organic compounds
Bis(guanidinium) chloranilate
aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, K1A 0R6, Canada, and bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
*Correspondence e-mail: Kostia.Oudatchin@nrc-cnrc.gc.ca
The 6N3+·C6Cl2O42−, contains one half of a chloranilate anion and one guanidinium cation, which are connected by strong N—H⋯O hydrogen bonds into a two-dimensional network.
of the title 2CHRelated literature
For organic co-crystals containing 2,5-dihydroxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975); Horiuchi et al. (2005, 2007); Zaman et al. (1999a,b, 2010). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa et al. (2002). For guanidine and guanidinium structures, see: Abrahams et al. (2004, 2005); Best et al. (2003); Said et al. (2006); Smith & Wermuth (2010, 2011).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811036373/vm2118sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036373/vm2118Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811036373/vm2118Isup3.cml
Crystals were grown by slow evaporation of a methanol solution under ambient conditions containing a 1:1 stoichiometric quantity of guanidinium carbonate (Aldrich, 98%) and chloranilic acid (Aldrich, 99%).
Hydrogen atoms were found from the difference electron density maps and refined with isotropic temperature factors.
The co-crystallization of chloranilic acid and guanidine was carried out in methanol resulting in the
2CH6N3+.C6O4Cl22- (Fig. 1). The chloranilic acid molecule is centro-symmetric and contains two hydrogen bond donors and two hydrogen bond acceptors and is, therefore, capable of participating in multiple hydrogen bonds. It forms 2D-sheet-like networks through N3—H5···O2 hydrogen bonds as shown in Figure 2. There are three N—H bonds in guanidine that connect with the O2 and O3 atoms of the chloranilic acid and form a one-dimensional molecular supramolecular structure. Two of these one-dimensional structures are again connected via N3—H5···O2 hydrogen bonds and form a two-dimensional network. Details of hydrogen-bonds are shown in Table 1.For organic co-crystals containing 2,5-dihydroxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975); Horiuchi et al. (2005, 2007); Zaman et al. (1999a,b, 2010). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa et al. (2002). For guanidine and guanidinium structures, see: Abrahams et al. (2004, 2005); Best et al. (2003); Said et al. (2006); Smith & Wermuth (2010, 2011).
Data collection: SMART (Bruker, 2003); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure and atom naming scheme. Displacement ellipsoids are drawn at the 50% probability level. Grown fragment generated by symmetry codes: (a) - x, 2 - y, - z; (b) 1/2 - x, 2.5 - y, - z. | |
Fig. 2. Packing diagram of the hydrogen-bonded framework structure of co-crystals viewed down the b axis, showing hydrogen-bonding associations as thin lines (H atoms are omitted). |
2CH6N3+·C6Cl2O42− | F(000) = 672 |
Mr = 327.14 | Dx = 1.804 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -C 2yc | Cell parameters from 220 reflections |
a = 19.5224 (14) Å | θ = 4.0–29.0° |
b = 3.7316 (3) Å | µ = 0.57 mm−1 |
c = 18.4103 (14) Å | T = 173 K |
β = 116.087 (1)° | Block, yellow |
V = 1204.56 (16) Å3 | 0.45 × 0.40 × 0.30 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 1674 independent reflections |
Radiation source: fine-focus sealed tube | 1525 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 29.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS, Sheldrick, 1996) | h = −27→27 |
Tmin = 0.785, Tmax = 0.849 | k = −5→5 |
6965 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.7637P] where P = (Fo2 + 2Fc2)/3 |
1674 reflections | (Δ/σ)max < 0.001 |
116 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
2CH6N3+·C6Cl2O42− | V = 1204.56 (16) Å3 |
Mr = 327.14 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.5224 (14) Å | µ = 0.57 mm−1 |
b = 3.7316 (3) Å | T = 173 K |
c = 18.4103 (14) Å | 0.45 × 0.40 × 0.30 mm |
β = 116.087 (1)° |
Bruker SMART 1000 CCD diffractometer | 1674 independent reflections |
Absorption correction: multi-scan (SADABS, Sheldrick, 1996) | 1525 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.849 | Rint = 0.020 |
6965 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.078 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.47 e Å−3 |
1674 reflections | Δρmin = −0.25 e Å−3 |
116 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.036370 (14) | 0.71393 (8) | 0.174949 (15) | 0.01677 (10) | |
O2 | 0.14122 (4) | 1.0852 (3) | 0.12281 (5) | 0.01823 (18) | |
O3 | 0.11119 (5) | 1.3347 (3) | −0.02492 (5) | 0.01949 (19) | |
N1 | 0.23429 (6) | 1.5093 (3) | −0.07912 (6) | 0.0213 (2) | |
H2 | 0.2183 (11) | 1.461 (6) | −0.0438 (12) | 0.037 (5)* | |
H1 | 0.2810 (10) | 1.436 (5) | −0.0711 (10) | 0.028 (4)* | |
N2 | 0.11581 (6) | 1.7324 (3) | −0.16016 (7) | 0.0201 (2) | |
H4 | 0.0871 (10) | 1.852 (5) | −0.1996 (11) | 0.024 (4)* | |
H3 | 0.1026 (10) | 1.648 (5) | −0.1273 (11) | 0.030 (5)* | |
N3 | 0.21154 (6) | 1.7664 (3) | −0.20145 (7) | 0.0211 (2) | |
H6 | 0.2549 (12) | 1.736 (5) | −0.1912 (12) | 0.034 (5)* | |
H5 | 0.1782 (11) | 1.824 (6) | −0.2505 (13) | 0.039 (5)* | |
C1 | 0.01581 (6) | 0.8726 (3) | 0.07862 (6) | 0.0143 (2) | |
C2 | 0.07504 (6) | 1.0395 (3) | 0.06811 (6) | 0.0140 (2) | |
C3 | 0.05815 (6) | 1.1811 (3) | −0.01681 (6) | 0.0139 (2) | |
C4 | 0.18720 (6) | 1.6695 (3) | −0.14746 (7) | 0.0154 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01745 (15) | 0.02061 (16) | 0.01101 (15) | −0.00081 (9) | 0.00514 (11) | 0.00188 (9) |
O2 | 0.0120 (3) | 0.0267 (4) | 0.0132 (4) | −0.0009 (3) | 0.0030 (3) | 0.0000 (3) |
O3 | 0.0147 (4) | 0.0274 (5) | 0.0165 (4) | −0.0040 (3) | 0.0069 (3) | 0.0016 (3) |
N1 | 0.0181 (5) | 0.0293 (5) | 0.0165 (5) | 0.0044 (4) | 0.0077 (4) | 0.0056 (4) |
N2 | 0.0150 (4) | 0.0270 (5) | 0.0191 (5) | 0.0023 (4) | 0.0082 (4) | 0.0045 (4) |
N3 | 0.0154 (5) | 0.0326 (6) | 0.0154 (5) | 0.0012 (4) | 0.0069 (4) | 0.0049 (4) |
C1 | 0.0139 (4) | 0.0182 (5) | 0.0099 (4) | −0.0003 (4) | 0.0043 (4) | 0.0014 (4) |
C2 | 0.0133 (4) | 0.0161 (5) | 0.0119 (4) | 0.0007 (4) | 0.0051 (4) | −0.0008 (4) |
C3 | 0.0129 (5) | 0.0166 (5) | 0.0120 (5) | 0.0004 (4) | 0.0053 (4) | 0.0000 (4) |
C4 | 0.0142 (5) | 0.0168 (5) | 0.0142 (5) | −0.0013 (4) | 0.0052 (4) | −0.0015 (4) |
Cl1—C1 | 1.7409 (11) | N2—H3 | 0.818 (19) |
O2—C2 | 1.2522 (13) | N3—C4 | 1.3267 (15) |
O3—C3 | 1.2487 (13) | N3—H6 | 0.79 (2) |
N1—C4 | 1.3297 (15) | N3—H5 | 0.88 (2) |
N1—H2 | 0.85 (2) | C1—C2 | 1.3997 (14) |
N1—H1 | 0.901 (17) | C1—C3i | 1.4051 (14) |
N2—C4 | 1.3287 (14) | C2—C3 | 1.5423 (15) |
N2—H4 | 0.827 (18) | C3—C1i | 1.4052 (14) |
C4—N1—H2 | 118.9 (13) | C3i—C1—Cl1 | 118.10 (8) |
C4—N1—H1 | 121.3 (11) | O2—C2—C1 | 124.91 (10) |
H2—N1—H1 | 119.6 (17) | O2—C2—C3 | 116.98 (9) |
C4—N2—H4 | 120.2 (12) | C1—C2—C3 | 118.10 (9) |
C4—N2—H3 | 116.7 (13) | O3—C3—C1i | 125.41 (10) |
H4—N2—H3 | 123.1 (17) | O3—C3—C2 | 117.36 (9) |
C4—N3—H6 | 118.7 (14) | C1i—C3—C2 | 117.23 (9) |
C4—N3—H5 | 119.3 (13) | N3—C4—N2 | 120.90 (11) |
H6—N3—H5 | 121.0 (18) | N3—C4—N1 | 120.33 (11) |
C2—C1—C3i | 124.66 (10) | N2—C4—N1 | 118.76 (11) |
C2—C1—Cl1 | 117.24 (8) |
Symmetry code: (i) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···O3 | 0.85 (2) | 2.32 (2) | 3.0504 (13) | 144.4 (16) |
N1—H1···O2ii | 0.901 (17) | 2.117 (17) | 2.8978 (13) | 144.4 (15) |
N1—H1···O3ii | 0.901 (17) | 2.303 (18) | 3.0555 (13) | 140.9 (15) |
N2—H3···O3 | 0.818 (19) | 2.161 (19) | 2.9337 (14) | 157.7 (17) |
N3—H6···O2ii | 0.79 (2) | 2.21 (2) | 2.9016 (14) | 146.3 (18) |
N3—H5···O2iii | 0.88 (2) | 2.14 (2) | 2.9586 (13) | 154.4 (17) |
Symmetry codes: (ii) −x+1/2, −y+5/2, −z; (iii) x, −y+3, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·C6Cl2O42− |
Mr | 327.14 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 19.5224 (14), 3.7316 (3), 18.4103 (14) |
β (°) | 116.087 (1) |
V (Å3) | 1204.56 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.45 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS, Sheldrick, 1996) |
Tmin, Tmax | 0.785, 0.849 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6965, 1674, 1525 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.695 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.078, 1.08 |
No. of reflections | 1674 |
No. of parameters | 116 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.47, −0.25 |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···O3 | 0.85 (2) | 2.32 (2) | 3.0504 (13) | 144.4 (16) |
N1—H1···O2i | 0.901 (17) | 2.117 (17) | 2.8978 (13) | 144.4 (15) |
N1—H1···O3i | 0.901 (17) | 2.303 (18) | 3.0555 (13) | 140.9 (15) |
N2—H3···O3 | 0.818 (19) | 2.161 (19) | 2.9337 (14) | 157.7 (17) |
N3—H6···O2i | 0.79 (2) | 2.21 (2) | 2.9016 (14) | 146.3 (18) |
N3—H5···O2ii | 0.88 (2) | 2.14 (2) | 2.9586 (13) | 154.4 (17) |
Symmetry codes: (i) −x+1/2, −y+5/2, −z; (ii) x, −y+3, z−1/2. |
References
Abrahams, B. E., Haywood, M. G., Hudson, T. A. & Robson, R. (2004). Angew. Chem. Int. Ed. 43, 6157–6160. Web of Science CSD CrossRef CAS Google Scholar
Abrahams, B. F., Haywood, M. G. & Robson, R. (2005). J. Am. Chem. Soc. 127, 816–817. Web of Science CSD CrossRef PubMed CAS Google Scholar
Andersen, E. K. & Andersen, I. G. K. (1975). Acta Cryst. B31, 379–383. CSD CrossRef IUCr Journals Web of Science Google Scholar
Best, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3–15. Web of Science CrossRef CAS Google Scholar
Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). Nat. Mater. 4, 163–166. Web of Science CrossRef PubMed CAS Google Scholar
Horiuchi, S., Kumaia, R. & Tokura, Y. (2007). Chem. Commun. pp. 2321–2329. Web of Science CrossRef Google Scholar
Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34 Web of Science CrossRef CAS Google Scholar
Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o575–o580. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o1645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582–585. Web of Science CrossRef CAS Google Scholar
Zaman, M. B., Tomura, M. & Yamashita, Y. (1999a). Chem. Commun. pp. 999–1000. Web of Science CSD CrossRef Google Scholar
Zaman, M. B., Tomura, M., Yamashita, Y., Sayaduzzaman, M. & Chowdhury, A. M. S. (1999b). CrystEngComm, 1, 36–38. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The co-crystallization of chloranilic acid and guanidine was carried out in methanol resulting in the co-crystal 2CH6N3+.C6O4Cl22- (Fig. 1). The chloranilic acid molecule is centro-symmetric and contains two hydrogen bond donors and two hydrogen bond acceptors and is, therefore, capable of participating in multiple hydrogen bonds. It forms 2D-sheet-like networks through N3—H5···O2 hydrogen bonds as shown in Figure 2. There are three N—H bonds in guanidine that connect with the O2 and O3 atoms of the chloranilic acid and form a one-dimensional molecular supramolecular structure. Two of these one-dimensional structures are again connected via N3—H5···O2 hydrogen bonds and form a two-dimensional network. Details of hydrogen-bonds are shown in Table 1.