organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-4-methyl-2-nitro­benzene

aSchool of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
*Correspondence e-mail: Binboll@126.com

(Received 15 August 2011; accepted 7 September 2011; online 14 September 2011)

In the title compound, C7H6BrNO2, the dihedral angle between the nitro group and the phenyl ring is 14.9 (11)°.

Related literature

For related structures, see: Ellena et al. (1996[Ellena, J., Punte, G. & Rivero, B. E. (1996). Acta Cryst. C52, 2074-2076.]); Gatilov et al. (1975[Gatilov, Yu. V., Bokii, N. G. & Struchkov, Yu. T. (1975). Zh. Strukt. Khim. 16, 702-704.]); Fricke et al. (2002[Fricke, T., Dickmans, A., Jana, U., Zabel, M., Jones, P. G., Dix, I., Konig, B. & Herges, R. (2002). Z. Naturforsch. Teil B, 57, 937-945]). The title compound is an inter­mediate in the synthesis of a pyrethroid insecticide, see: Zou et al. (2002[Zou, X. Z. & Qiu, Z. X. (2002). J. Fluor. Chem. 116, 173-179.]). For the synthesis, see: Moodie et al. (1976[Moodie, R. B., Schofield, K. & Weston, J. B. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1089-1100.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6BrNO2

  • Mr = 216.04

  • Orthorhombic, P n a 21

  • a = 13.016 (5) Å

  • b = 14.617 (5) Å

  • c = 4.037 (5) Å

  • V = 768.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.30 mm−1

  • T = 181 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.627, Tmax = 0.690

  • 3749 measured reflections

  • 1446 independent reflections

  • 1189 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.19

  • 1446 reflections

  • 102 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 556 Friedel pairs

  • Flack parameter: −0.04 (4)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a synthetic intermediate in the synthesis of 4-methoxymethylbenzyl alcohol containing bromine, which is an alcohol moiety having insecticidal activity of pyrethroids (Zou et al., 2002). It is a pale yellow liquid, but needle-like crystals were obtained by a slow cooling process from room temperature to 0 °C and the crystal structure was determined at 181 K (Fig. 1).

The dihedral angle between the plane of the nitro group and the best plane through the phenyl ring is 14.9 (11)°. In nitrobenzene structures, the dihedral angle between the nitro group and the phenyl ring is sensitive to its chemial environment, especially the ortho group. In the crystal structure of 4-methyl-2-nitroaniline (Ellena et al.,1996), the nitro group having an amino group as neighbour is almost coplanar with the phenyl ring [dihedral angle 3.2 (3)°]. With larger methyl groups as neighbour in pentamethylnitrobenzene (Gatilov et al.,1975) the dihedral angle is 86.1 (5)°. In the crystal structure of the analogous compound 2-bromo-3-nitrotoluene (Fricke et al.,2002), the dihedral angle between the nitro group and the phenyl ring is 54.1 (4)°.

There are no obvious interactions between neighbouring molecules in the packing.

Related literature top

For related structures, see: Ellena et al. (1996); Gatilov et al. (1975); Fricke et al.(2002). The title compound is an intermediate in the synthesis of

a pyrethroid insecticide, see: Zou et al. (2002). For the synthesis, see: Moodie et al. (1976).

Experimental top

The title compound was synthesised as described by Moodie et al. (1976). The obtained compound is a pale yellow liquid at room temperature. The needle-like crystal was obtained by slowly cooling from room temperature to 0 °C.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their attached atoms, with C-H = 0.93Å for the phenyl group and Uiso(H)= 1.2Ueq(C) and C-H = 0.96Å for the methyl group and Uiso(H)= 1.5Ueq(C). The Uij components of O1 and O2 have been restrained to isotropic behavior and those of the N—O bonds to have the same Uij components.

Structure description top

The title compound is a synthetic intermediate in the synthesis of 4-methoxymethylbenzyl alcohol containing bromine, which is an alcohol moiety having insecticidal activity of pyrethroids (Zou et al., 2002). It is a pale yellow liquid, but needle-like crystals were obtained by a slow cooling process from room temperature to 0 °C and the crystal structure was determined at 181 K (Fig. 1).

The dihedral angle between the plane of the nitro group and the best plane through the phenyl ring is 14.9 (11)°. In nitrobenzene structures, the dihedral angle between the nitro group and the phenyl ring is sensitive to its chemial environment, especially the ortho group. In the crystal structure of 4-methyl-2-nitroaniline (Ellena et al.,1996), the nitro group having an amino group as neighbour is almost coplanar with the phenyl ring [dihedral angle 3.2 (3)°]. With larger methyl groups as neighbour in pentamethylnitrobenzene (Gatilov et al.,1975) the dihedral angle is 86.1 (5)°. In the crystal structure of the analogous compound 2-bromo-3-nitrotoluene (Fricke et al.,2002), the dihedral angle between the nitro group and the phenyl ring is 54.1 (4)°.

There are no obvious interactions between neighbouring molecules in the packing.

For related structures, see: Ellena et al. (1996); Gatilov et al. (1975); Fricke et al.(2002). The title compound is an intermediate in the synthesis of

a pyrethroid insecticide, see: Zou et al. (2002). For the synthesis, see: Moodie et al. (1976).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
1-Bromo-4-methyl-2-nitrobenzene top
Crystal data top
C7H6BrNO2F(000) = 424
Mr = 216.04Dx = 1.868 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1057 reflections
a = 13.016 (5) Åθ = 3.1–28.9°
b = 14.617 (5) ŵ = 5.30 mm1
c = 4.037 (5) ÅT = 181 K
V = 768.1 (10) Å3BLOCK, pale yellow
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction MODEL NAME? CCD area-detector
diffractometer
1446 independent reflections
Radiation source: fine-focus sealed tube1189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1316
Tmin = 0.627, Tmax = 0.690k = 1818
3749 measured reflectionsl = 45
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0631P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1446 reflectionsΔρmax = 0.85 e Å3
102 parametersΔρmin = 0.45 e Å3
25 restraintsAbsolute structure: Flack (1983), 556 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C7H6BrNO2V = 768.1 (10) Å3
Mr = 216.04Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.016 (5) ŵ = 5.30 mm1
b = 14.617 (5) ÅT = 181 K
c = 4.037 (5) Å0.16 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction MODEL NAME? CCD area-detector
diffractometer
1446 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1189 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.690Rint = 0.042
3749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.85 e Å3
S = 1.19Δρmin = 0.45 e Å3
1446 reflectionsAbsolute structure: Flack (1983), 556 Friedel pairs
102 parametersAbsolute structure parameter: 0.04 (4)
25 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38514 (5)0.46896 (5)0.1387 (5)0.0399 (3)
C10.1871 (6)0.4507 (5)0.1963 (18)0.0252 (17)
C20.2674 (5)0.4080 (5)0.0313 (18)0.0233 (16)
C30.2651 (6)0.3145 (5)0.003 (2)0.0307 (18)
H30.31820.28470.11260.037*
C40.1847 (6)0.2649 (5)0.1252 (19)0.0298 (17)
H40.18550.20160.10340.036*
C50.1030 (6)0.3055 (6)0.2844 (19)0.035 (3)
C60.1046 (5)0.4002 (5)0.314 (2)0.026 (2)
H60.04960.43010.41350.032*
C70.0156 (6)0.2492 (6)0.422 (2)0.044 (2)
H7A0.02710.18570.37260.067*
H7B0.04780.26860.32210.067*
H7C0.01180.25750.65720.067*
N10.1794 (8)0.5505 (5)0.2441 (19)0.046 (2)
O10.1192 (6)0.5797 (5)0.451 (2)0.073 (3)
O20.2367 (7)0.5997 (5)0.110 (2)0.085 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0283 (4)0.0560 (5)0.0354 (4)0.0095 (3)0.0030 (6)0.0041 (6)
C10.023 (4)0.030 (4)0.022 (4)0.004 (3)0.010 (3)0.002 (3)
C20.006 (4)0.040 (4)0.024 (4)0.002 (3)0.001 (3)0.008 (3)
C30.014 (4)0.043 (4)0.034 (4)0.004 (3)0.004 (3)0.001 (3)
C40.025 (5)0.030 (4)0.035 (4)0.001 (3)0.012 (3)0.002 (3)
C50.020 (4)0.045 (4)0.042 (7)0.012 (3)0.014 (3)0.014 (4)
C60.018 (4)0.040 (4)0.021 (6)0.001 (3)0.002 (3)0.003 (4)
C70.044 (5)0.055 (5)0.034 (5)0.021 (4)0.005 (4)0.001 (4)
N10.061 (5)0.034 (4)0.043 (4)0.003 (4)0.018 (3)0.000 (3)
O10.090 (5)0.050 (4)0.079 (6)0.000 (3)0.037 (4)0.012 (3)
O20.099 (5)0.053 (4)0.104 (5)0.006 (4)0.053 (5)0.003 (4)
Geometric parameters (Å, º) top
Br1—C21.901 (7)C5—C61.389 (12)
C1—C61.386 (10)C5—C71.510 (10)
C1—C21.389 (10)C6—H60.9300
C1—N11.475 (10)C7—H7A0.9600
C2—C31.373 (10)C7—H7B0.9600
C3—C41.373 (11)C7—H7C0.9600
C3—H30.9300N1—O21.170 (10)
C4—C51.377 (11)N1—O11.222 (10)
C4—H40.9300
C6—C1—C2120.5 (7)C6—C5—C7121.5 (8)
C6—C1—N1115.5 (7)C1—C6—C5120.9 (7)
C2—C1—N1123.9 (7)C1—C6—H6119.6
C3—C2—C1118.6 (7)C5—C6—H6119.6
C3—C2—Br1116.6 (5)C5—C7—H7A109.5
C1—C2—Br1124.7 (5)C5—C7—H7B109.5
C4—C3—C2120.3 (7)H7A—C7—H7B109.5
C4—C3—H3119.9C5—C7—H7C109.5
C2—C3—H3119.9H7A—C7—H7C109.5
C3—C4—C5122.4 (7)H7B—C7—H7C109.5
C3—C4—H4118.8O2—N1—O1120.7 (9)
C5—C4—H4118.8O2—N1—C1120.3 (8)
C4—C5—C6117.2 (7)O1—N1—C1118.6 (8)
C4—C5—C7121.3 (7)

Experimental details

Crystal data
Chemical formulaC7H6BrNO2
Mr216.04
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)181
a, b, c (Å)13.016 (5), 14.617 (5), 4.037 (5)
V3)768.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.30
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction MODEL NAME? CCD area-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.627, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
3749, 1446, 1189
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.19
No. of reflections1446
No. of parameters102
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.45
Absolute structureFlack (1983), 556 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR97 (Altomare et al.,1999), SHELXL97 (Sheldrick, 2008 ), SHELXTL (Sheldrick, 2008 ), WinGX (Farrugia,1999).

 

Acknowledgements

This work was supported by Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045)

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllena, J., Punte, G. & Rivero, B. E. (1996). Acta Cryst. C52, 2074–2076.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFricke, T., Dickmans, A., Jana, U., Zabel, M., Jones, P. G., Dix, I., Konig, B. & Herges, R. (2002). Z. Naturforsch. Teil B, 57, 937–945  CAS Google Scholar
First citationGatilov, Yu. V., Bokii, N. G. & Struchkov, Yu. T. (1975). Zh. Strukt. Khim. 16, 702–704.  CAS Google Scholar
First citationMoodie, R. B., Schofield, K. & Weston, J. B. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1089–1100.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, X. Z. & Qiu, Z. X. (2002). J. Fluor. Chem. 116, 173–179.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds