organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazine-1,4-diium naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 9 September 2011; accepted 22 September 2011; online 30 September 2011)

The title molecular salt, C4H12N22+·C10H6O6S22−, consists of a piperazinium cation and a 1,5-naphthalene­disulfonate anion. Crystallographic inversion centers are situated at the center of the ring of the dication as well as at the midpoint of the central carbon–carbon bond in the dianion. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the cations and anions.

Related literature

The title compound was obtained during attempts to obtain dielectric-ferroelectric compounds. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·C10H6O6S22−

  • Mr = 374.42

  • Monoclinic, P 21 /c

  • a = 11.997 (2) Å

  • b = 7.2959 (15) Å

  • c = 9.1453 (18) Å

  • β = 96.00 (3)°

  • V = 796.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.955

  • 7956 measured reflections

  • 1827 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.11

  • 1827 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 1.91 2.7357 (19) 153
N1—H1B⋯O3ii 0.90 1.91 2.7670 (19) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dielectric-ferroelectrics are an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent. Below the melting point (402-403K) of the compound, we have found that the title compound has no dielectric disuniformity from 80 K to 405 K. Here we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a half piperazinium cation and a half 1,5-naphthalenedisulfonate anion (Fig. 1). The complete complete molecular structures are generated by inversion centers at the center of the piperazinium ring and at the midpoint of the central carbon-carbon bond in the naphthalene ring. The best planes through the piperazinium ring and the naphthalene ring make a dihedral angle of 80.96 (8)°. The cations and anions are connected by intermolecular N—H···O hydrogen bonds, which contribute to the stability of the crystal structure (Fig. 2 and Table 1).

Related literature top

The title compound was obtained during attempts to produce dielectric-ferroelectric compounds. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Experimental top

The title compound was obtained by the addition of 1,5-naphthalenedisulfonate acid (3.62 g, 0.01 mol) to a solution of piperazine (0.88 g, 0.01 mol) in water, in the stoichiometric ratio 1: 1. Good quality single crystals were obtained by slow evaporation after two days (yield: 48%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å-0.97 Å, N—H = 0.90 Å and with Uiso(H) = 1.2 Uiso(C, O) or 1.5 Uiso(C) for methyl H atoms.

Structure description top

Dielectric-ferroelectrics are an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent. Below the melting point (402-403K) of the compound, we have found that the title compound has no dielectric disuniformity from 80 K to 405 K. Here we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a half piperazinium cation and a half 1,5-naphthalenedisulfonate anion (Fig. 1). The complete complete molecular structures are generated by inversion centers at the center of the piperazinium ring and at the midpoint of the central carbon-carbon bond in the naphthalene ring. The best planes through the piperazinium ring and the naphthalene ring make a dihedral angle of 80.96 (8)°. The cations and anions are connected by intermolecular N—H···O hydrogen bonds, which contribute to the stability of the crystal structure (Fig. 2 and Table 1).

The title compound was obtained during attempts to produce dielectric-ferroelectric compounds. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 2, -y, -z + 1.
[Figure 2] Fig. 2. A view of the packing of the title compound along the a axis. Dashed lines indicate hydrogen bonds.
Piperazine-1,4-diium naphthalene-1,5-disulfonate top
Crystal data top
C4H12N22+·C10H6O6S22Z = 2
Mr = 374.42F(000) = 392
Monoclinic, P21/cDx = 1.562 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.997 (2) Åθ = 3.0–27.5°
b = 7.2959 (15) ŵ = 0.37 mm1
c = 9.1453 (18) ÅT = 293 K
β = 96.00 (3)°Block, colorless
V = 796.1 (3) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1827 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1515
Tmin = 0.955, Tmax = 0.955k = 99
7956 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.038P)2 + 0.4026P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1827 reflectionsΔρmax = 0.26 e Å3
109 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C4H12N22+·C10H6O6S22V = 796.1 (3) Å3
Mr = 374.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.997 (2) ŵ = 0.37 mm1
b = 7.2959 (15) ÅT = 293 K
c = 9.1453 (18) Å0.20 × 0.20 × 0.20 mm
β = 96.00 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1827 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1629 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.955Rint = 0.031
7956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.11Δρmax = 0.26 e Å3
1827 reflectionsΔρmin = 0.36 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72018 (3)0.02705 (6)0.55200 (4)0.02178 (13)
C110.94220 (13)0.0264 (2)0.49266 (17)0.0209 (3)
C120.86385 (13)0.0911 (2)0.55496 (17)0.0213 (3)
C70.89809 (14)0.2508 (2)0.6239 (2)0.0291 (4)
H70.84600.32580.66320.035*
C160.91084 (14)0.1936 (2)0.4198 (2)0.0287 (4)
H160.83600.22940.41010.034*
C81.01178 (15)0.3021 (3)0.6358 (2)0.0347 (4)
H81.03420.41150.68220.042*
N10.39695 (11)0.03920 (19)0.90988 (15)0.0230 (3)
H1A0.34510.12060.87300.028*
H1B0.37620.07220.87460.028*
C50.40092 (15)0.0374 (3)1.07288 (19)0.0292 (4)
H5A0.32930.00361.10110.035*
H5B0.41430.16071.11040.035*
C10.50731 (14)0.0883 (3)0.86030 (18)0.0270 (4)
H1C0.52560.21390.88820.032*
H1D0.50270.08020.75400.032*
O10.67590 (11)0.0023 (2)0.39986 (15)0.0384 (3)
O30.66605 (10)0.17560 (17)0.62410 (15)0.0334 (3)
O20.72065 (10)0.14134 (17)0.63779 (14)0.0312 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0183 (2)0.0221 (2)0.0249 (2)0.00043 (14)0.00176 (15)0.00085 (15)
C110.0206 (8)0.0213 (8)0.0205 (8)0.0020 (6)0.0011 (6)0.0019 (6)
C120.0196 (7)0.0220 (8)0.0221 (8)0.0016 (6)0.0015 (6)0.0005 (6)
C70.0253 (8)0.0261 (9)0.0362 (10)0.0007 (7)0.0047 (7)0.0093 (7)
C160.0225 (8)0.0279 (9)0.0357 (10)0.0072 (7)0.0024 (7)0.0091 (8)
C80.0309 (9)0.0290 (9)0.0440 (11)0.0080 (7)0.0032 (8)0.0176 (8)
N10.0229 (7)0.0229 (7)0.0221 (7)0.0017 (5)0.0022 (5)0.0011 (5)
C50.0282 (9)0.0363 (10)0.0235 (8)0.0051 (7)0.0047 (7)0.0003 (7)
C10.0275 (8)0.0321 (9)0.0212 (8)0.0028 (7)0.0012 (6)0.0070 (7)
O10.0290 (7)0.0556 (9)0.0284 (7)0.0015 (6)0.0070 (5)0.0012 (6)
O30.0273 (6)0.0267 (7)0.0478 (8)0.0040 (5)0.0120 (6)0.0017 (6)
O20.0324 (7)0.0230 (6)0.0386 (7)0.0042 (5)0.0051 (5)0.0053 (5)
Geometric parameters (Å, º) top
S1—O11.4477 (14)C8—C16i1.359 (3)
S1—O31.4562 (13)C8—H80.9300
S1—O21.4574 (13)N1—C51.486 (2)
S1—C121.7834 (16)N1—C11.487 (2)
C11—C161.422 (2)N1—H1A0.9000
C11—C11i1.432 (3)N1—H1B0.9000
C11—C121.434 (2)C5—C1ii1.512 (2)
C12—C71.367 (2)C5—H5A0.9700
C7—C81.408 (2)C5—H5B0.9700
C7—H70.9300C1—C5ii1.512 (2)
C16—C8i1.359 (3)C1—H1C0.9700
C16—H160.9300C1—H1D0.9700
O1—S1—O3113.07 (8)C7—C8—H8119.6
O1—S1—O2113.12 (8)C5—N1—C1111.82 (13)
O3—S1—O2111.13 (8)C5—N1—H1A109.3
O1—S1—C12107.70 (8)C1—N1—H1A109.3
O3—S1—C12105.90 (8)C5—N1—H1B109.3
O2—S1—C12105.28 (8)C1—N1—H1B109.3
C16—C11—C11i118.75 (18)H1A—N1—H1B107.9
C16—C11—C12123.17 (15)N1—C5—C1ii110.87 (14)
C11i—C11—C12118.07 (18)N1—C5—H5A109.5
C7—C12—C11121.01 (15)C1ii—C5—H5A109.5
C7—C12—S1118.27 (13)N1—C5—H5B109.5
C11—C12—S1120.66 (12)C1ii—C5—H5B109.5
C12—C7—C8120.27 (16)H5A—C5—H5B108.1
C12—C7—H7119.9N1—C1—C5ii111.37 (14)
C8—C7—H7119.9N1—C1—H1C109.4
C8i—C16—C11121.18 (16)C5ii—C1—H1C109.4
C8i—C16—H16119.4N1—C1—H1D109.4
C11—C16—H16119.4C5ii—C1—H1D109.4
C16i—C8—C7120.71 (16)H1C—C1—H1D108.0
C16i—C8—H8119.6
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.901.912.7357 (19)153
N1—H1B···O3iv0.901.912.7670 (19)159
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC4H12N22+·C10H6O6S22
Mr374.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.997 (2), 7.2959 (15), 9.1453 (18)
β (°) 96.00 (3)
V3)796.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.955, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7956, 1827, 1629
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.11
No. of reflections1827
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.901.912.7357 (19)152.5
N1—H1B···O3ii0.901.912.7670 (19)158.8
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds