organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Bi­phenyl-4-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal, India, cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing & Media, Manipal Institute of Technology, Manipal, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 September 2011; accepted 20 September 2011; online 30 September 2011)

In the title mol­ecule, C25H19N3O3S3, the tetra­hydro­pyridine ring adopts a half-chair conformation. The dihedral angle between the least-squares plane through the tetra­hydro­pyridine ring and two thio­phene and two benzene rings are 6.25 (9), 89.49 (9), 76.43 (9) and 84.93 (8)°, respectively, while the dihedral angle between the 1,3,4-oxadiazole and tetra­hydro­pyridine rings is 81.14 (9)°. In the crystal, adjacent mol­ecules are connected via weak C—H⋯N hydrogen bonds, forming a chain along the b axis.

Related literature

For applications of 4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001[Lopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807-2811.]); Roth et al. (1994[Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403-1410.]); Ying & Rusak (1997[Ying, S. W. & Rusak, B. (1997). Brain Res. 755, 246-254.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o2743-o2744.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19N3O3S3

  • Mr = 505.61

  • Triclinic, [P \overline 1]

  • a = 7.9108 (1) Å

  • b = 12.0943 (1) Å

  • c = 12.9498 (2) Å

  • α = 69.253 (1)°

  • β = 76.794 (1)°

  • γ = 77.460 (1)°

  • V = 1115.30 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.33 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.966

  • 33050 measured reflections

  • 8887 independent reflections

  • 5904 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 1.03

  • 8887 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯N1i 0.99 2.52 3.417 (2) 150
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives have been extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997). Keeping in view of the biological importance of this class of compound, we synthesized the title compound to study its X-ray crystal structure.

In the title compound (Fig. 1), the rings A (N3/C19,C20,C23–C25), B (N1/N2/O1/C13,C14), C (S3/C20–C23), D (S2/C15–C18) E (C7–C12) and F (C1–C6) are essentially planar. The tetrahydropyridine (N3/C19,C20, C23–C25) ring adopts a half-chair conformation with puckering parameters Q = 0.4970 (18) Å, θ = 129.3 (2)° and φ = 153.0 (3)° . The dihedral angle between the least-square planes of the rings are A/B = 81.14 (9)°, A/C = 6.25 (9)°, A/D = 89.49 (9)°, A/E = 84.93 (8)°, A/F = 76.43 (9)° B/C = 78.71 (10)°, B/D = 9.55 (10)°, B/E = 10.88 (9)°, B/F = 11.16 (10)°, C/D = 87.86 (9)°, C/E = 83.55 (9)°, C/F = 73.04 (9)°, D/E = 13.31 (9)° and D/F = 16.40 (9)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via weak intermolecular C—H···N (Table 1) hydrogen bonds to form one-dimensional chains along the b-axis.

Related literature top

For applications of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For ring conformational analysis, see: Cremer & Pople (1975). For a related structure, see: Fun et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 3-(6,7-dihydrothieno[3,2-c]pyridine-5(4H)-ylsulfonyl) thiophene-2-carbohydrazide (0.5 g, 0.0014 mol) and biphenyl carboxylic acid (0.28 g, 0.0014 mol), neutral alumina (0.5 g) and POCl3 (1.1 g, 0.007 mol) were added. The resulting mixture was irradiated in a microwave oven for 5 min. Mass analysis of crude reaction mixture confirmed the completion of the reaction. The reaction mixture was concentrated and the residue was purified by column chromatography to get the title compound, which was recrystallised using acetone. Yield: 68%, m.p. 441–443 K.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives have been extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997). Keeping in view of the biological importance of this class of compound, we synthesized the title compound to study its X-ray crystal structure.

In the title compound (Fig. 1), the rings A (N3/C19,C20,C23–C25), B (N1/N2/O1/C13,C14), C (S3/C20–C23), D (S2/C15–C18) E (C7–C12) and F (C1–C6) are essentially planar. The tetrahydropyridine (N3/C19,C20, C23–C25) ring adopts a half-chair conformation with puckering parameters Q = 0.4970 (18) Å, θ = 129.3 (2)° and φ = 153.0 (3)° . The dihedral angle between the least-square planes of the rings are A/B = 81.14 (9)°, A/C = 6.25 (9)°, A/D = 89.49 (9)°, A/E = 84.93 (8)°, A/F = 76.43 (9)° B/C = 78.71 (10)°, B/D = 9.55 (10)°, B/E = 10.88 (9)°, B/F = 11.16 (10)°, C/D = 87.86 (9)°, C/E = 83.55 (9)°, C/F = 73.04 (9)°, D/E = 13.31 (9)° and D/F = 16.40 (9)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via weak intermolecular C—H···N (Table 1) hydrogen bonds to form one-dimensional chains along the b-axis.

For applications of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For ring conformational analysis, see: Cremer & Pople (1975). For a related structure, see: Fun et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
2-(Biphenyl-4-yl)-5-[3-(4,5,6,7-tetrahydrothieno[3,2-c]pyridine- 5-ylsulfonyl)thiophen-2-yl]-1,3,4-oxadiazole top
Crystal data top
C25H19N3O3S3Z = 2
Mr = 505.61F(000) = 524
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9108 (1) ÅCell parameters from 6236 reflections
b = 12.0943 (1) Åθ = 2.7–33.5°
c = 12.9498 (2) ŵ = 0.37 mm1
α = 69.253 (1)°T = 100 K
β = 76.794 (1)°Block, colourless
γ = 77.460 (1)°0.33 × 0.16 × 0.09 mm
V = 1115.30 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8887 independent reflections
Radiation source: fine-focus sealed tube5904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 33.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.889, Tmax = 0.966k = 1818
33050 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3497P]
where P = (Fo2 + 2Fc2)/3
8887 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C25H19N3O3S3γ = 77.460 (1)°
Mr = 505.61V = 1115.30 (2) Å3
Triclinic, P1Z = 2
a = 7.9108 (1) ÅMo Kα radiation
b = 12.0943 (1) ŵ = 0.37 mm1
c = 12.9498 (2) ÅT = 100 K
α = 69.253 (1)°0.33 × 0.16 × 0.09 mm
β = 76.794 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5904 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.966Rint = 0.058
33050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
8887 reflectionsΔρmin = 0.56 e Å3
307 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68865 (5)0.88728 (4)0.30396 (4)0.01750 (9)
S20.21890 (5)1.13555 (4)0.34716 (4)0.02341 (10)
S30.87479 (6)0.36589 (4)0.41597 (5)0.03181 (13)
O10.72380 (15)1.15330 (10)0.22602 (10)0.0197 (2)
O20.79409 (15)0.90109 (11)0.37398 (11)0.0232 (3)
O30.74563 (16)0.92047 (11)0.18551 (11)0.0230 (3)
N10.66367 (19)1.34718 (13)0.20268 (14)0.0253 (3)
N20.51049 (19)1.29548 (13)0.25770 (14)0.0250 (3)
N30.66204 (18)0.74881 (12)0.34721 (12)0.0185 (3)
C11.5791 (2)1.37068 (16)0.08077 (16)0.0227 (3)
H1A1.50561.44540.08690.027*
C21.7532 (2)1.36806 (17)0.13241 (16)0.0252 (4)
H2A1.79851.44090.17240.030*
C31.8621 (2)1.25980 (18)0.12625 (18)0.0293 (4)
H3A1.98001.25820.16430.035*
C41.7966 (2)1.15442 (17)0.06408 (18)0.0290 (4)
H4A1.87111.08010.05790.035*
C51.6239 (2)1.15597 (16)0.01085 (16)0.0232 (4)
H5A1.58161.08270.03230.028*
C61.5102 (2)1.26432 (15)0.01967 (15)0.0201 (3)
C71.3224 (2)1.26503 (15)0.03247 (14)0.0192 (3)
C81.2404 (2)1.16451 (16)0.05717 (16)0.0237 (4)
H8A1.30611.09610.03920.028*
C91.0665 (2)1.16279 (16)0.10701 (16)0.0233 (4)
H9A1.01431.09340.12390.028*
C100.9670 (2)1.26333 (15)0.13265 (15)0.0197 (3)
C111.0453 (2)1.36463 (15)0.10693 (16)0.0214 (3)
H11A0.97821.43380.12280.026*
C121.2206 (2)1.36495 (15)0.05825 (15)0.0208 (3)
H12A1.27271.43430.04210.025*
C130.7844 (2)1.26086 (15)0.18576 (15)0.0195 (3)
C140.5534 (2)1.18253 (15)0.26865 (15)0.0197 (3)
C150.4398 (2)1.09154 (15)0.31380 (15)0.0186 (3)
C160.4768 (2)0.97000 (15)0.32871 (15)0.0188 (3)
C170.3231 (2)0.91496 (16)0.36701 (16)0.0242 (4)
H17A0.32340.83220.38190.029*
C180.1748 (2)0.99439 (16)0.38000 (17)0.0256 (4)
H18A0.06000.97320.40460.031*
C190.6485 (2)0.67707 (16)0.46603 (15)0.0224 (3)
H19A0.52370.67860.50200.027*
H19B0.70950.70980.50510.027*
C200.7328 (2)0.55051 (15)0.47309 (16)0.0218 (3)
C210.7922 (2)0.46336 (18)0.56962 (18)0.0300 (4)
H21A0.77740.47620.63960.036*
C220.8730 (2)0.35916 (18)0.5505 (2)0.0353 (5)
H22A0.92220.29120.60510.042*
C230.7665 (2)0.51108 (15)0.38342 (16)0.0220 (3)
C240.7232 (2)0.58363 (15)0.26954 (16)0.0232 (4)
H24A0.66600.53680.24200.028*
H24B0.83210.60430.21630.028*
C250.5997 (2)0.69765 (15)0.27725 (16)0.0215 (3)
H25A0.59650.75640.20130.026*
H25B0.47930.67910.31060.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01654 (16)0.01276 (18)0.0226 (2)0.00104 (13)0.00308 (15)0.00578 (16)
S20.01898 (18)0.0208 (2)0.0301 (3)0.00215 (15)0.00360 (17)0.01094 (19)
S30.0246 (2)0.0142 (2)0.0525 (3)0.00070 (16)0.0087 (2)0.0063 (2)
O10.0199 (5)0.0135 (6)0.0258 (7)0.0021 (4)0.0021 (5)0.0078 (5)
O20.0226 (6)0.0184 (6)0.0317 (7)0.0033 (5)0.0089 (5)0.0088 (5)
O30.0250 (6)0.0167 (6)0.0232 (7)0.0003 (5)0.0006 (5)0.0051 (5)
N10.0236 (7)0.0159 (7)0.0382 (10)0.0021 (5)0.0056 (6)0.0108 (7)
N20.0219 (7)0.0157 (7)0.0392 (10)0.0024 (5)0.0043 (6)0.0118 (7)
N30.0232 (6)0.0120 (6)0.0207 (7)0.0023 (5)0.0059 (5)0.0046 (6)
C10.0264 (8)0.0192 (8)0.0242 (9)0.0018 (6)0.0054 (7)0.0091 (7)
C20.0290 (8)0.0233 (9)0.0263 (10)0.0076 (7)0.0032 (7)0.0102 (8)
C30.0225 (8)0.0309 (10)0.0386 (12)0.0037 (7)0.0016 (8)0.0184 (9)
C40.0249 (8)0.0232 (9)0.0426 (12)0.0038 (7)0.0097 (8)0.0167 (9)
C50.0258 (8)0.0179 (8)0.0278 (10)0.0006 (6)0.0090 (7)0.0083 (7)
C60.0246 (7)0.0177 (8)0.0208 (9)0.0016 (6)0.0083 (6)0.0076 (7)
C70.0242 (7)0.0156 (8)0.0177 (8)0.0027 (6)0.0055 (6)0.0042 (7)
C80.0277 (8)0.0169 (8)0.0281 (10)0.0029 (6)0.0025 (7)0.0107 (7)
C90.0275 (8)0.0156 (8)0.0288 (10)0.0050 (6)0.0038 (7)0.0090 (7)
C100.0232 (7)0.0155 (8)0.0213 (9)0.0027 (6)0.0053 (6)0.0060 (7)
C110.0255 (8)0.0126 (7)0.0260 (9)0.0008 (6)0.0057 (7)0.0062 (7)
C120.0243 (8)0.0142 (8)0.0241 (9)0.0041 (6)0.0046 (7)0.0053 (7)
C130.0229 (7)0.0134 (7)0.0237 (9)0.0027 (6)0.0070 (6)0.0060 (7)
C140.0195 (7)0.0177 (8)0.0228 (9)0.0009 (6)0.0058 (6)0.0084 (7)
C150.0192 (7)0.0165 (8)0.0204 (8)0.0003 (6)0.0035 (6)0.0075 (7)
C160.0182 (7)0.0158 (8)0.0218 (9)0.0007 (6)0.0032 (6)0.0065 (7)
C170.0208 (7)0.0187 (8)0.0323 (10)0.0048 (6)0.0009 (7)0.0082 (8)
C180.0203 (7)0.0232 (9)0.0311 (10)0.0043 (7)0.0003 (7)0.0080 (8)
C190.0258 (8)0.0191 (8)0.0216 (9)0.0048 (6)0.0029 (7)0.0052 (7)
C200.0199 (7)0.0161 (8)0.0262 (9)0.0056 (6)0.0056 (7)0.0001 (7)
C210.0296 (9)0.0261 (10)0.0310 (11)0.0134 (7)0.0100 (8)0.0032 (8)
C220.0275 (9)0.0190 (9)0.0505 (14)0.0079 (7)0.0179 (9)0.0094 (9)
C230.0174 (7)0.0134 (8)0.0328 (10)0.0033 (6)0.0038 (7)0.0042 (7)
C240.0266 (8)0.0163 (8)0.0281 (10)0.0031 (6)0.0039 (7)0.0091 (7)
C250.0252 (8)0.0169 (8)0.0248 (9)0.0021 (6)0.0095 (7)0.0070 (7)
Geometric parameters (Å, º) top
S1—O31.4295 (13)C8—C91.381 (2)
S1—O21.4350 (12)C8—H8A0.9500
S1—N31.6116 (14)C9—C101.400 (2)
S1—C161.7793 (16)C9—H9A0.9500
S2—C181.7012 (19)C10—C111.393 (2)
S2—C151.7138 (16)C10—C131.453 (2)
S3—C221.712 (3)C11—C121.387 (2)
S3—C231.7270 (17)C11—H11A0.9500
O1—C141.3561 (19)C12—H12A0.9500
O1—C131.367 (2)C14—C151.447 (2)
N1—C131.298 (2)C15—C161.386 (2)
N1—N21.409 (2)C16—C171.417 (2)
N2—C141.298 (2)C17—C181.365 (2)
N3—C191.467 (2)C17—H17A0.9500
N3—C251.477 (2)C18—H18A0.9500
C1—C21.386 (2)C19—C201.510 (2)
C1—C61.401 (2)C19—H19A0.9900
C1—H1A0.9500C19—H19B0.9900
C2—C31.389 (3)C20—C231.357 (3)
C2—H2A0.9500C20—C211.419 (3)
C3—C41.382 (3)C21—C221.363 (3)
C3—H3A0.9500C21—H21A0.9500
C4—C51.382 (3)C22—H22A0.9500
C4—H4A0.9500C23—C241.499 (3)
C5—C61.403 (2)C24—C251.528 (2)
C5—H5A0.9500C24—H24A0.9900
C6—C71.484 (2)C24—H24B0.9900
C7—C121.400 (2)C25—H25A0.9900
C7—C81.405 (2)C25—H25B0.9900
O3—S1—O2119.80 (8)C7—C12—H12A119.4
O3—S1—N3107.36 (7)N1—C13—O1112.21 (15)
O2—S1—N3107.62 (7)N1—C13—C10129.83 (16)
O3—S1—C16107.66 (8)O1—C13—C10117.95 (14)
O2—S1—C16107.45 (7)N2—C14—O1112.94 (15)
N3—S1—C16106.22 (8)N2—C14—C15127.56 (15)
C18—S2—C1592.10 (8)O1—C14—C15119.40 (14)
C22—S3—C2391.92 (9)C16—C15—C14130.54 (15)
C14—O1—C13102.72 (12)C16—C15—S2111.12 (12)
C13—N1—N2106.34 (14)C14—C15—S2118.16 (12)
C14—N2—N1105.78 (14)C15—C16—C17112.11 (14)
C19—N3—C25114.76 (13)C15—C16—S1126.07 (13)
C19—N3—S1121.74 (11)C17—C16—S1121.82 (13)
C25—N3—S1121.27 (12)C18—C17—C16112.37 (16)
C2—C1—C6120.71 (16)C18—C17—H17A123.8
C2—C1—H1A119.6C16—C17—H17A123.8
C6—C1—H1A119.6C17—C18—S2112.29 (13)
C1—C2—C3120.59 (18)C17—C18—H18A123.9
C1—C2—H2A119.7S2—C18—H18A123.9
C3—C2—H2A119.7N3—C19—C20107.80 (14)
C4—C3—C2119.14 (17)N3—C19—H19A110.1
C4—C3—H3A120.4C20—C19—H19A110.1
C2—C3—H3A120.4N3—C19—H19B110.1
C5—C4—C3120.74 (17)C20—C19—H19B110.1
C5—C4—H4A119.6H19A—C19—H19B108.5
C3—C4—H4A119.6C23—C20—C21113.21 (17)
C4—C5—C6120.89 (17)C23—C20—C19122.01 (16)
C4—C5—H5A119.6C21—C20—C19124.71 (17)
C6—C5—H5A119.6C22—C21—C20112.31 (19)
C1—C6—C5117.87 (16)C22—C21—H21A123.8
C1—C6—C7121.56 (15)C20—C21—H21A123.8
C5—C6—C7120.56 (16)C21—C22—S3111.67 (16)
C12—C7—C8117.65 (15)C21—C22—H22A124.2
C12—C7—C6121.74 (15)S3—C22—H22A124.2
C8—C7—C6120.61 (15)C20—C23—C24125.40 (15)
C9—C8—C7121.50 (15)C20—C23—S3110.88 (14)
C9—C8—H8A119.2C24—C23—S3123.68 (13)
C7—C8—H8A119.2C23—C24—C25108.88 (14)
C8—C9—C10120.02 (16)C23—C24—H24A109.9
C8—C9—H9A120.0C25—C24—H24A109.9
C10—C9—H9A120.0C23—C24—H24B109.9
C11—C10—C9119.27 (15)C25—C24—H24B109.9
C11—C10—C13120.89 (15)H24A—C24—H24B108.3
C9—C10—C13119.84 (15)N3—C25—C24109.48 (13)
C12—C11—C10120.28 (15)N3—C25—H25A109.8
C12—C11—H11A119.9C24—C25—H25A109.8
C10—C11—H11A119.9N3—C25—H25B109.8
C11—C12—C7121.25 (16)C24—C25—H25B109.8
C11—C12—H12A119.4H25A—C25—H25B108.2
C13—N1—N2—C140.1 (2)C13—O1—C14—C15176.18 (15)
O3—S1—N3—C19163.96 (12)N2—C14—C15—C16179.39 (18)
O2—S1—N3—C1933.75 (15)O1—C14—C15—C164.5 (3)
C16—S1—N3—C1981.09 (14)N2—C14—C15—S25.9 (3)
O3—S1—N3—C2533.90 (14)O1—C14—C15—S2170.19 (12)
O2—S1—N3—C25164.11 (12)C18—S2—C15—C160.32 (14)
C16—S1—N3—C2581.06 (14)C18—S2—C15—C14175.35 (15)
C6—C1—C2—C31.2 (3)C14—C15—C16—C17174.82 (18)
C1—C2—C3—C42.6 (3)S2—C15—C16—C170.16 (19)
C2—C3—C4—C51.6 (3)C14—C15—C16—S15.0 (3)
C3—C4—C5—C60.8 (3)S2—C15—C16—S1179.99 (10)
C2—C1—C6—C51.2 (3)O3—S1—C16—C1571.56 (17)
C2—C1—C6—C7177.54 (16)O2—S1—C16—C1558.74 (17)
C4—C5—C6—C12.2 (3)N3—S1—C16—C15173.69 (15)
C4—C5—C6—C7176.57 (16)O3—S1—C16—C17108.25 (16)
C1—C6—C7—C1222.9 (3)O2—S1—C16—C17121.45 (15)
C5—C6—C7—C12158.41 (17)N3—S1—C16—C176.50 (17)
C1—C6—C7—C8156.82 (17)C15—C16—C17—C180.1 (2)
C5—C6—C7—C821.9 (3)S1—C16—C17—C18179.69 (14)
C12—C7—C8—C91.2 (3)C16—C17—C18—S20.4 (2)
C6—C7—C8—C9179.15 (17)C15—S2—C18—C170.41 (16)
C7—C8—C9—C100.9 (3)C25—N3—C19—C2050.82 (18)
C8—C9—C10—C110.3 (3)S1—N3—C19—C20145.95 (12)
C8—C9—C10—C13179.58 (17)N3—C19—C20—C2316.1 (2)
C9—C10—C11—C121.1 (3)N3—C19—C20—C21160.65 (16)
C13—C10—C11—C12178.72 (17)C23—C20—C21—C220.9 (2)
C10—C11—C12—C70.8 (3)C19—C20—C21—C22176.09 (16)
C8—C7—C12—C110.3 (3)C20—C21—C22—S30.7 (2)
C6—C7—C12—C11179.98 (16)C23—S3—C22—C210.29 (15)
N2—N1—C13—O10.2 (2)C21—C20—C23—C24178.48 (16)
N2—N1—C13—C10179.90 (17)C19—C20—C23—C241.4 (3)
C14—O1—C13—N10.41 (19)C21—C20—C23—S30.71 (19)
C14—O1—C13—C10179.86 (15)C19—C20—C23—S3176.41 (13)
C11—C10—C13—N110.6 (3)C22—S3—C23—C200.25 (14)
C9—C10—C13—N1169.55 (18)C22—S3—C23—C24178.07 (15)
C11—C10—C13—O1169.08 (15)C20—C23—C24—C2512.7 (2)
C9—C10—C13—O110.8 (2)S3—C23—C24—C25169.83 (12)
N1—N2—C14—O10.4 (2)C19—N3—C25—C2467.81 (18)
N1—N2—C14—C15175.96 (17)S1—N3—C25—C24128.87 (14)
C13—O1—C14—N20.48 (19)C23—C24—C25—N343.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···N1i0.992.523.417 (2)150
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC25H19N3O3S3
Mr505.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9108 (1), 12.0943 (1), 12.9498 (2)
α, β, γ (°)69.253 (1), 76.794 (1), 77.460 (1)
V3)1115.30 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.33 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.889, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
33050, 8887, 5904
Rint0.058
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 1.03
No. of reflections8887
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···N1i0.992.523.417 (2)150
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o2743–o2744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807–2811.  PubMed CAS Google Scholar
First citationRoth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403–1410.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, S. W. & Rusak, B. (1997). Brain Res. 755, 246–254.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds