organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7H-1-Benzofuro[2,3-b]carbazole

aCentre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, crystallography2010@gmail.com

(Received 10 September 2011; accepted 22 September 2011; online 30 September 2011)

In the title compound, C18H11NO, the carbazole and benzofuran rings are almost co-planar, making a dihedral angle of 3.31 (3)°. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Diaz et al. (2002[Diaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For the structures of closely related compounds, see: Chakkaravarthi et al. (2008a[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008a). Acta Cryst. E64, o1667-o1668.],b[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008b). Acta Cryst. E64, o1712-o1713.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11NO

  • Mr = 257.28

  • Orthorhombic, P c a 21

  • a = 26.087 (3) Å

  • b = 5.9585 (8) Å

  • c = 7.8146 (10) Å

  • V = 1214.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.983

  • 6591 measured reflections

  • 2700 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.05

  • 2700 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1086 Friedel pairs

  • Flack parameter: 0.2 (15)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the N1/C1/C6/C7/C12, C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg4i 0.86 2.91 3.530 (2) 130
C5—H5⋯Cg2ii 0.93 2.70 3.449 (2) 138
C11—H11⋯Cg3i 0.93 2.79 3.526 (2) 137
Symmetry codes: (i) [-x+2, -y, z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbazole derivatives exhibit anti-inflammatory and antimutagenic activities (Ramsewak et al., 1999). A carbazole ring is easily functionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004).

We herewith report the crystal structure of the title compound (Fig. 1). The geometric parameters agree well with those of similar reported structures (Chakkaravarthi et al., 2008a, 2008b). The benzofuran moiety (C9/C13-C18/O1/C10) is almost co-planar [dihedral angle 3.31 (3)°] with the carbazole ring (C1-C12/N1). The crystal structure is stabilized by weak intermolecular C-H···π interactions (Table 1).

Related literature top

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Diaz et al. (2002); Zhang et al. (2004). For the structures of closely related compounds, see: Chakkaravarthi et al. (2008a,b).

Experimental top

To a solution of tert-butyl-3-(2,2-di(ethoxycarbonyl)vinyl)-2-(bromomethyl) -1H-indole-1-carboxylate (0.5 g, 1.04 mmol) in dry 1,2-dichloroethane (15 mL), anhydrous ZnBr2 (0.05 g, 0.22 mmol) and benzo[b]furan (0.13 mL, 1.27 mmol) were added. It was then stirred at room temperature for 2 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 mL) containing 1 mL of conc. HCl, extracted with chloroform (2 x 10 mL) and dried (Na2SO4). Removal of solvent followed by flash column chromatography purification (n-hexane/ethyl acetate 80:20) led to the isolation of title compound as a colourless crystal suitable for X-Ray diffraction quality.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and N—H = 0.86Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Structure description top

Carbazole derivatives exhibit anti-inflammatory and antimutagenic activities (Ramsewak et al., 1999). A carbazole ring is easily functionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004).

We herewith report the crystal structure of the title compound (Fig. 1). The geometric parameters agree well with those of similar reported structures (Chakkaravarthi et al., 2008a, 2008b). The benzofuran moiety (C9/C13-C18/O1/C10) is almost co-planar [dihedral angle 3.31 (3)°] with the carbazole ring (C1-C12/N1). The crystal structure is stabilized by weak intermolecular C-H···π interactions (Table 1).

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Diaz et al. (2002); Zhang et al. (2004). For the structures of closely related compounds, see: Chakkaravarthi et al. (2008a,b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.
7H-1-Benzofuro[2,3-b]carbazole top
Crystal data top
C18H11NOF(000) = 536
Mr = 257.28Dx = 1.407 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2246 reflections
a = 26.087 (3) Åθ = 1.6–28.3°
b = 5.9585 (8) ŵ = 0.09 mm1
c = 7.8146 (10) ÅT = 295 K
V = 1214.7 (3) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2700 independent reflections
Radiation source: fine-focus sealed tube2331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3334
Tmin = 0.979, Tmax = 0.983k = 77
6591 measured reflectionsl = 710
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.0541P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
2700 reflectionsΔρmin = 0.13 e Å3
182 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0083 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1086 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (15)
Crystal data top
C18H11NOV = 1214.7 (3) Å3
Mr = 257.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 26.087 (3) ŵ = 0.09 mm1
b = 5.9585 (8) ÅT = 295 K
c = 7.8146 (10) Å0.24 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2700 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2331 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.022
6591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.13 e Å3
2700 reflectionsAbsolute structure: Flack (1983), 1086 Friedel pairs
182 parametersAbsolute structure parameter: 0.2 (15)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95422 (6)0.1951 (2)0.5133 (2)0.0412 (3)
C20.90187 (6)0.2333 (3)0.5252 (2)0.0481 (4)
H20.88020.13130.57900.058*
C30.88330 (6)0.4286 (3)0.4541 (2)0.0526 (4)
H30.84840.45870.46020.063*
C40.91550 (6)0.5822 (3)0.3733 (2)0.0491 (4)
H40.90170.71220.32620.059*
C50.96747 (6)0.5437 (2)0.3624 (2)0.0414 (3)
H50.98890.64740.30930.050*
C60.98745 (5)0.3475 (2)0.43203 (19)0.0370 (3)
C71.03818 (5)0.2503 (2)0.43841 (19)0.0366 (3)
C81.08582 (5)0.3196 (2)0.37727 (18)0.0386 (3)
H81.08990.45760.32330.046*
C91.12697 (6)0.1751 (2)0.4000 (2)0.0412 (3)
C101.11930 (6)0.0328 (2)0.4815 (2)0.0439 (4)
C111.07375 (6)0.1066 (3)0.5477 (2)0.0464 (4)
H111.07030.24310.60420.056*
C121.03323 (6)0.0405 (2)0.5230 (2)0.0403 (3)
C131.18108 (6)0.1825 (3)0.3568 (2)0.0458 (4)
C141.21349 (6)0.3394 (3)0.2832 (2)0.0525 (4)
H141.20090.47630.24440.063*
C151.26512 (6)0.2873 (4)0.2688 (3)0.0617 (5)
H151.28740.39030.21920.074*
C161.28401 (7)0.0836 (4)0.3275 (3)0.0666 (6)
H161.31880.05330.31690.080*
C171.25258 (7)0.0744 (3)0.4009 (2)0.0624 (5)
H171.26520.21100.44030.075*
C181.20141 (6)0.0194 (3)0.4131 (2)0.0508 (4)
N10.98259 (5)0.0150 (2)0.57102 (18)0.0443 (3)
H10.97060.09650.62830.053*
O11.16449 (4)0.15463 (18)0.48849 (17)0.0557 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0493 (8)0.0409 (7)0.0336 (8)0.0090 (6)0.0002 (7)0.0032 (6)
C20.0450 (8)0.0557 (9)0.0434 (9)0.0134 (7)0.0036 (7)0.0009 (8)
C30.0419 (8)0.0659 (11)0.0501 (10)0.0015 (7)0.0016 (7)0.0052 (8)
C40.0511 (8)0.0487 (8)0.0474 (10)0.0039 (7)0.0041 (8)0.0009 (8)
C50.0470 (7)0.0383 (7)0.0389 (8)0.0052 (6)0.0007 (7)0.0001 (6)
C60.0421 (7)0.0381 (7)0.0309 (7)0.0070 (5)0.0014 (6)0.0026 (6)
C70.0472 (7)0.0313 (6)0.0312 (7)0.0050 (6)0.0010 (6)0.0018 (6)
C80.0453 (7)0.0350 (7)0.0354 (8)0.0054 (6)0.0002 (6)0.0013 (6)
C90.0446 (7)0.0402 (7)0.0387 (9)0.0026 (6)0.0001 (6)0.0059 (6)
C100.0506 (8)0.0386 (7)0.0425 (9)0.0033 (6)0.0040 (7)0.0048 (6)
C110.0596 (9)0.0343 (7)0.0452 (9)0.0023 (6)0.0016 (7)0.0021 (7)
C120.0513 (8)0.0347 (7)0.0349 (8)0.0080 (6)0.0018 (6)0.0020 (6)
C130.0454 (8)0.0519 (9)0.0402 (9)0.0008 (7)0.0024 (7)0.0100 (7)
C140.0483 (9)0.0633 (10)0.0459 (10)0.0072 (7)0.0015 (8)0.0075 (8)
C150.0482 (9)0.0839 (13)0.0529 (12)0.0106 (9)0.0043 (9)0.0151 (10)
C160.0451 (9)0.0932 (15)0.0616 (13)0.0072 (10)0.0007 (8)0.0240 (11)
C170.0550 (9)0.0677 (10)0.0645 (14)0.0147 (9)0.0031 (9)0.0143 (10)
C180.0500 (8)0.0540 (9)0.0485 (11)0.0034 (7)0.0025 (7)0.0109 (8)
N10.0505 (7)0.0391 (6)0.0432 (8)0.0106 (5)0.0034 (6)0.0053 (6)
O10.0558 (6)0.0471 (6)0.0643 (9)0.0090 (5)0.0031 (6)0.0019 (5)
Geometric parameters (Å, º) top
C1—N11.380 (2)C10—C111.369 (2)
C1—C21.388 (2)C10—O11.3856 (18)
C1—C61.407 (2)C11—C121.387 (2)
C2—C31.377 (2)C11—H110.9300
C2—H20.9300C12—N11.3817 (19)
C3—C41.394 (2)C13—C141.385 (2)
C3—H30.9300C13—C181.386 (2)
C4—C51.378 (2)C14—C151.387 (2)
C4—H40.9300C14—H140.9300
C5—C61.391 (2)C15—C161.388 (3)
C5—H50.9300C15—H150.9300
C6—C71.445 (2)C16—C171.374 (3)
C7—C81.3940 (19)C16—H160.9300
C7—C121.4202 (19)C17—C181.378 (2)
C8—C91.388 (2)C17—H170.9300
C8—H80.9300C18—O11.387 (2)
C9—C101.407 (2)N1—H10.8600
C9—C131.452 (2)
N1—C1—C2129.30 (14)O1—C10—C9110.99 (13)
N1—C1—C6108.61 (13)C10—C11—C12113.97 (14)
C2—C1—C6122.09 (14)C10—C11—H11123.0
C3—C2—C1117.21 (15)C12—C11—H11123.0
C3—C2—H2121.4N1—C12—C11128.43 (13)
C1—C2—H2121.4N1—C12—C7108.07 (13)
C2—C3—C4121.72 (15)C11—C12—C7123.50 (14)
C2—C3—H3119.1C14—C13—C18118.94 (15)
C4—C3—H3119.1C14—C13—C9135.24 (15)
C5—C4—C3120.78 (15)C18—C13—C9105.78 (14)
C5—C4—H4119.6C13—C14—C15118.36 (17)
C3—C4—H4119.6C13—C14—H14120.8
C4—C5—C6118.98 (14)C15—C14—H14120.8
C4—C5—H5120.5C14—C15—C16120.92 (18)
C6—C5—H5120.5C14—C15—H15119.5
C5—C6—C1119.21 (13)C16—C15—H15119.5
C5—C6—C7133.90 (13)C17—C16—C15121.69 (16)
C1—C6—C7106.87 (13)C17—C16—H16119.2
C8—C7—C12120.09 (13)C15—C16—H16119.2
C8—C7—C6133.30 (13)C16—C17—C18116.36 (18)
C12—C7—C6106.59 (12)C16—C17—H17121.8
C9—C8—C7117.52 (12)C18—C17—H17121.8
C9—C8—H8121.2C17—C18—C13123.72 (17)
C7—C8—H8121.2C17—C18—O1124.33 (16)
C8—C9—C10119.61 (13)C13—C18—O1111.91 (14)
C8—C9—C13134.72 (14)C1—N1—C12109.77 (12)
C10—C9—C13105.67 (13)C1—N1—H1125.1
C11—C10—O1123.74 (14)C12—N1—H1125.1
C11—C10—C9125.27 (14)C10—O1—C18105.64 (12)
N1—C1—C2—C3179.31 (16)C8—C7—C12—N1179.51 (13)
C6—C1—C2—C30.1 (2)C6—C7—C12—N12.04 (16)
C1—C2—C3—C40.0 (3)C8—C7—C12—C111.0 (2)
C2—C3—C4—C50.3 (3)C6—C7—C12—C11177.49 (15)
C3—C4—C5—C60.6 (2)C8—C9—C13—C143.5 (3)
C4—C5—C6—C10.7 (2)C10—C9—C13—C14176.81 (17)
C4—C5—C6—C7177.28 (15)C8—C9—C13—C18179.06 (17)
N1—C1—C6—C5179.83 (13)C10—C9—C13—C180.64 (18)
C2—C1—C6—C50.5 (2)C18—C13—C14—C150.1 (2)
N1—C1—C6—C71.33 (16)C9—C13—C14—C15177.25 (18)
C2—C1—C6—C7178.01 (15)C13—C14—C15—C160.4 (3)
C5—C6—C7—C80.4 (3)C14—C15—C16—C170.4 (3)
C1—C6—C7—C8178.59 (16)C15—C16—C17—C180.0 (3)
C5—C6—C7—C12177.74 (17)C16—C17—C18—C130.3 (3)
C1—C6—C7—C120.44 (16)C16—C17—C18—O1177.71 (17)
C12—C7—C8—C91.1 (2)C14—C13—C18—C170.3 (3)
C6—C7—C8—C9176.87 (15)C9—C13—C18—C17177.67 (16)
C7—C8—C9—C100.3 (2)C14—C13—C18—O1177.98 (13)
C7—C8—C9—C13179.98 (16)C9—C13—C18—O10.04 (19)
C8—C9—C10—C112.1 (2)C2—C1—N1—C12176.60 (17)
C13—C9—C10—C11178.14 (16)C6—C1—N1—C122.68 (17)
C8—C9—C10—O1178.64 (14)C11—C12—N1—C1176.56 (16)
C13—C9—C10—O11.11 (17)C7—C12—N1—C12.94 (17)
O1—C10—C11—C12178.66 (15)C11—C10—O1—C18178.14 (15)
C9—C10—C11—C122.2 (2)C9—C10—O1—C181.13 (17)
C10—C11—C12—N1178.80 (15)C17—C18—O1—C10176.98 (17)
C10—C11—C12—C70.6 (2)C13—C18—O1—C100.71 (18)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the N1/C1/C6/C7/C12, C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg4i0.862.913.530 (2)130
C5—H5···Cg2ii0.932.703.449 (2)138
C11—H11···Cg3i0.932.793.526 (2)137
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H11NO
Mr257.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)26.087 (3), 5.9585 (8), 7.8146 (10)
V3)1214.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6591, 2700, 2331
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.05
No. of reflections2700
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13
Absolute structureFlack (1983), 1086 Friedel pairs
Absolute structure parameter0.2 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the N1/C1/C6/C7/C12, C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg4i0.862.913.530 (2)130
C5—H5···Cg2ii0.932.703.449 (2)138
C11—H11···Cg3i0.932.793.526 (2)137
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+2, y+1, z1/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008a). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008b). Acta Cryst. E64, o1712–o1713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds