metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,3-di-2-pyridyl­pyrazine-κ2N1,N2)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 September 2011; accepted 22 September 2011; online 30 September 2011)

The PtII ion in the title complex, [PtCl2(C14H10N4)], is four-coordinated in a distorted square-planar environment by two N atoms of a chelating 2,3-di-2-pyridyl­pyrazine ligand and two chloride anions. The pyridyl ring coordinated to the PtII atom is inclined slightly to its carrier pyrazine ring [dihedral angle = 13.5 (1)°], whereas the uncoordinated pyridyl ring is inclined considerably to the pyrazine ring [dihedral angle = 54.3 (2)°]. The dihedral angle between the two pyridyl rings is 59.2 (2)°. In the crystal, the complexes are assembled through inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds, forming a three-dimensional network. Intra­molecular C—H⋯N and C—H⋯Cl hydrogen bonds are also present.

Related literature

For the synthesis and crystal structure of [PtBr2(C14H10N4)], see: Ha (2011[Ha, K. (2011). Acta Cryst. E67, m1230.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C14H10N4)]

  • Mr = 500.25

  • Monoclinic, P 21 /n

  • a = 8.894 (5) Å

  • b = 9.711 (5) Å

  • c = 16.461 (9) Å

  • β = 94.429 (11)°

  • V = 1417.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.27 mm−1

  • T = 200 K

  • 0.28 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 1.000

  • 9749 measured reflections

  • 3370 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.02

  • 3370 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.003 (3)
Pt1—N3 2.014 (4)
Pt1—Cl2 2.2916 (15)
Pt1—Cl1 2.2918 (15)
N1—Pt1—N3 80.25 (13)
Cl2—Pt1—Cl1 88.97 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.58 3.410 (6) 147
C4—H4⋯Cl1 0.95 2.57 3.180 (4) 123
C6—H6⋯Cl1ii 0.95 2.82 3.477 (5) 127
C6—H6⋯N4 0.95 2.58 3.056 (6) 111
C9—H9⋯Cl2 0.95 2.66 3.261 (5) 122
C13—H13⋯N4iii 0.95 2.61 3.468 (6) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtCl2(dpp)] (where dpp is 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the analogous PtII complex [PtBr2(dpp)] (Ha, 2011).

In the complex, the PtII ion is four-coordinated in a distorted square-planar environment by two N atoms from the pyrazine ring and the one pyridyl ring of the chelating dpp ligand and two chloride anions (Fig. 1). The main contribution to the distortion of the square-plane is the tight N1—Pt1—N3 chelate angle of 80.25 (13)°, which results in slightly bent trans axes [<Cl1—Pt1—N3 = 174.63 (10)° and <Cl2—Pt1—N1 = 176.21 (10)°]. The pairs of Pt—N and Pt—Br bond lengths are experimentally equivalent (Table 1). In the molecule, the pyridyl ring coordinated to the Pt atom is inclined slightly to its carrier pyrazine ring, making dihedral angle of 13.5 (1)°. On the contrary, the uncoordinated pyridyl ring is inclined considerably to the pyrazine ring with a dihedral angle of 54.3 (2)°. The dihedral angle between the two pyridyl rings is 59.2 (2)°.

The complex molecules are assembled through intermolecular C—H···N and C—H···Cl hydrogen bonds to form a three-dimensional network (Fig. 2 and Table 2). There are also intramolecular C—H···N and C—H···Cl hydrogen bonds (Table 2). The complexes stack in columns along the c axis and display several intermolecular π-π interactions between the six-membered rings, with a shortest ring centroid-centroid distance of 4.213 (3) Å.

Related literature top

For the synthesis and crystal structure of [PtBr2(C14H10N4)], see: Ha (2011).

Experimental top

The title complex was obtained as a by-product from the reaction of K2PtCl4 (0.2077 g, 0.500 mmol) with 2,3-di-2-pyridylpyrazine (0.1173 g, 0.501 mmol) in MeOH (30 ml) and H2O (20 ml). After stirring of the reaction mixture for 48 h at room temperature, the formed precipitate was separated by filtration, washed with H2O and acetone, to give the main product as a red-brown powder (0.1323 g). The yellow by-product (0.0082 g) was obtained from the mixture of filtrate and washing solution. Crystals were obtained by slow evaporation from a CH3NO2 solution of the by-product.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.83 e Å-3) and the deepest hole (-0.83 e Å-3) in the final difference Fourier map were located 0.89 Å and 0.88 Å from the Cl1 and Pt1 atoms, respectively.

Structure description top

The title complex, [PtCl2(dpp)] (where dpp is 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the analogous PtII complex [PtBr2(dpp)] (Ha, 2011).

In the complex, the PtII ion is four-coordinated in a distorted square-planar environment by two N atoms from the pyrazine ring and the one pyridyl ring of the chelating dpp ligand and two chloride anions (Fig. 1). The main contribution to the distortion of the square-plane is the tight N1—Pt1—N3 chelate angle of 80.25 (13)°, which results in slightly bent trans axes [<Cl1—Pt1—N3 = 174.63 (10)° and <Cl2—Pt1—N1 = 176.21 (10)°]. The pairs of Pt—N and Pt—Br bond lengths are experimentally equivalent (Table 1). In the molecule, the pyridyl ring coordinated to the Pt atom is inclined slightly to its carrier pyrazine ring, making dihedral angle of 13.5 (1)°. On the contrary, the uncoordinated pyridyl ring is inclined considerably to the pyrazine ring with a dihedral angle of 54.3 (2)°. The dihedral angle between the two pyridyl rings is 59.2 (2)°.

The complex molecules are assembled through intermolecular C—H···N and C—H···Cl hydrogen bonds to form a three-dimensional network (Fig. 2 and Table 2). There are also intramolecular C—H···N and C—H···Cl hydrogen bonds (Table 2). The complexes stack in columns along the c axis and display several intermolecular π-π interactions between the six-membered rings, with a shortest ring centroid-centroid distance of 4.213 (3) Å.

For the synthesis and crystal structure of [PtBr2(C14H10N4)], see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Intermolecular hydrogen-bond interactions are drawn with dashed lines.
Dichlorido(2,3-di-2-pyridylpyrazine-κ2N1,N2)platinum(II) top
Crystal data top
[PtCl2(C14H10N4)]F(000) = 936
Mr = 500.25Dx = 2.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5943 reflections
a = 8.894 (5) Åθ = 2.4–28.3°
b = 9.711 (5) ŵ = 10.27 mm1
c = 16.461 (9) ÅT = 200 K
β = 94.429 (11)°Block, yellow
V = 1417.5 (13) Å30.28 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3370 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.638, Tmax = 1.000k = 1212
9749 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
3370 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[PtCl2(C14H10N4)]V = 1417.5 (13) Å3
Mr = 500.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.894 (5) ŵ = 10.27 mm1
b = 9.711 (5) ÅT = 200 K
c = 16.461 (9) Å0.28 × 0.15 × 0.11 mm
β = 94.429 (11)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3370 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2756 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 1.000Rint = 0.029
9749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.02Δρmax = 1.83 e Å3
3370 reflectionsΔρmin = 0.83 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.364118 (17)0.639554 (16)0.379000 (10)0.02301 (6)
Cl10.44494 (14)0.85790 (11)0.41230 (9)0.0410 (3)
Cl20.12714 (12)0.72595 (12)0.34708 (7)0.0362 (3)
N10.5650 (4)0.5518 (3)0.4076 (2)0.0215 (7)
N20.8366 (4)0.4154 (4)0.4387 (2)0.0260 (8)
N30.3108 (4)0.4412 (4)0.3556 (2)0.0229 (8)
N40.6997 (4)0.1724 (4)0.3059 (2)0.0288 (8)
C10.5721 (4)0.4119 (4)0.3971 (2)0.0207 (8)
C20.7128 (4)0.3476 (4)0.4088 (2)0.0209 (9)
C30.8227 (5)0.5502 (4)0.4532 (3)0.0290 (10)
H30.90750.59920.47690.035*
C40.6902 (5)0.6200 (4)0.4350 (3)0.0259 (9)
H40.68700.71710.44180.031*
C50.4224 (5)0.3480 (4)0.3745 (3)0.0228 (9)
C60.3948 (5)0.2085 (5)0.3771 (3)0.0297 (10)
H60.47290.14540.39360.036*
C70.2471 (5)0.1621 (4)0.3545 (3)0.0300 (10)
H70.22360.06680.35650.036*
C80.1382 (5)0.2558 (5)0.3297 (3)0.0324 (11)
H80.04000.22570.31080.039*
C90.1721 (5)0.3938 (5)0.3324 (3)0.0314 (10)
H90.09450.45820.31730.038*
C100.7422 (4)0.2020 (4)0.3837 (2)0.0216 (9)
C110.8186 (5)0.1104 (4)0.4368 (3)0.0280 (10)
H110.84500.13520.49190.034*
C120.8553 (5)0.0175 (5)0.4078 (3)0.0349 (11)
H120.90900.08190.44240.042*
C130.8132 (5)0.0508 (5)0.3275 (3)0.0346 (11)
H130.83710.13800.30590.041*
C140.7356 (5)0.0462 (5)0.2800 (3)0.0320 (11)
H140.70530.02230.22510.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02249 (10)0.02038 (10)0.02625 (10)0.00622 (7)0.00249 (7)0.00141 (7)
Cl10.0379 (7)0.0187 (6)0.0665 (9)0.0050 (5)0.0044 (6)0.0015 (5)
Cl20.0281 (6)0.0377 (6)0.0421 (7)0.0163 (5)0.0008 (5)0.0003 (5)
N10.0188 (17)0.0216 (18)0.0243 (18)0.0027 (14)0.0033 (14)0.0017 (14)
N20.0217 (18)0.0280 (19)0.028 (2)0.0017 (16)0.0002 (15)0.0016 (16)
N30.0141 (16)0.026 (2)0.0280 (19)0.0044 (15)0.0008 (14)0.0001 (15)
N40.028 (2)0.031 (2)0.028 (2)0.0018 (16)0.0037 (16)0.0023 (16)
C10.024 (2)0.018 (2)0.021 (2)0.0021 (17)0.0024 (17)0.0021 (16)
C20.019 (2)0.023 (2)0.021 (2)0.0014 (16)0.0006 (16)0.0040 (16)
C30.027 (2)0.030 (2)0.030 (2)0.0040 (19)0.0012 (19)0.0042 (19)
C40.024 (2)0.022 (2)0.032 (2)0.0016 (17)0.0037 (19)0.0034 (17)
C50.023 (2)0.021 (2)0.025 (2)0.0007 (17)0.0037 (17)0.0001 (17)
C60.024 (2)0.031 (2)0.035 (3)0.001 (2)0.004 (2)0.000 (2)
C70.024 (2)0.028 (3)0.039 (3)0.0041 (19)0.006 (2)0.0041 (19)
C80.021 (2)0.034 (3)0.042 (3)0.0058 (19)0.002 (2)0.009 (2)
C90.023 (2)0.033 (3)0.038 (3)0.0064 (19)0.000 (2)0.001 (2)
C100.0161 (19)0.023 (2)0.026 (2)0.0019 (17)0.0046 (17)0.0011 (17)
C110.024 (2)0.031 (3)0.028 (2)0.0054 (18)0.0043 (19)0.0010 (18)
C120.031 (3)0.028 (2)0.045 (3)0.008 (2)0.006 (2)0.001 (2)
C130.032 (3)0.025 (2)0.048 (3)0.005 (2)0.006 (2)0.008 (2)
C140.032 (2)0.035 (3)0.029 (3)0.002 (2)0.002 (2)0.008 (2)
Geometric parameters (Å, º) top
Pt1—N12.003 (3)C4—H40.9500
Pt1—N32.014 (4)C5—C61.378 (6)
Pt1—Cl22.2916 (15)C6—C71.411 (6)
Pt1—Cl12.2918 (15)C6—H60.9500
N1—C41.344 (5)C7—C81.368 (6)
N1—C11.372 (5)C7—H70.9500
N2—C31.337 (5)C8—C91.374 (6)
N2—C21.343 (5)C8—H80.9500
N3—C91.344 (5)C9—H90.9500
N3—C51.361 (5)C10—C111.388 (6)
N4—C101.339 (5)C11—C121.379 (6)
N4—C141.344 (5)C11—H110.9500
C1—C21.399 (5)C12—C131.383 (7)
C1—C51.489 (6)C12—H120.9500
C2—C101.501 (5)C13—C141.375 (6)
C3—C41.373 (6)C13—H130.9500
C3—H30.9500C14—H140.9500
N1—Pt1—N380.25 (13)C6—C5—C1124.0 (4)
N1—Pt1—Cl2176.21 (10)C5—C6—C7118.0 (4)
N3—Pt1—Cl296.16 (10)C5—C6—H6121.0
N1—Pt1—Cl194.59 (10)C7—C6—H6121.0
N3—Pt1—Cl1174.63 (10)C8—C7—C6119.3 (4)
Cl2—Pt1—Cl188.97 (5)C8—C7—H7120.3
C4—N1—C1119.1 (3)C6—C7—H7120.3
C4—N1—Pt1124.8 (3)C7—C8—C9119.3 (4)
C1—N1—Pt1116.2 (3)C7—C8—H8120.3
C3—N2—C2117.5 (4)C9—C8—H8120.3
C9—N3—C5118.3 (4)N3—C9—C8122.5 (4)
C9—N3—Pt1125.4 (3)N3—C9—H9118.7
C5—N3—Pt1115.8 (3)C8—C9—H9118.7
C10—N4—C14116.3 (4)N4—C10—C11123.6 (4)
N1—C1—C2118.3 (4)N4—C10—C2115.0 (4)
N1—C1—C5113.3 (3)C11—C10—C2121.1 (4)
C2—C1—C5128.4 (4)C12—C11—C10118.4 (4)
N2—C2—C1122.1 (4)C12—C11—H11120.8
N2—C2—C10114.1 (3)C10—C11—H11120.8
C1—C2—C10123.7 (4)C11—C12—C13119.2 (4)
N2—C3—C4122.3 (4)C11—C12—H12120.4
N2—C3—H3118.9C13—C12—H12120.4
C4—C3—H3118.9C14—C13—C12118.1 (4)
N1—C4—C3120.3 (4)C14—C13—H13121.0
N1—C4—H4119.8C12—C13—H13121.0
C3—C4—H4119.8N4—C14—C13124.3 (4)
N3—C5—C6122.1 (4)N4—C14—H14117.8
N3—C5—C1113.7 (3)C13—C14—H14117.8
N3—Pt1—N1—C4179.3 (3)Pt1—N3—C5—C19.1 (4)
Cl1—Pt1—N1—C40.8 (3)N1—C1—C5—N310.1 (5)
N3—Pt1—N1—C11.3 (3)C2—C1—C5—N3170.4 (4)
Cl1—Pt1—N1—C1179.8 (3)N1—C1—C5—C6166.0 (4)
N1—Pt1—N3—C9176.5 (4)C2—C1—C5—C613.5 (7)
Cl2—Pt1—N3—C92.3 (3)N3—C5—C6—C73.8 (6)
N1—Pt1—N3—C54.6 (3)C1—C5—C6—C7179.6 (4)
Cl2—Pt1—N3—C5174.2 (3)C5—C6—C7—C81.2 (6)
C4—N1—C1—C25.3 (5)C6—C7—C8—C94.3 (7)
Pt1—N1—C1—C2174.0 (3)C5—N3—C9—C82.2 (6)
C4—N1—C1—C5174.2 (3)Pt1—N3—C9—C8169.5 (3)
Pt1—N1—C1—C56.4 (4)C7—C8—C9—N32.7 (7)
C3—N2—C2—C13.5 (6)C14—N4—C10—C110.2 (6)
C3—N2—C2—C10172.2 (3)C14—N4—C10—C2174.8 (3)
N1—C1—C2—N27.7 (6)N2—C2—C10—N4122.6 (4)
C5—C1—C2—N2171.8 (4)C1—C2—C10—N452.9 (5)
N1—C1—C2—C10167.5 (4)N2—C2—C10—C1152.5 (5)
C5—C1—C2—C1013.0 (6)C1—C2—C10—C11131.9 (4)
C2—N2—C3—C43.1 (6)N4—C10—C11—C121.1 (6)
C1—N1—C4—C30.9 (6)C2—C10—C11—C12173.6 (4)
Pt1—N1—C4—C3179.8 (3)C10—C11—C12—C130.9 (7)
N2—C3—C4—N15.4 (6)C11—C12—C13—C140.1 (7)
C9—N3—C5—C65.5 (6)C10—N4—C14—C130.9 (6)
Pt1—N3—C5—C6167.0 (3)C12—C13—C14—N41.1 (7)
C9—N3—C5—C1178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.410 (6)147
C4—H4···Cl10.952.573.180 (4)123
C6—H6···Cl1ii0.952.823.477 (5)127
C6—H6···N40.952.583.056 (6)111
C9—H9···Cl20.952.663.261 (5)122
C13—H13···N4iii0.952.613.468 (6)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtCl2(C14H10N4)]
Mr500.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.894 (5), 9.711 (5), 16.461 (9)
β (°) 94.429 (11)
V3)1417.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)10.27
Crystal size (mm)0.28 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.638, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9749, 3370, 2756
Rint0.029
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.02
No. of reflections3370
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 0.83

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N12.003 (3)Pt1—Cl22.2916 (15)
Pt1—N32.014 (4)Pt1—Cl12.2918 (15)
N1—Pt1—N380.25 (13)Cl2—Pt1—Cl188.97 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.410 (6)147
C4—H4···Cl10.952.573.180 (4)123
C6—H6···Cl1ii0.952.823.477 (5)127
C6—H6···N40.952.583.056 (6)111
C9—H9···Cl20.952.663.261 (5)122
C13—H13···N4iii0.952.613.468 (6)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds