2147 (3)0.7874 (3)0.12720 (7)0.0367 (5)
C91.2684 (4)0.9644 (3)0.13041 (8)0.0443 (6)
H9A1.38341.00130.14070.053*
C101.1341 (4)1.0751 (3)0.11683 (8)0.0486 (6)
H10A1.14671.19610.11660.058*
C111.0374 (3)0.7667 (3)0.11097 (6)0.0366 (5)
C120.9260 (3)0.6133 (3)0.10159 (6)0.0359 (5)
C130.7017 (3)0.4705 (3)0.07619 (7)0.0367 (5)
C140.5288 (3)0.4345 (3)0.05505 (6)0.0374 (5)
C150.4063 (4)0.5660 (4)0.04346 (8)0.0492 (6)
H15A0.43930.68140.04840.059*
C160.1984 (4)0.3691 (4)0.01865 (8)0.0541 (7)
H16A0.08420.34530.00640.065*
C170.3143 (3)0.2309 (4)0.02888 (7)0.0442 (6)
C180.4814 (3)0.2626 (3)0.04777 (7)0.0415 (5)
H18A0.56000.17130.05540.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0598 (4)0.0272 (3)0.0493 (4)0.0054 (2)0.0094 (3)0.0027 (3)
S20.0358 (3)0.0367 (3)0.0390 (3)0.0038 (2)0.0026 (2)0.0008 (2)
S30.0600 (4)0.0788 (5)0.0392 (4)0.0036 (4)0.0025 (3)0.0054 (4)
Br10.04669 (17)0.0620 (2)0.0854 (3)0.00962 (13)0.01522 (15)0.01519 (17)
O10.0451 (9)0.0303 (7)0.0356 (9)0.0030 (6)0.0073 (7)0.0014 (7)
O20.0351 (9)0.0595 (12)0.0571 (12)0.0017 (8)0.0089 (8)0.0006 (9)
O30.0534 (11)0.0408 (9)0.0449 (11)0.0115 (8)0.0011 (8)0.0084 (8)
N10.0554 (13)0.0304 (10)0.0638 (15)0.0004 (9)0.0274 (11)0.0006 (10)
N20.0576 (13)0.0280 (9)0.0671 (16)0.0017 (9)0.0277 (12)0.0001 (10)
N30.0317 (9)0.0376 (10)0.0379 (11)0.0042 (7)0.0015 (8)0.0015 (8)
N40.0522 (14)0.0607 (15)0.0610 (16)0.0138 (11)0.0163 (12)0.0063 (12)
C10.0475 (14)0.0396 (12)0.0459 (15)0.0084 (10)0.0007 (11)0.0064 (11)
C20.0303 (11)0.0482 (13)0.0404 (14)0.0004 (9)0.0031 (10)0.0065 (11)
C30.0443 (14)0.0685 (19)0.0534 (18)0.0038 (13)0.0043 (13)0.0197 (15)
C40.0549 (16)0.087 (2)0.0439 (17)0.0084 (15)0.0062 (13)0.0193 (16)
C50.0370 (12)0.0512 (14)0.0395 (14)0.0016 (10)0.0015 (10)0.0004 (11)
C60.0537 (15)0.0537 (15)0.0471 (16)0.0187 (12)0.0028 (12)0.0018 (13)
C70.0367 (12)0.0570 (16)0.0420 (14)0.0119 (11)0.0036 (10)0.0012 (12)
C80.0431 (12)0.0300 (10)0.0369 (13)0.0003 (9)0.0010 (10)0.0013 (9)
C90.0537 (15)0.0346 (11)0.0445 (15)0.0070 (10)0.0015 (12)0.0003 (11)
C100.0658 (17)0.0285 (11)0.0512 (16)0.0034 (11)0.0048 (13)0.0019 (11)
C110.0484 (13)0.0253 (9)0.0358 (13)0.0025 (9)0.0029 (10)0.0002 (9)
C120.0454 (12)0.0281 (10)0.0338 (12)0.0029 (9)0.0075 (10)0.0024 (9)
C130.0427 (12)0.0313 (10)0.0357 (12)0.0030 (9)0.0055 (10)0.0023 (9)
C140.0410 (12)0.0401 (12)0.0308 (12)0.0033 (10)0.0042 (9)0.0000 (10)
C150.0543 (15)0.0456 (14)0.0475 (16)0.0079 (12)0.0071 (12)0.0021 (12)
C160.0401 (13)0.0674 (19)0.0542 (17)0.0042 (13)0.0107 (12)0.0033 (15)
C170.0385 (12)0.0524 (14)0.0415 (14)0.0002 (11)0.0056 (11)0.0016 (12)
C180.0373 (12)0.0436 (12)0.0432 (14)0.0049 (10)0.0076 (10)0.0003 (11)
Geometric parameters (Å, º) top
S1—C101.698 (3)C3—C41.345 (4)
S1—C111.720 (2)C3—H3A0.9300
S2—O31.4233 (19)C4—H4A0.9300
S2—O21.4248 (18)C5—C61.496 (4)
S2—N31.625 (2)C6—C71.512 (4)
S2—C81.774 (2)C6—H6A0.9700
S3—C41.707 (4)C6—H6B0.9700
S3—C51.718 (3)C7—H7A0.9700
Br1—C171.884 (3)C7—H7B0.9700
O1—C131.353 (3)C8—C111.381 (3)
O1—C121.362 (3)C8—C91.410 (3)
N1—C131.284 (3)C9—C101.356 (4)
N1—N21.394 (3)C9—H9A0.9300
N2—C121.291 (3)C10—H10A0.9300
N3—C11.473 (3)C11—C121.448 (3)
N3—C71.479 (3)C13—C141.456 (3)
N4—C151.329 (4)C14—C181.381 (3)
N4—C161.329 (4)C14—C151.386 (4)
C1—C21.501 (4)C15—H15A0.9300
C1—H1A0.9700C16—C171.382 (4)
C1—H1B0.9700C16—H16A0.9300
C2—C51.349 (4)C17—C181.375 (3)
C2—C31.417 (4)C18—H18A0.9300
C10—S1—C1192.19 (12)N3—C7—C6108.8 (2)
O3—S2—O2119.45 (11)N3—C7—H7A109.9
O3—S2—N3107.45 (11)C6—C7—H7A109.9
O2—S2—N3106.69 (11)N3—C7—H7B109.9
O3—S2—C8110.45 (11)C6—C7—H7B109.9
O2—S2—C8105.95 (11)H7A—C7—H7B108.3
N3—S2—C8106.06 (11)C11—C8—C9112.6 (2)
C4—S3—C591.51 (15)C11—C8—S2129.09 (17)
C13—O1—C12102.63 (17)C9—C8—S2118.17 (19)
C13—N1—N2106.4 (2)C10—C9—C8112.7 (2)
C12—N2—N1106.31 (19)C10—C9—H9A123.7
C1—N3—C7114.6 (2)C8—C9—H9A123.7
C1—N3—S2117.19 (16)C9—C10—S1112.13 (19)
C7—N3—S2117.26 (16)C9—C10—H10A123.9
C15—N4—C16117.9 (2)S1—C10—H10A123.9
N3—C1—C2109.1 (2)C8—C11—C12132.5 (2)
N3—C1—H1A109.9C8—C11—S1110.41 (17)
C2—C1—H1A109.9C12—C11—S1117.10 (17)
N3—C1—H1B109.9N2—C12—O1112.0 (2)
C2—C1—H1B109.9N2—C12—C11130.1 (2)
H1A—C1—H1B108.3O1—C12—C11117.87 (19)
C5—C2—C3112.2 (3)N1—C13—O1112.6 (2)
C5—C2—C1122.4 (2)N1—C13—C14126.3 (2)
C3—C2—C1125.3 (2)O1—C13—C14121.0 (2)
C4—C3—C2113.0 (3)C18—C14—C15119.0 (2)
C4—C3—H3A123.5C18—C14—C13118.6 (2)
C2—C3—H3A123.5C15—C14—C13122.3 (2)
C3—C4—S3111.7 (2)N4—C15—C14123.0 (3)
C3—C4—H4A124.2N4—C15—H15A118.5
S3—C4—H4A124.2C14—C15—H15A118.5
C2—C5—C6124.5 (2)N4—C16—C17122.6 (3)
C2—C5—S3111.6 (2)N4—C16—H16A118.7
C6—C5—S3124.0 (2)C17—C16—H16A118.7
C5—C6—C7108.6 (2)C18—C17—C16119.7 (3)
C5—C6—H6A110.0C18—C17—Br1119.8 (2)
C7—C6—H6A110.0C16—C17—Br1120.4 (2)
C5—C6—H6B110.0C17—C18—C14117.8 (2)
C7—C6—H6B110.0C17—C18—H18A121.1
H6A—C6—H6B108.3C14—C18—H18A121.1
C13—N1—N2—C120.5 (3)C8—C9—C10—S10.5 (3)
O3—S2—N3—C1170.10 (17)C11—S1—C10—C90.6 (2)
O2—S2—N3—C140.9 (2)C9—C8—C11—C12179.0 (3)
C8—S2—N3—C171.75 (19)S2—C8—C11—C125.7 (4)
O3—S2—N3—C747.6 (2)C9—C8—C11—S10.3 (3)
O2—S2—N3—C7176.79 (18)S2—C8—C11—S1174.96 (15)
C8—S2—N3—C770.6 (2)C10—S1—C11—C80.5 (2)
C7—N3—C1—C245.9 (3)C10—S1—C11—C12178.9 (2)
S2—N3—C1—C2170.77 (16)N1—N2—C12—O10.1 (3)
N3—C1—C2—C513.3 (3)N1—N2—C12—C11179.3 (3)
N3—C1—C2—C3170.1 (2)C13—O1—C12—N20.3 (3)
C5—C2—C3—C40.0 (4)C13—O1—C12—C11179.0 (2)
C1—C2—C3—C4176.9 (3)C8—C11—C12—N215.1 (5)
C2—C3—C4—S30.0 (3)S1—C11—C12—N2165.6 (2)
C5—S3—C4—C30.0 (2)C8—C11—C12—O1165.8 (2)
C3—C2—C5—C6179.2 (3)S1—C11—C12—O113.5 (3)
C1—C2—C5—C62.2 (4)N2—N1—C13—O10.7 (3)
C3—C2—C5—S30.0 (3)N2—N1—C13—C14177.0 (2)
C1—C2—C5—S3177.00 (19)C12—O1—C13—N10.6 (3)
C4—S3—C5—C20.0 (2)C12—O1—C13—C14177.3 (2)
C4—S3—C5—C6179.2 (2)N1—C13—C14—C1814.6 (4)
C2—C5—C6—C720.7 (4)O1—C13—C14—C18167.9 (2)
S3—C5—C6—C7158.4 (2)N1—C13—C14—C15162.4 (3)
C1—N3—C7—C667.1 (3)O1—C13—C14—C1515.1 (4)
S2—N3—C7—C6149.6 (2)C16—N4—C15—C140.2 (4)
C5—C6—C7—N349.6 (3)C18—C14—C15—N40.2 (4)
O3—S2—C8—C1129.5 (3)C13—C14—C15—N4176.8 (3)
O2—S2—C8—C11160.2 (2)C15—N4—C16—C170.7 (5)
N3—S2—C8—C1186.6 (2)N4—C16—C17—C181.6 (4)
O3—S2—C8—C9155.4 (2)N4—C16—C17—Br1178.6 (2)
O2—S2—C8—C924.7 (2)C16—C17—C18—C141.5 (4)
N3—S2—C8—C988.4 (2)Br1—C17—C18—C14178.66 (19)
C11—C8—C9—C100.1 (3)C15—C14—C18—C170.7 (4)
S2—C8—C9—C10175.9 (2)C13—C14—C18—C17177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N20.972.523.283 (4)136
C10—H10A···O3i0.932.493.330 (3)150
C10—H10A···N2i0.932.423.183 (3)139
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13BrN4O3S3
Mr509.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.0327 (14), 7.6488 (15), 36.939 (7)
β (°) 91.315 (5)
V3)1986.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.35 × 0.13 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.482, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
22958, 7230, 4160
Rint0.051
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.02
No. of reflections7230
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.73

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N20.972.523.283 (4)136
C10—H10A···O3i0.932.493.330 (3)150
C10—H10A···N2i0.932.423.183 (3)139
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807–2811.  PubMed CAS Google Scholar
First citationRoth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403–1410.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, S. W. & Rusak, B. (1997). Brain Res. 755, 246–254.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds