organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(guanidinium) chloranilate

aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, K1A 0R6, Canada, and bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
*Correspondence e-mail: Kostia.Oudatchin@nrc-cnrc.gc.ca

(Received 10 August 2011; accepted 6 September 2011; online 14 September 2011)

The asymmetric unit of the title co-crystal, 2CH6N3+·C6Cl2O42−, contains one half of a chloranilate anion and one guanidinium cation, which are connected by strong N—H⋯O hydrogen bonds into a two-dimensional network.

Related literature

For organic co-crystals containing 2,5-dihy­droxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975[Andersen, E. K. & Andersen, I. G. K. (1975). Acta Cryst. B31, 379-383.]); Horiuchi et al. (2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). Nat. Mater. 4, 163-166.], 2007[Horiuchi, S., Kumaia, R. & Tokura, Y. (2007). Chem. Commun. pp. 2321-2329.]); Zaman et al. (1999a[Zaman, M. B., Tomura, M. & Yamashita, Y. (1999a). Chem. Commun. pp. 999-1000.],b[Zaman, M. B., Tomura, M., Yamashita, Y., Sayaduzzaman, M. & Chowdhury, A. M. S. (1999b). CrystEngComm, 1, 36-38.], 2010[Zaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582-585.]). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa et al. (2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34]). For guanidine and guanidinium structures, see: Abrahams et al. (2004[Abrahams, B. E., Haywood, M. G., Hudson, T. A. & Robson, R. (2004). Angew. Chem. Int. Ed. 43, 6157-6160.], 2005[Abrahams, B. F., Haywood, M. G. & Robson, R. (2005). J. Am. Chem. Soc. 127, 816-817.]); Best et al. (2003[Best, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3-15.]); Said et al. (2006[Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848-1857.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o575-o580.], 2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o1645.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·C6Cl2O42−

  • Mr = 327.14

  • Monoclinic, C 2/c

  • a = 19.5224 (14) Å

  • b = 3.7316 (3) Å

  • c = 18.4103 (14) Å

  • β = 116.087 (1)°

  • V = 1204.56 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.849

  • 6965 measured reflections

  • 1674 independent reflections

  • 1525 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.078

  • S = 1.08

  • 1674 reflections

  • 116 parameters

  • All H-atom parameters refined

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O3 0.85 (2) 2.32 (2) 3.0504 (13) 144.4 (16)
N1—H1⋯O2i 0.901 (17) 2.117 (17) 2.8978 (13) 144.4 (15)
N1—H1⋯O3i 0.901 (17) 2.303 (18) 3.0555 (13) 140.9 (15)
N2—H3⋯O3 0.818 (19) 2.161 (19) 2.9337 (14) 157.7 (17)
N3—H6⋯O2i 0.79 (2) 2.21 (2) 2.9016 (14) 146.3 (18)
N3—H5⋯O2ii 0.88 (2) 2.14 (2) 2.9586 (13) 154.4 (17)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [x, -y+3, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The co-crystallization of chloranilic acid and guanidine was carried out in methanol resulting in the co-crystal 2CH6N3+.C6O4Cl22- (Fig. 1). The chloranilic acid molecule is centro-symmetric and contains two hydrogen bond donors and two hydrogen bond acceptors and is, therefore, capable of participating in multiple hydrogen bonds. It forms 2D-sheet-like networks through N3—H5···O2 hydrogen bonds as shown in Figure 2. There are three N—H bonds in guanidine that connect with the O2 and O3 atoms of the chloranilic acid and form a one-dimensional molecular supramolecular structure. Two of these one-dimensional structures are again connected via N3—H5···O2 hydrogen bonds and form a two-dimensional network. Details of hydrogen-bonds are shown in Table 1.

Related literature top

For organic co-crystals containing 2,5-dihydroxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975); Horiuchi et al. (2005, 2007); Zaman et al. (1999a,b, 2010). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa et al. (2002). For guanidine and guanidinium structures, see: Abrahams et al. (2004, 2005); Best et al. (2003); Said et al. (2006); Smith & Wermuth (2010, 2011).

Experimental top

Crystals were grown by slow evaporation of a methanol solution under ambient conditions containing a 1:1 stoichiometric quantity of guanidinium carbonate (Aldrich, 98%) and chloranilic acid (Aldrich, 99%).

Refinement top

Hydrogen atoms were found from the difference electron density maps and refined with isotropic temperature factors.

Structure description top

The co-crystallization of chloranilic acid and guanidine was carried out in methanol resulting in the co-crystal 2CH6N3+.C6O4Cl22- (Fig. 1). The chloranilic acid molecule is centro-symmetric and contains two hydrogen bond donors and two hydrogen bond acceptors and is, therefore, capable of participating in multiple hydrogen bonds. It forms 2D-sheet-like networks through N3—H5···O2 hydrogen bonds as shown in Figure 2. There are three N—H bonds in guanidine that connect with the O2 and O3 atoms of the chloranilic acid and form a one-dimensional molecular supramolecular structure. Two of these one-dimensional structures are again connected via N3—H5···O2 hydrogen bonds and form a two-dimensional network. Details of hydrogen-bonds are shown in Table 1.

For organic co-crystals containing 2,5-dihydroxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975); Horiuchi et al. (2005, 2007); Zaman et al. (1999a,b, 2010). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa et al. (2002). For guanidine and guanidinium structures, see: Abrahams et al. (2004, 2005); Best et al. (2003); Said et al. (2006); Smith & Wermuth (2010, 2011).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom naming scheme. Displacement ellipsoids are drawn at the 50% probability level. Grown fragment generated by symmetry codes: (a) - x, 2 - y, - z; (b) 1/2 - x, 2.5 - y, - z.
[Figure 2] Fig. 2. Packing diagram of the hydrogen-bonded framework structure of co-crystals viewed down the b axis, showing hydrogen-bonding associations as thin lines (H atoms are omitted).
Bis(guanidinium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate) top
Crystal data top
2CH6N3+·C6Cl2O42F(000) = 672
Mr = 327.14Dx = 1.804 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 220 reflections
a = 19.5224 (14) Åθ = 4.0–29.0°
b = 3.7316 (3) ŵ = 0.57 mm1
c = 18.4103 (14) ÅT = 173 K
β = 116.087 (1)°Block, yellow
V = 1204.56 (16) Å30.45 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
1674 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 29.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
h = 2727
Tmin = 0.785, Tmax = 0.849k = 55
6965 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.7637P]
where P = (Fo2 + 2Fc2)/3
1674 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
2CH6N3+·C6Cl2O42V = 1204.56 (16) Å3
Mr = 327.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.5224 (14) ŵ = 0.57 mm1
b = 3.7316 (3) ÅT = 173 K
c = 18.4103 (14) Å0.45 × 0.40 × 0.30 mm
β = 116.087 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1674 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
1525 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.849Rint = 0.020
6965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 1.08Δρmax = 0.47 e Å3
1674 reflectionsΔρmin = 0.25 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.036370 (14)0.71393 (8)0.174949 (15)0.01677 (10)
O20.14122 (4)1.0852 (3)0.12281 (5)0.01823 (18)
O30.11119 (5)1.3347 (3)0.02492 (5)0.01949 (19)
N10.23429 (6)1.5093 (3)0.07912 (6)0.0213 (2)
H20.2183 (11)1.461 (6)0.0438 (12)0.037 (5)*
H10.2810 (10)1.436 (5)0.0711 (10)0.028 (4)*
N20.11581 (6)1.7324 (3)0.16016 (7)0.0201 (2)
H40.0871 (10)1.852 (5)0.1996 (11)0.024 (4)*
H30.1026 (10)1.648 (5)0.1273 (11)0.030 (5)*
N30.21154 (6)1.7664 (3)0.20145 (7)0.0211 (2)
H60.2549 (12)1.736 (5)0.1912 (12)0.034 (5)*
H50.1782 (11)1.824 (6)0.2505 (13)0.039 (5)*
C10.01581 (6)0.8726 (3)0.07862 (6)0.0143 (2)
C20.07504 (6)1.0395 (3)0.06811 (6)0.0140 (2)
C30.05815 (6)1.1811 (3)0.01681 (6)0.0139 (2)
C40.18720 (6)1.6695 (3)0.14746 (7)0.0154 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01745 (15)0.02061 (16)0.01101 (15)0.00081 (9)0.00514 (11)0.00188 (9)
O20.0120 (3)0.0267 (4)0.0132 (4)0.0009 (3)0.0030 (3)0.0000 (3)
O30.0147 (4)0.0274 (5)0.0165 (4)0.0040 (3)0.0069 (3)0.0016 (3)
N10.0181 (5)0.0293 (5)0.0165 (5)0.0044 (4)0.0077 (4)0.0056 (4)
N20.0150 (4)0.0270 (5)0.0191 (5)0.0023 (4)0.0082 (4)0.0045 (4)
N30.0154 (5)0.0326 (6)0.0154 (5)0.0012 (4)0.0069 (4)0.0049 (4)
C10.0139 (4)0.0182 (5)0.0099 (4)0.0003 (4)0.0043 (4)0.0014 (4)
C20.0133 (4)0.0161 (5)0.0119 (4)0.0007 (4)0.0051 (4)0.0008 (4)
C30.0129 (5)0.0166 (5)0.0120 (5)0.0004 (4)0.0053 (4)0.0000 (4)
C40.0142 (5)0.0168 (5)0.0142 (5)0.0013 (4)0.0052 (4)0.0015 (4)
Geometric parameters (Å, º) top
Cl1—C11.7409 (11)N2—H30.818 (19)
O2—C21.2522 (13)N3—C41.3267 (15)
O3—C31.2487 (13)N3—H60.79 (2)
N1—C41.3297 (15)N3—H50.88 (2)
N1—H20.85 (2)C1—C21.3997 (14)
N1—H10.901 (17)C1—C3i1.4051 (14)
N2—C41.3287 (14)C2—C31.5423 (15)
N2—H40.827 (18)C3—C1i1.4052 (14)
C4—N1—H2118.9 (13)C3i—C1—Cl1118.10 (8)
C4—N1—H1121.3 (11)O2—C2—C1124.91 (10)
H2—N1—H1119.6 (17)O2—C2—C3116.98 (9)
C4—N2—H4120.2 (12)C1—C2—C3118.10 (9)
C4—N2—H3116.7 (13)O3—C3—C1i125.41 (10)
H4—N2—H3123.1 (17)O3—C3—C2117.36 (9)
C4—N3—H6118.7 (14)C1i—C3—C2117.23 (9)
C4—N3—H5119.3 (13)N3—C4—N2120.90 (11)
H6—N3—H5121.0 (18)N3—C4—N1120.33 (11)
C2—C1—C3i124.66 (10)N2—C4—N1118.76 (11)
C2—C1—Cl1117.24 (8)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O30.85 (2)2.32 (2)3.0504 (13)144.4 (16)
N1—H1···O2ii0.901 (17)2.117 (17)2.8978 (13)144.4 (15)
N1—H1···O3ii0.901 (17)2.303 (18)3.0555 (13)140.9 (15)
N2—H3···O30.818 (19)2.161 (19)2.9337 (14)157.7 (17)
N3—H6···O2ii0.79 (2)2.21 (2)2.9016 (14)146.3 (18)
N3—H5···O2iii0.88 (2)2.14 (2)2.9586 (13)154.4 (17)
Symmetry codes: (ii) x+1/2, y+5/2, z; (iii) x, y+3, z1/2.

Experimental details

Crystal data
Chemical formula2CH6N3+·C6Cl2O42
Mr327.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)19.5224 (14), 3.7316 (3), 18.4103 (14)
β (°) 116.087 (1)
V3)1204.56 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.785, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
6965, 1674, 1525
Rint0.020
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.078, 1.08
No. of reflections1674
No. of parameters116
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.25

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O30.85 (2)2.32 (2)3.0504 (13)144.4 (16)
N1—H1···O2i0.901 (17)2.117 (17)2.8978 (13)144.4 (15)
N1—H1···O3i0.901 (17)2.303 (18)3.0555 (13)140.9 (15)
N2—H3···O30.818 (19)2.161 (19)2.9337 (14)157.7 (17)
N3—H6···O2i0.79 (2)2.21 (2)2.9016 (14)146.3 (18)
N3—H5···O2ii0.88 (2)2.14 (2)2.9586 (13)154.4 (17)
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x, y+3, z1/2.
 

References

First citationAbrahams, B. E., Haywood, M. G., Hudson, T. A. & Robson, R. (2004). Angew. Chem. Int. Ed. 43, 6157–6160.  Web of Science CSD CrossRef CAS Google Scholar
First citationAbrahams, B. F., Haywood, M. G. & Robson, R. (2005). J. Am. Chem. Soc. 127, 816–817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAndersen, E. K. & Andersen, I. G. K. (1975). Acta Cryst. B31, 379–383.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBest, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHoriuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). Nat. Mater. 4, 163–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoriuchi, S., Kumaia, R. & Tokura, Y. (2007). Chem. Commun. pp. 2321–2329.  Web of Science CrossRef Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34  Web of Science CrossRef CAS Google Scholar
First citationSaid, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o575–o580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582–585.  Web of Science CrossRef CAS Google Scholar
First citationZaman, M. B., Tomura, M. & Yamashita, Y. (1999a). Chem. Commun. pp. 999–1000.  Web of Science CSD CrossRef Google Scholar
First citationZaman, M. B., Tomura, M., Yamashita, Y., Sayaduzzaman, M. & Chowdhury, A. M. S. (1999b). CrystEngComm, 1, 36–38.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds