organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,6-Di­amino-1,3-phenyl­ene)bis­­(phenyl­methanone)

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Henan 467036, People's Republic of China
*Correspondence e-mail: tiandamin2009@163.com

(Received 2 August 2011; accepted 12 August 2011; online 14 September 2011)

In the mol­ecule of the title compound, C20H16N2O2, two intra­molecular N—H⋯O inter­actions occur. The mol­ecular chains are linked by N—H⋯π and C—H⋯π inter­actions into a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Related literature

For background on the applications of the title compound, see: Imai et al. (1975[Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. Part A Polym. Chem. 13, 2233-2249.]). For the synthetic procedure for the title compound, see: Zhang et al. (2011[Zhang, Q., Jiang, P., Wang, K. Y., Song, G. L. & Zhu, H. J. (2011). Dyes Pigments, 91, 89-97.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2

  • Mr = 316.35

  • Monoclinic, P 21 /n

  • a = 13.602 (3) Å

  • b = 7.2350 (14) Å

  • c = 16.786 (3) Å

  • β = 104.32 (3)°

  • V = 1600.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 3034 measured reflections

  • 2905 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.00

  • 2905 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13, rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.86 2.04 2.676 (3) 130
N2—H2B⋯O2 0.86 2.05 2.688 (3) 131
C19—H19ACg1i 0.93 2.79 3.555 (3) 140
N1—H1ACg2ii 0.86 2.71 3.550 (2) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (4,6-diamino-1,3-phenylene)bis(phenylmethanone) is an important intermediate, which can be utilized to synthesize organic semiconductors and conjugated polymers (Imai et al., 1975). We report here its crystal structure (Fig. 1).

There are two intramolecular N—H···O interactions (Table 1) in one molecule. The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the rings are planar. The dihedral angles of the rings A(C1—C6), B(C8—C13), C(C15—C20) are: A/B = 61.1 (1)°, A/C = 66.6 (2)°, B/C = 55.3 (1)°.

In the crystal structure, the molecular chains are linked by N—H···π and C—H···π interactions into a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure [C19—H19A···Cg1i 2.79Å, N1—H1A···Cg2ii 2.71 Å (Cg1 and Cg2 are the centroids of the rings defined by the atoms C1—C6 and C8—C13, respectively; symmetry codes: (i) -1/2 + x, -1/2 - y, -1/2 + z, (ii) 1/2 - x, 1/2 + y, 1/2 - z)].

The molecular symmetry is best described by point group Cs. In the crystal structure, molecules are stacked parallel to the a axis direction.

Related literature top

For background on the applications of the title compound, see: Imai et al. (1975). For the synthetic procedure for the title compound, see: Zhang et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the method of Ullmann reaction reported in literature (Zhang et al., 2011). Crystals were obtained by dissolving the produc t (0.2 g, 0.63 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

The H atoms of the amino groups were located in a difference Fourier map, and refined with a distance restraint N—H = 0.86 Å. Other H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

The title compound, (4,6-diamino-1,3-phenylene)bis(phenylmethanone) is an important intermediate, which can be utilized to synthesize organic semiconductors and conjugated polymers (Imai et al., 1975). We report here its crystal structure (Fig. 1).

There are two intramolecular N—H···O interactions (Table 1) in one molecule. The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the rings are planar. The dihedral angles of the rings A(C1—C6), B(C8—C13), C(C15—C20) are: A/B = 61.1 (1)°, A/C = 66.6 (2)°, B/C = 55.3 (1)°.

In the crystal structure, the molecular chains are linked by N—H···π and C—H···π interactions into a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure [C19—H19A···Cg1i 2.79Å, N1—H1A···Cg2ii 2.71 Å (Cg1 and Cg2 are the centroids of the rings defined by the atoms C1—C6 and C8—C13, respectively; symmetry codes: (i) -1/2 + x, -1/2 - y, -1/2 + z, (ii) 1/2 - x, 1/2 + y, 1/2 - z)].

The molecular symmetry is best described by point group Cs. In the crystal structure, molecules are stacked parallel to the a axis direction.

For background on the applications of the title compound, see: Imai et al. (1975). For the synthetic procedure for the title compound, see: Zhang et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
(4,6-Diamino-1,3-phenylene)bis(phenylmethanone) top
Crystal data top
C20H16N2O2F(000) = 664
Mr = 316.35Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.602 (3) Åθ = 9–13°
b = 7.2350 (14) ŵ = 0.09 mm1
c = 16.786 (3) ÅT = 293 K
β = 104.32 (3)°Block, colourless
V = 1600.6 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius CAD-4
diffractometer
1956 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.975, Tmax = 0.992l = 2019
3034 measured reflections3 standard reflections every 200 reflections
2905 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2905 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (4)
Crystal data top
C20H16N2O2V = 1600.6 (5) Å3
Mr = 316.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.602 (3) ŵ = 0.09 mm1
b = 7.2350 (14) ÅT = 293 K
c = 16.786 (3) Å0.30 × 0.20 × 0.10 mm
β = 104.32 (3)°
Data collection top
Nonius CAD-4
diffractometer
1956 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
3034 measured reflections intensity decay: 1%
2905 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2905 reflectionsΔρmin = 0.16 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37312 (16)0.3893 (3)0.28367 (12)0.0591 (6)
H1A0.34910.47120.31090.071*
H1B0.43410.34930.30210.071*
O10.52000 (14)0.1831 (3)0.24813 (14)0.0930 (8)
C10.57390 (17)0.0458 (4)0.12198 (14)0.0531 (6)
H1C0.60950.06470.12450.064*
O20.04343 (12)0.1873 (2)0.05001 (10)0.0611 (5)
N20.05679 (14)0.3923 (3)0.08577 (13)0.0578 (6)
H2A0.03700.47690.11420.069*
H2B0.01630.35190.04150.069*
C20.60783 (19)0.2017 (4)0.08967 (15)0.0607 (7)
H2C0.66560.19470.06960.073*
C30.5578 (2)0.3659 (4)0.08670 (16)0.0604 (7)
H3A0.58180.47040.06530.072*
C40.4720 (2)0.3763 (3)0.11544 (16)0.0589 (7)
H4A0.43780.48810.11380.071*
C50.43617 (17)0.2205 (3)0.14694 (14)0.0477 (6)
H5A0.37750.22800.16580.057*
C60.48687 (15)0.0536 (3)0.15059 (12)0.0382 (5)
C70.45547 (17)0.1125 (3)0.19187 (14)0.0468 (6)
C80.35224 (15)0.1836 (3)0.16598 (12)0.0348 (5)
C90.28558 (14)0.1203 (3)0.09414 (12)0.0333 (5)
H9A0.30950.03080.06390.040*
C100.18605 (15)0.1806 (3)0.06417 (12)0.0348 (5)
C110.15099 (16)0.3230 (3)0.11055 (13)0.0399 (5)
C120.21684 (16)0.3878 (3)0.18220 (13)0.0431 (6)
H12A0.19360.47950.21180.052*
C130.31502 (16)0.3235 (3)0.21194 (12)0.0395 (5)
C140.12288 (16)0.1100 (3)0.01357 (13)0.0402 (5)
C150.15422 (15)0.0590 (3)0.05239 (12)0.0384 (5)
C160.18537 (17)0.2215 (3)0.00953 (14)0.0443 (6)
H16A0.19210.22510.04690.053*
C170.20657 (18)0.3783 (3)0.04972 (17)0.0562 (7)
H17A0.22710.48640.02030.067*
C180.19713 (19)0.3735 (4)0.13331 (18)0.0642 (8)
H18A0.21130.47850.16040.077*
C190.1668 (2)0.2136 (4)0.17665 (16)0.0621 (7)
H19A0.16140.21040.23300.075*
C200.14434 (17)0.0577 (4)0.13704 (14)0.0523 (6)
H20A0.12240.04890.16710.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0621 (13)0.0564 (13)0.0529 (12)0.0047 (11)0.0032 (10)0.0213 (10)
O10.0592 (12)0.0820 (15)0.1104 (16)0.0206 (11)0.0310 (11)0.0536 (13)
C10.0470 (14)0.0519 (16)0.0608 (15)0.0068 (12)0.0144 (11)0.0068 (12)
O20.0525 (10)0.0619 (11)0.0576 (10)0.0207 (9)0.0077 (8)0.0073 (9)
N20.0437 (11)0.0595 (14)0.0667 (13)0.0159 (10)0.0072 (10)0.0157 (11)
C20.0526 (15)0.079 (2)0.0580 (16)0.0050 (14)0.0274 (13)0.0004 (14)
C30.0603 (16)0.0593 (17)0.0626 (16)0.0119 (14)0.0172 (13)0.0141 (14)
C40.0583 (15)0.0388 (14)0.0792 (18)0.0033 (12)0.0162 (13)0.0054 (13)
C50.0433 (13)0.0426 (14)0.0596 (15)0.0017 (10)0.0171 (11)0.0003 (11)
C60.0347 (11)0.0375 (12)0.0386 (11)0.0022 (9)0.0021 (9)0.0016 (10)
C70.0441 (13)0.0389 (13)0.0502 (13)0.0016 (11)0.0020 (10)0.0034 (11)
C80.0399 (11)0.0267 (11)0.0376 (11)0.0002 (9)0.0089 (9)0.0023 (9)
C90.0384 (11)0.0262 (10)0.0361 (11)0.0014 (9)0.0107 (9)0.0006 (8)
C100.0380 (11)0.0299 (11)0.0363 (11)0.0027 (9)0.0090 (9)0.0034 (9)
C110.0405 (12)0.0320 (12)0.0484 (13)0.0026 (10)0.0134 (10)0.0039 (10)
C120.0508 (13)0.0341 (12)0.0478 (13)0.0048 (10)0.0184 (10)0.0055 (10)
C130.0493 (13)0.0327 (12)0.0369 (11)0.0054 (10)0.0113 (9)0.0038 (9)
C140.0384 (12)0.0375 (12)0.0426 (12)0.0024 (10)0.0057 (9)0.0041 (10)
C150.0323 (11)0.0369 (12)0.0422 (12)0.0021 (9)0.0020 (9)0.0020 (10)
C160.0458 (13)0.0377 (13)0.0476 (13)0.0031 (10)0.0082 (10)0.0019 (10)
C170.0540 (15)0.0364 (13)0.0764 (18)0.0019 (11)0.0125 (13)0.0043 (13)
C180.0567 (16)0.0599 (18)0.0722 (18)0.0055 (13)0.0089 (13)0.0270 (15)
C190.0599 (16)0.076 (2)0.0454 (14)0.0069 (15)0.0041 (12)0.0158 (14)
C200.0482 (13)0.0583 (16)0.0442 (13)0.0086 (12)0.0001 (10)0.0016 (12)
Geometric parameters (Å, º) top
N1—C131.353 (3)C8—C91.395 (3)
N1—H1A0.8600C8—C131.439 (3)
N1—H1B0.8600C9—C101.392 (3)
O1—C71.230 (3)C9—H9A0.9300
C1—C21.380 (3)C10—C111.442 (3)
C1—C61.384 (3)C10—C141.465 (3)
C1—H1C0.9300C11—C121.391 (3)
O2—C141.236 (2)C12—C131.385 (3)
N2—C111.342 (3)C12—H12A0.9300
N2—H2A0.8600C14—C151.496 (3)
N2—H2B0.8600C15—C161.389 (3)
C2—C31.364 (4)C15—C201.394 (3)
C2—H2C0.9300C16—C171.386 (3)
C3—C41.371 (4)C16—H16A0.9300
C3—H3A0.9300C17—C181.378 (4)
C4—C51.384 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.374 (4)
C5—C61.384 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.381 (3)
C6—C71.501 (3)C19—H19A0.9300
C7—C81.457 (3)C20—H20A0.9300
C13—N1—H1A120.0C9—C10—C11116.78 (18)
C13—N1—H1B120.0C9—C10—C14121.08 (19)
H1A—N1—H1B120.0C11—C10—C14122.04 (18)
C2—C1—C6120.1 (2)N2—C11—C12120.2 (2)
C2—C1—H1C120.0N2—C11—C10121.1 (2)
C6—C1—H1C120.0C12—C11—C10118.65 (19)
C11—N2—H2A120.0C13—C12—C11123.7 (2)
C11—N2—H2B120.0C13—C12—H12A118.1
H2A—N2—H2B120.0C11—C12—H12A118.1
C3—C2—C1120.9 (2)N1—C13—C12120.1 (2)
C3—C2—H2C119.5N1—C13—C8121.3 (2)
C1—C2—H2C119.5C12—C13—C8118.60 (18)
C2—C3—C4119.7 (2)O2—C14—C10122.1 (2)
C2—C3—H3A120.2O2—C14—C15117.56 (18)
C4—C3—H3A120.2C10—C14—C15120.34 (18)
C3—C4—C5120.1 (2)C16—C15—C20118.3 (2)
C3—C4—H4A120.0C16—C15—C14123.33 (19)
C5—C4—H4A120.0C20—C15—C14118.21 (19)
C4—C5—C6120.6 (2)C17—C16—C15121.0 (2)
C4—C5—H5A119.7C17—C16—H16A119.5
C6—C5—H5A119.7C15—C16—H16A119.5
C5—C6—C1118.7 (2)C18—C17—C16119.8 (2)
C5—C6—C7121.5 (2)C18—C17—H17A120.1
C1—C6—C7119.5 (2)C16—C17—H17A120.1
O1—C7—C8122.3 (2)C19—C18—C17120.0 (2)
O1—C7—C6117.2 (2)C19—C18—H18A120.0
C8—C7—C6120.56 (18)C17—C18—H18A120.0
C9—C8—C13117.07 (18)C18—C19—C20120.4 (2)
C9—C8—C7120.94 (19)C18—C19—H19A119.8
C13—C8—C7121.98 (18)C20—C19—H19A119.8
C10—C9—C8125.14 (19)C19—C20—C15120.6 (2)
C10—C9—H9A117.4C19—C20—H20A119.7
C8—C9—H9A117.4C15—C20—H20A119.7
C6—C1—C2—C31.2 (4)N2—C11—C12—C13179.9 (2)
C1—C2—C3—C40.6 (4)C10—C11—C12—C130.1 (3)
C2—C3—C4—C50.3 (4)C11—C12—C13—N1177.7 (2)
C3—C4—C5—C60.7 (4)C11—C12—C13—C80.9 (3)
C4—C5—C6—C10.1 (3)C9—C8—C13—N1177.98 (19)
C4—C5—C6—C7174.0 (2)C7—C8—C13—N13.1 (3)
C2—C1—C6—C50.8 (3)C9—C8—C13—C120.6 (3)
C2—C1—C6—C7175.0 (2)C7—C8—C13—C12178.3 (2)
C5—C6—C7—O1122.8 (3)C9—C10—C14—O2164.4 (2)
C1—C6—C7—O151.2 (3)C11—C10—C14—O211.6 (3)
C5—C6—C7—C856.6 (3)C9—C10—C14—C1514.6 (3)
C1—C6—C7—C8129.3 (2)C11—C10—C14—C15169.40 (18)
O1—C7—C8—C9169.7 (2)O2—C14—C15—C16132.7 (2)
C6—C7—C8—C911.0 (3)C10—C14—C15—C1648.2 (3)
O1—C7—C8—C139.2 (4)O2—C14—C15—C2042.3 (3)
C6—C7—C8—C13170.2 (2)C10—C14—C15—C20136.8 (2)
C13—C8—C9—C100.7 (3)C20—C15—C16—C170.3 (3)
C7—C8—C9—C10179.60 (19)C14—C15—C16—C17175.3 (2)
C8—C9—C10—C111.7 (3)C15—C16—C17—C180.3 (4)
C8—C9—C10—C14177.93 (19)C16—C17—C18—C190.0 (4)
C9—C10—C11—N2178.84 (19)C17—C18—C19—C200.9 (4)
C14—C10—C11—N22.6 (3)C18—C19—C20—C151.4 (4)
C9—C10—C11—C121.4 (3)C16—C15—C20—C191.1 (3)
C14—C10—C11—C12177.56 (19)C14—C15—C20—C19176.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the rings defined by the atoms C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.042.676 (3)130
N2—H2B···O20.862.052.688 (3)131
C19—H19A···Cg1i0.932.793.555 (3)140
N1—H1A···Cg2ii0.862.713.550 (2)167
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N2O2
Mr316.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.602 (3), 7.2350 (14), 16.786 (3)
β (°) 104.32 (3)
V3)1600.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerNonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3034, 2905, 1956
Rint0.050
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.00
No. of reflections2905
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the rings defined by the atoms C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.042.676 (3)130
N2—H2B···O20.862.052.688 (3)131
C19—H19A···Cg1i0.932.793.555 (3)140
N1—H1A···Cg2ii0.862.713.550 (2)167
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationImai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. Part A Polym. Chem. 13, 2233–2249.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Jiang, P., Wang, K. Y., Song, G. L. & Zhu, H. J. (2011). Dyes Pigments, 91, 89–97.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds