organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl­imidazolium terephthalate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 1 September 2011; accepted 20 September 2011; online 30 September 2011)

The asymmetric unit of the title compound, C5H9N2+·C8H5O4, consists of one protonated 2-ethyl­imidazolium cation and two half terephthalate anions. The anions and cations are linked through N—H⋯O hydrogen bonds while the anions are associated via O—H⋯O inter­actions, resulting in a layered structure. The ethyl group of the cation is disordered over twosites of occupancies 0.812 (14) and 0.188 (14). The hydroxy H atoms of the anions are equally disordered over two symmetry-related sites.

Related literature

The title compound was synthesized as part of our search for ferroelectric materials. For general background to ferroelectric organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For related structures, see: Tian (2007[Tian, Z. (2007). Acta Cryst. E63, o4067.]); Qu (2007[Qu, S. (2007). Acta Cryst. E63, o4071.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9N2+·C8H5O4

  • Mr = 262.26

  • Triclinic, [P \overline 1]

  • a = 6.4587 (13) Å

  • b = 7.0719 (14) Å

  • c = 14.688 (3) Å

  • α = 78.60 (3)°

  • β = 78.77 (3)°

  • γ = 89.50 (3)°

  • V = 644.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.970, Tmax = 0.980

  • 6568 measured reflections

  • 2933 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.171

  • S = 1.07

  • 2933 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O4i 0.82 1.67 2.452 (3) 160
O2—H2⋯O2ii 0.82 1.64 2.450 (3) 170
N2—H2C⋯O1iii 0.86 1.90 2.739 (3) 166
N1—H1D⋯O3 0.86 1.86 2.713 (3) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+2; (iii) x+1, y+1, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

With reference to the compounds 2(C4H7N2)+.C8H4O42-.2(C4H6N2).4(H2O) (Qu, 2007) and 2(C3H5N)+.C8H4O42- (Tian, 2007), we synthesized the title compound to find ferroelectric material by dielectric measurements of compound as a function of temperature (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). In the range from 190 K to near its melting point (m.p.>423 K), no dielectric anomaly was observed.

In the crystal structure (Fig. 1) determined at 293 K, we observe short O···O distances in the range 2.448 (3)–2.450 (3) Å between the interacting carboxylic acid groups. The H atoms attached to O2 and O4 are disordered. The O···O distances are much shorter than the N···O distances which are 2.714 (3) and 2.738 Å (Table 1).

Related literature top

The title compound was synthesized as part of our search for ferroelectric materials. For general background to ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For related structures, see: Tian (2007); Qu (2007).

Experimental top

A mixture of 2-ethyl imidazole (2.4 g, 25 mmol), terephthalic acid (25 mmol) in water was stirred for several days at ambient temperature. Colourless block crystals were obtained.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97Å, O—H = 0.82

Å and N–H = 0.86 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times the Ueq of the parent atom, except for methyl and hydroxyl H atoms where it was set to 1.5 times the Ueq of the parent atom.

Structure description top

With reference to the compounds 2(C4H7N2)+.C8H4O42-.2(C4H6N2).4(H2O) (Qu, 2007) and 2(C3H5N)+.C8H4O42- (Tian, 2007), we synthesized the title compound to find ferroelectric material by dielectric measurements of compound as a function of temperature (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). In the range from 190 K to near its melting point (m.p.>423 K), no dielectric anomaly was observed.

In the crystal structure (Fig. 1) determined at 293 K, we observe short O···O distances in the range 2.448 (3)–2.450 (3) Å between the interacting carboxylic acid groups. The H atoms attached to O2 and O4 are disordered. The O···O distances are much shorter than the N···O distances which are 2.714 (3) and 2.738 Å (Table 1).

The title compound was synthesized as part of our search for ferroelectric materials. For general background to ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For related structures, see: Tian (2007); Qu (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only the major component of the disordered ethyl group is shown. Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, 1 - y, 2 - z; (iii) 2 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound, hydrogen bonds are shown as dashed lines. O···O interactions are shown as solid lines. Only the major component of the disordered ethyl group is shown.
2-Ethylimidazolium terephthalate top
Crystal data top
C5H9N2+·C8H5O4Z = 2
Mr = 262.26F(000) = 276
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4587 (13) ÅCell parameters from 2933 reflections
b = 7.0719 (14) Åθ = 2.2–27.5°
c = 14.688 (3) ŵ = 0.10 mm1
α = 78.60 (3)°T = 293 K
β = 78.77 (3)°Block, colourless
γ = 89.50 (3)°0.30 × 0.25 × 0.20 mm
V = 644.7 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
2933 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
CCD Profile fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 88
Tmin = 0.970, Tmax = 0.980k = 99
6568 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.3515P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2933 reflectionsΔρmax = 0.29 e Å3
194 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.084 (10)
Crystal data top
C5H9N2+·C8H5O4γ = 89.50 (3)°
Mr = 262.26V = 644.7 (2) Å3
Triclinic, P1Z = 2
a = 6.4587 (13) ÅMo Kα radiation
b = 7.0719 (14) ŵ = 0.10 mm1
c = 14.688 (3) ÅT = 293 K
α = 78.60 (3)°0.30 × 0.25 × 0.20 mm
β = 78.77 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2933 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2197 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.034
6568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2933 reflectionsΔρmin = 0.24 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7347 (7)0.9795 (9)0.2520 (3)0.0599 (13)0.808 (14)
H1A0.61261.05760.25080.090*0.808 (14)
H1B0.84551.03400.19990.090*0.808 (14)
H1C0.78150.97560.31050.090*0.808 (14)
C20.6784 (7)0.7753 (6)0.2440 (3)0.0508 (13)0.808 (14)
H2A0.56450.72180.29610.061*0.808 (14)
H2B0.62860.78020.18540.061*0.808 (14)
C1'0.544 (5)0.812 (5)0.2476 (14)0.113 (11)0.192 (14)
H1'A0.45490.92020.25390.170*0.192 (14)
H1'B0.48930.70360.29650.170*0.192 (14)
H1'C0.54860.78050.18670.170*0.192 (14)
C2'0.759 (4)0.863 (4)0.2564 (12)0.068 (7)0.192 (14)
H2'A0.76350.89480.31740.082*0.192 (14)
H2'B0.82560.96710.20570.082*0.192 (14)
C30.8617 (4)0.6470 (4)0.24548 (17)0.0477 (6)
C41.1731 (4)0.5205 (4)0.21494 (18)0.0477 (6)
H41.31520.50680.19050.057*
C51.0399 (4)0.3850 (4)0.27270 (18)0.0511 (6)
H51.07170.25830.29600.061*
C60.3529 (3)0.2725 (3)0.46010 (16)0.0378 (5)
C70.1695 (3)0.1309 (3)0.48246 (14)0.0327 (5)
C80.1917 (3)0.0380 (3)0.44744 (16)0.0392 (5)
H80.32060.06360.41180.047*
C90.0230 (4)0.1691 (3)0.46529 (16)0.0398 (5)
H90.03940.28260.44210.048*
C100.2463 (3)0.1473 (3)1.03616 (15)0.0356 (5)
C110.3795 (3)0.3302 (3)1.01537 (14)0.0303 (5)
C120.3127 (3)0.5022 (3)0.96744 (15)0.0336 (5)
H120.18710.50390.94530.040*
C130.4326 (3)0.6717 (3)0.95247 (15)0.0336 (5)
H130.38670.78660.92080.040*
N10.8498 (3)0.4672 (3)0.29095 (14)0.0505 (6)
H1D0.73790.40960.32710.061*
N21.0596 (3)0.6826 (3)0.19901 (14)0.0472 (5)
H2C1.10870.79150.16420.057*
O10.2779 (3)0.0121 (2)1.09758 (13)0.0556 (5)
O20.1042 (3)0.1504 (2)0.98639 (14)0.0573 (5)
H20.04760.04290.99680.086*0.50
O30.4954 (3)0.2675 (3)0.39276 (13)0.0595 (6)
O40.3451 (3)0.3907 (3)0.51614 (14)0.0648 (6)
H4A0.43740.47520.49410.097*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (3)0.044 (3)0.053 (2)0.011 (2)0.0086 (18)0.0121 (18)
C20.043 (3)0.055 (2)0.050 (2)0.0016 (17)0.0018 (16)0.0096 (16)
C1'0.09 (2)0.21 (3)0.051 (11)0.055 (18)0.021 (11)0.040 (14)
C2'0.088 (14)0.072 (19)0.044 (8)0.025 (13)0.010 (8)0.012 (9)
C30.0503 (14)0.0481 (13)0.0376 (12)0.0027 (11)0.0033 (10)0.0032 (10)
C40.0409 (13)0.0482 (14)0.0496 (14)0.0041 (10)0.0002 (11)0.0078 (11)
C50.0583 (16)0.0408 (13)0.0500 (14)0.0033 (11)0.0084 (12)0.0010 (11)
C60.0347 (11)0.0369 (11)0.0402 (12)0.0150 (9)0.0043 (9)0.0063 (9)
C70.0297 (10)0.0330 (10)0.0338 (10)0.0121 (8)0.0050 (8)0.0037 (8)
C80.0307 (11)0.0415 (12)0.0442 (12)0.0085 (9)0.0012 (9)0.0138 (9)
C90.0386 (12)0.0334 (11)0.0471 (13)0.0105 (9)0.0011 (10)0.0143 (9)
C100.0339 (11)0.0308 (10)0.0400 (11)0.0143 (8)0.0007 (9)0.0073 (9)
C110.0296 (10)0.0272 (9)0.0319 (10)0.0110 (8)0.0002 (8)0.0062 (8)
C120.0284 (10)0.0341 (10)0.0394 (11)0.0086 (8)0.0093 (8)0.0069 (8)
C130.0337 (11)0.0264 (9)0.0392 (11)0.0069 (8)0.0082 (9)0.0016 (8)
N10.0473 (12)0.0518 (12)0.0420 (11)0.0162 (9)0.0033 (9)0.0040 (9)
N20.0486 (12)0.0369 (10)0.0459 (11)0.0128 (9)0.0060 (9)0.0019 (8)
O10.0599 (11)0.0355 (9)0.0645 (12)0.0245 (8)0.0137 (9)0.0091 (8)
O20.0574 (11)0.0468 (10)0.0699 (12)0.0323 (9)0.0257 (10)0.0024 (9)
O30.0464 (10)0.0627 (12)0.0623 (12)0.0298 (9)0.0151 (9)0.0197 (9)
O40.0571 (12)0.0692 (13)0.0679 (13)0.0384 (10)0.0113 (9)0.0345 (10)
Geometric parameters (Å, º) top
C1—C21.525 (7)C6—O41.278 (3)
C1—H1A0.9600C6—C71.501 (3)
C1—H1B0.9600C7—C9i1.383 (3)
C1—H1C0.9600C7—C81.387 (3)
C2—C31.486 (5)C8—C91.388 (3)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C7i1.383 (3)
C1'—C2'1.47 (4)C9—H90.9300
C1'—H1'A0.9600C10—O11.224 (3)
C1'—H1'B0.9600C10—O21.277 (3)
C1'—H1'C0.9600C10—C111.506 (3)
C2'—C31.69 (3)C11—C13ii1.384 (3)
C2'—H2'A0.9700C11—C121.390 (3)
C2'—H2'B0.9700C12—C131.389 (3)
C3—N11.310 (3)C12—H120.9300
C3—N21.327 (3)C13—C11ii1.384 (3)
C4—C51.337 (3)C13—H130.9300
C4—N21.361 (3)N1—H1D0.8600
C4—H40.9300N2—H2C0.8600
C5—N11.356 (4)O2—H20.8200
C5—H50.9300O4—H4A0.8200
C6—O31.219 (3)
C2—C1—H1A109.5C4—C5—H5126.5
C2—C1—H1B109.5N1—C5—H5126.5
H1A—C1—H1B109.5O3—C6—O4125.1 (2)
C2—C1—H1C109.5O3—C6—C7119.7 (2)
H1A—C1—H1C109.5O4—C6—C7115.20 (19)
H1B—C1—H1C109.5C9i—C7—C8119.54 (18)
C3—C2—C1112.1 (4)C9i—C7—C6121.07 (19)
C3—C2—H2A109.2C8—C7—C6119.35 (19)
C1—C2—H2A109.2C7—C8—C9120.4 (2)
C3—C2—H2B109.2C7—C8—H8119.8
C1—C2—H2B109.2C9—C8—H8119.8
H2A—C2—H2B107.9C7i—C9—C8120.0 (2)
C2'—C1'—H1'A109.5C7i—C9—H9120.0
C2'—C1'—H1'B109.5C8—C9—H9120.0
H1'A—C1'—H1'B109.5O1—C10—O2125.55 (19)
C2'—C1'—H1'C109.5O1—C10—C11119.7 (2)
H1'A—C1'—H1'C109.5O2—C10—C11114.72 (19)
H1'B—C1'—H1'C109.5C13ii—C11—C12119.61 (18)
C1'—C2'—C396 (2)C13ii—C11—C10119.44 (18)
C1'—C2'—H2'A112.6C12—C11—C10120.91 (18)
C3—C2'—H2'A112.6C13—C12—C11120.29 (19)
C1'—C2'—H2'B112.6C13—C12—H12119.9
C3—C2'—H2'B112.6C11—C12—H12119.9
H2'A—C2'—H2'B110.1C11ii—C13—C12120.10 (19)
N1—C3—N2107.0 (2)C11ii—C13—H13120.0
N1—C3—C2124.2 (3)C12—C13—H13120.0
N2—C3—C2128.7 (2)C3—N1—C5110.0 (2)
N1—C3—C2'140.7 (6)C3—N1—H1D125.0
N2—C3—C2'106.2 (7)C5—N1—H1D125.0
C2—C3—C2'31.6 (7)C3—N2—C4109.5 (2)
C5—C4—N2106.4 (2)C3—N2—H2C125.2
C5—C4—H4126.8C4—N2—H2C125.2
N2—C4—H4126.8C10—O2—H2109.5
C4—C5—N1107.0 (2)C6—O4—H4A109.5
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O4iii0.821.672.452 (3)160
O2—H2···O2iv0.821.642.450 (3)170
N2—H2C···O1v0.861.902.739 (3)166
N1—H1D···O30.861.862.713 (3)173
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z+2; (v) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC5H9N2+·C8H5O4
Mr262.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4587 (13), 7.0719 (14), 14.688 (3)
α, β, γ (°)78.60 (3), 78.77 (3), 89.50 (3)
V3)644.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6568, 2933, 2197
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.07
No. of reflections2933
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O4i0.821.672.452 (3)159.5
O2—H2···O2ii0.821.642.450 (3)169.5
N2—H2C···O1iii0.861.902.739 (3)166.1
N1—H1D···O30.861.862.713 (3)172.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2; (iii) x+1, y+1, z1.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationQu, S. (2007). Acta Cryst. E63, o4071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. (2007). Acta Cryst. E63, o4067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds