metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[μ2-aqua-di­aqua­bis­­(μ4-pyridazine-3,6-di­carboxyl­ato)tetra­lithium] monohydrate]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 16 September 2011; accepted 22 September 2011; online 30 September 2011)

In the polymeric structure of the title compound {[Li2(C6H2N2O4)2Li(H2O)2Li(H2O)]·H2O}n, the coordination of two independent LiI ions is distorted trigonal–bipyramidal and that of the other two independent LiI ions is distorted tetra­hedral. The former two LiI ions are bridged by hetero-ring N atoms of two independent pyridazine-3,6-dicarboxyl­ate ligands, making a dimeric moiety. The carboxyl­ato-O atoms of both bidentate ligands bridge the dimers to adjacent independent aqua-coordinated LiI ions, forming mol­ecular ribbons. The latter are bridged by ligand carboxyl­ato and aqua O atoms, forming mol­ecular layers parallel to (100) which are held together by an extended system of O—H⋯O hydrogen bonds.

Related literature

For the crystal structure of a LiI complex with water and pyridazine-3,6-dicarboxyl­ate ligands, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1362-m1363.]).

[Scheme 1]

Experimental

Crystal data
  • [Li4(C6H2N2O4)2(H2O)3]·H2O

  • Mr = 432.02

  • Triclinic, [P \overline 1]

  • a = 7.1460 (14) Å

  • b = 10.553 (2) Å

  • c = 11.849 (2) Å

  • α = 74.76 (3)°

  • β = 88.84 (3)°

  • γ = 82.66 (3)°

  • V = 855.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.63 × 0.11 × 0.10 mm

Data collection
  • Kuma KM4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.984, Tmax = 0.987

  • 5238 measured reflections

  • 4991 independent reflections

  • 3628 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 200 reflections intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.142

  • S = 1.07

  • 4991 reflections

  • 321 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H312⋯O14i 0.75 (3) 2.11 (3) 2.8572 (17) 171 (3)
O42—H421⋯O1 0.82 (3) 1.97 (3) 2.768 (2) 165 (3)
O42—H422⋯O23ii 0.86 (3) 1.95 (3) 2.7676 (16) 158 (2)
O1—H11⋯O24iii 0.91 (3) 2.00 (3) 2.9036 (19) 175 (2)
O31—H311⋯O11 0.81 (3) 1.92 (3) 2.7117 (17) 163 (2)
O41—H442⋯O14iv 0.84 (2) 2.10 (2) 2.9306 (18) 167 (2)
O41—H441⋯O12v 0.84 (3) 1.92 (3) 2.7607 (16) 172 (2)
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1; (iii) x-1, y+1, z; (iv) -x+1, -y+1, -z+1; (v) x, y, z-1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

LiI ion forms with pyridazine-3,6-dicarboxylate and water ligands a complex composed of centrosymmetric monomers in which the metal ion is chelated by two singly deprotonated ligand molecules and two water O atoms giving rise to octahedral coordination with aqua O atoms at the axial positions. A proton located between adjacent aqua O atoms, apart from maintaining charge balance, bridges the monomers via strong centrosymmetric hydrogen bonds to form catenated ribbons (Starosta & Leciejewicz, 2010). It has been of interest to study structural changes brought about by removal of the bridging protons. Hydrazine has been selected as the deprotonating agent. The structure of a complex obtained when the amount of added hydrazine was very small is described in this report.

The title compound is a polymeric complex with four symmetry independent Li ions in the asymmetric unit. Two of them show distorted trigonal bipyramidal geometry, the other two exhibit distorted tetrahedral coordination environment. The asymmetric unit contains also two pyridazine-3,6-dicarboxylate ligand molecules (PY1 with atoms labels starting with 1 and PY2 with atoms labels starting with 2), three coordinated water molecules and a solvation water molecule (Fig.1). The equatorial plane of the Li1 coordination polyhedron is composed of atoms O11, N21, O24i. The Li1 ion is 0.0285 (2) Å out of the plane, atoms O21 and N11 are at axial positions. Li2 ion is shifted by 0.0186 (2) Å from the basal plane composed of atoms O12ii, O23, N12; atoms O13 and N22 make the apices. Li3 ion is coordinated by atoms O21, O22iii, O31, O42ii at the apices of a distorted tetrahedron while the coordination tetrahedron of the Li4 ion is composed of atoms O13iv, O14, O41, O42 [Symmetry codes: i -x + 2, -y, -z + 2; ii -x + 2, -y + 1, -z + 2; iii -x + 2, -y, -z + 3; iv -x + 2, -y + 1, -z + 1]. The Li—O and Li—N bond distances are close to those observed in the other Li complex with the title ligand (Starosta & Leciejewicz, 2010). Both pyridazine rings are planar with r.m.s. deviation of 0.0154 (2)Å and 0.0123 (2)Å for the ring PY1 and PY2, respectively. Carboxylate groups C17/O11/O12 and C18/O13/O14 make with the hetero-ring PY1 dihedral angles of 14.3 (1)° and 22.2 (2)°, respectively. Dihedral angles formed with the hetero-ring PY2 by carboxylate groups C27/O21/O22 and C28/O23/O24 amount to 3.8 (1)° and 17.2 (2)°, respectively. The Li1 and Li2 ions bridged by hetero-ring N atoms donated by both ligands along the Li1—N11—N12—Li2—N22—N21—Li1 pathway form a dimeric moiety. The C27/O21/O22 and C27iii/O21iii/O22iii groups act as bidentate bridge between the Li3 and Li3iii ions to form a loop which joins two dimers via O21 and O21iii atoms since the latter are also bonded to the Li1 and Li1iii ions, respectively. A similar loop bridges the dimers from the other side as the bidentate O13 atom links the Li2 and Li4iv ions. A molecular ribbon propagating along the c direction can be visualized (Fig. 2). The ribbons bridged by carboxylate and coordinated water O atoms form molecular layers which are parallel to the bc plane and stacked along the a axis direction. The bridging of ribbons proceeds via carboxylato O12 and O24 atoms: atom O12 is coordinated to the Li2ii atom in an adjacent ribbon, while the Li2 ion by the O12ii atom from the same adjacent ribbon. The O24 atom is chelated to the Li1i ion in the other adjacent ribbon, while the O24i atom is coordinated to the Li1 ion. In addition, pairs of ribbons are bridged by coordinated aqua O42 atoms via Li4—O42—Li3ii and Li3—O42ii—Li4ii links. An extended system of hydrogen bonds in which coordinated water molecules are donors and carboxylato O atoms in adjacent layers act as acceptors, maintains the stability of the structure (Table 1). Two intra-molecular hydrogen bonds are also observed.

Related literature top

For the crystal structure of a LiI complex with water and pyridazine-3,6-dicarboxylate ligands, see: Starosta & Leciejewicz (2010).

Experimental top

The title complex was obtained by adding three drops of hydrazine to the aqueous solution containing ca 1 mmol of the complex previously synthetized (Starosta & Leciejewicz, 2010). The solution was kept at 320 K with constant stirring for 6 h, then left to evaporate at room temperature. Colorless single-crystal columns were washed with cold ethanol and dried in the air.

Refinement top

Water hydrogen atoms were located in a difference map and refined isotropically while H atoms attached to pyridazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry codes: i -x + 2, -y, -z + 2; ii -x + 2, -y + 1, -z + 2; iii -x + 2, -y, -z + 3; iv -x + 2, -y + 1, -z + 1.
[Figure 2] Fig. 2. Packing diagram of the structure viewed along the b axis.
catena-Poly[[µ2-aqua-diaquabis(µ4-pyridazine-3,6-dicarboxylato) tetralithium] monohydrate] top
Crystal data top
[Li4(C6H2N2O4)2(H2O)3]·H2OZ = 2
Mr = 432.02F(000) = 440
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1460 (14) ÅCell parameters from 25 reflections
b = 10.553 (2) Åθ = 6–15°
c = 11.849 (2) ŵ = 0.15 mm1
α = 74.76 (3)°T = 293 K
β = 88.84 (3)°Columns, colourless
γ = 82.66 (3)°0.63 × 0.11 × 0.10 mm
V = 855.0 (3) Å3
Data collection top
Kuma KM4 four-circle
diffractometer
3628 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 30.1°, θmin = 1.8°
profile data from ω/2θ scansh = 109
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 140
Tmin = 0.984, Tmax = 0.987l = 1616
5238 measured reflections3 standard reflections every 200 reflections
4991 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0933P)2 + 0.1387P]
where P = (Fo2 + 2Fc2)/3
4991 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Li4(C6H2N2O4)2(H2O)3]·H2Oγ = 82.66 (3)°
Mr = 432.02V = 855.0 (3) Å3
Triclinic, P1Z = 2
a = 7.1460 (14) ÅMo Kα radiation
b = 10.553 (2) ŵ = 0.15 mm1
c = 11.849 (2) ÅT = 293 K
α = 74.76 (3)°0.63 × 0.11 × 0.10 mm
β = 88.84 (3)°
Data collection top
Kuma KM4 four-circle
diffractometer
3628 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.040
Tmin = 0.984, Tmax = 0.9873 standard reflections every 200 reflections
5238 measured reflections intensity decay: 2.3%
4991 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.52 e Å3
4991 reflectionsΔρmin = 0.40 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.66029 (14)0.62545 (9)1.13840 (8)0.0237 (2)
N120.89610 (15)0.37798 (10)0.88294 (9)0.0187 (2)
O131.03460 (14)0.36050 (9)0.67631 (8)0.0239 (2)
O420.76213 (16)0.82985 (10)0.46053 (10)0.0275 (2)
O110.76083 (16)0.40826 (9)1.20181 (8)0.0280 (2)
N211.11362 (15)0.11238 (10)1.10459 (9)0.0192 (2)
O231.25615 (16)0.09387 (9)0.78141 (8)0.0264 (2)
O140.79238 (14)0.50339 (10)0.58467 (8)0.0261 (2)
O241.33640 (15)0.12661 (9)0.84009 (9)0.0272 (2)
N110.85009 (15)0.39281 (10)0.98916 (9)0.0183 (2)
N221.16009 (15)0.10114 (10)0.99701 (9)0.0184 (2)
C261.17284 (17)0.01344 (11)1.19732 (10)0.0179 (2)
C170.71991 (17)0.51348 (11)1.12415 (10)0.0176 (2)
C160.74862 (16)0.50523 (11)0.99854 (10)0.0162 (2)
C150.67929 (18)0.60722 (12)0.90249 (11)0.0216 (2)
H150.61040.68470.91180.026*
C281.28781 (17)0.01463 (12)0.85721 (11)0.0183 (2)
C231.25859 (16)0.01031 (11)0.98389 (10)0.0168 (2)
C180.89136 (17)0.44348 (11)0.67313 (10)0.0182 (2)
C130.83030 (17)0.47216 (11)0.78829 (10)0.0172 (2)
C140.71722 (19)0.58842 (12)0.79303 (11)0.0221 (3)
H140.66950.65050.72550.027*
Li30.9854 (4)0.1617 (2)1.4735 (2)0.0260 (5)
Li21.1410 (4)0.2530 (2)0.8362 (2)0.0252 (5)
Li10.8796 (4)0.2444 (2)1.1597 (2)0.0264 (5)
O410.55920 (17)0.61557 (13)0.36637 (10)0.0346 (3)
O10.4656 (2)0.86090 (18)0.60889 (14)0.0508 (4)
Li40.7754 (4)0.6481 (2)0.4458 (2)0.0276 (5)
H4410.580 (3)0.615 (2)0.296 (2)0.051 (7)*
H4420.468 (3)0.573 (2)0.391 (2)0.051 (7)*
C241.32555 (18)0.11597 (11)1.07838 (11)0.0211 (2)
H241.39540.19211.06700.025*
C251.28368 (19)0.10253 (12)1.18890 (11)0.0217 (2)
H251.32750.16811.25530.026*
C271.10638 (18)0.03368 (12)1.31489 (11)0.0206 (2)
O211.00788 (16)0.14240 (10)1.31261 (9)0.0292 (2)
O221.15259 (16)0.05770 (10)1.40266 (9)0.0310 (2)
O310.8353 (3)0.32916 (12)1.43507 (11)0.0528 (4)
H3110.799 (3)0.366 (2)1.368 (2)0.053 (7)*
H110.425 (4)0.870 (3)0.680 (2)0.058 (7)*
H4220.750 (3)0.874 (3)0.389 (2)0.052 (7)*
H4210.664 (4)0.847 (3)0.494 (3)0.076 (9)*
H3120.812 (4)0.374 (3)1.474 (2)0.068 (8)*
H120.391 (6)0.835 (4)0.577 (4)0.135 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0342 (5)0.0132 (4)0.0244 (4)0.0040 (3)0.0013 (4)0.0094 (3)
N120.0258 (5)0.0115 (4)0.0171 (5)0.0034 (4)0.0014 (4)0.0036 (4)
O130.0291 (5)0.0205 (4)0.0199 (4)0.0073 (4)0.0015 (3)0.0063 (3)
O420.0341 (5)0.0226 (5)0.0253 (5)0.0030 (4)0.0001 (4)0.0086 (4)
O110.0496 (6)0.0141 (4)0.0175 (4)0.0058 (4)0.0002 (4)0.0037 (3)
N210.0270 (5)0.0116 (4)0.0172 (5)0.0029 (4)0.0023 (4)0.0035 (4)
O230.0423 (6)0.0151 (4)0.0196 (4)0.0039 (4)0.0012 (4)0.0040 (3)
O140.0323 (5)0.0243 (5)0.0183 (4)0.0049 (4)0.0022 (4)0.0036 (3)
O240.0394 (6)0.0148 (4)0.0290 (5)0.0023 (4)0.0047 (4)0.0116 (4)
N110.0259 (5)0.0113 (4)0.0167 (5)0.0027 (4)0.0015 (4)0.0044 (3)
N220.0257 (5)0.0107 (4)0.0172 (4)0.0029 (4)0.0021 (4)0.0034 (3)
C260.0236 (5)0.0107 (5)0.0185 (5)0.0007 (4)0.0017 (4)0.0036 (4)
C170.0228 (5)0.0128 (5)0.0180 (5)0.0010 (4)0.0001 (4)0.0067 (4)
C160.0211 (5)0.0095 (5)0.0179 (5)0.0011 (4)0.0006 (4)0.0048 (4)
C150.0279 (6)0.0128 (5)0.0221 (6)0.0057 (4)0.0005 (5)0.0053 (4)
C280.0218 (5)0.0137 (5)0.0202 (5)0.0008 (4)0.0012 (4)0.0074 (4)
C230.0206 (5)0.0106 (5)0.0188 (5)0.0002 (4)0.0010 (4)0.0045 (4)
C180.0238 (5)0.0130 (5)0.0173 (5)0.0006 (4)0.0020 (4)0.0039 (4)
C130.0210 (5)0.0129 (5)0.0167 (5)0.0013 (4)0.0005 (4)0.0041 (4)
C140.0301 (6)0.0139 (5)0.0185 (5)0.0069 (4)0.0016 (4)0.0018 (4)
Li30.0390 (13)0.0175 (10)0.0202 (10)0.0006 (9)0.0014 (9)0.0039 (8)
Li20.0346 (12)0.0147 (10)0.0235 (10)0.0050 (9)0.0004 (9)0.0043 (8)
Li10.0370 (12)0.0139 (10)0.0266 (11)0.0059 (9)0.0005 (9)0.0066 (8)
O410.0340 (6)0.0450 (7)0.0264 (5)0.0075 (5)0.0030 (4)0.0113 (5)
O10.0392 (7)0.0700 (10)0.0429 (8)0.0024 (7)0.0095 (6)0.0170 (7)
Li40.0376 (13)0.0201 (11)0.0239 (11)0.0003 (9)0.0035 (9)0.0052 (9)
C240.0267 (6)0.0108 (5)0.0237 (6)0.0055 (4)0.0005 (5)0.0047 (4)
C250.0295 (6)0.0119 (5)0.0202 (5)0.0047 (4)0.0006 (4)0.0013 (4)
C270.0262 (6)0.0169 (5)0.0186 (5)0.0005 (4)0.0014 (4)0.0058 (4)
O210.0442 (6)0.0206 (5)0.0209 (4)0.0102 (4)0.0001 (4)0.0091 (4)
O220.0451 (6)0.0225 (5)0.0198 (4)0.0022 (4)0.0040 (4)0.0010 (4)
O310.1059 (13)0.0231 (5)0.0228 (5)0.0250 (7)0.0087 (6)0.0090 (5)
Geometric parameters (Å, º) top
Li1—O212.018 (3)N11—C161.3386 (14)
Li1—O24i2.101 (3)N22—C231.3352 (15)
N11—Li12.202 (3)C26—C251.3959 (16)
O11—Li12.005 (2)C26—C271.5217 (17)
N21—Li12.237 (3)C17—C161.5219 (16)
Li2—O12ii2.107 (3)C16—C151.3936 (17)
O13—Li22.040 (3)C15—C141.3792 (17)
N12—Li22.206 (3)C15—H150.9300
N22—Li22.137 (3)C28—C231.5231 (16)
O23—Li22.029 (2)C23—C241.3982 (17)
Li3—O311.896 (3)C18—C131.5176 (16)
Li3—O22iii1.924 (3)C13—C141.3937 (16)
Li3—O211.971 (3)C14—H140.9300
Li3—O42ii2.002 (3)Li3—Li4ii3.133 (4)
O42—Li3ii2.002 (3)Li3—Li3iii3.283 (5)
Li2—Li4iv3.295 (4)O41—Li41.938 (3)
O12—C171.2569 (14)O41—H4410.84 (3)
O12—Li2ii2.107 (3)O41—H4420.84 (2)
N12—C131.3352 (16)O1—H110.91 (3)
N12—N111.3380 (14)O1—H120.77 (4)
O13—C181.2535 (15)Li4—O13iv1.976 (3)
O13—Li4iv1.976 (3)Li4—Li3ii3.133 (4)
O42—Li41.961 (3)Li4—Li2iv3.295 (4)
O42—H4220.86 (3)Li4—H4222.28 (3)
O42—H4210.82 (3)C24—C251.3768 (18)
O11—C171.2474 (15)C24—H240.9300
N21—C261.3339 (16)C25—H250.9300
N21—N221.3423 (14)C27—O221.2353 (16)
O23—C281.2531 (16)C27—O211.2612 (16)
O14—C181.2515 (16)O22—Li3iii1.924 (3)
O14—Li41.922 (3)O31—H3110.81 (3)
O24—C281.2556 (14)O31—H3120.75 (3)
O24—Li1i2.101 (3)
C17—O12—Li2ii118.39 (11)Li4ii—Li3—Li3iii133.53 (13)
C13—N12—N11119.30 (10)O23—Li2—O1395.51 (11)
C13—N12—Li2109.89 (10)O23—Li2—O12ii113.67 (12)
N11—N12—Li2127.57 (10)O13—Li2—O12ii99.66 (11)
C18—O13—Li4iv128.88 (11)O23—Li2—N2278.96 (9)
C18—O13—Li2118.04 (11)O13—Li2—N22157.39 (15)
Li4iv—O13—Li2110.25 (11)O12ii—Li2—N22102.64 (11)
Li4—O42—Li3ii104.46 (12)O23—Li2—N12151.64 (14)
Li4—O42—H422100.8 (17)O13—Li2—N1277.64 (9)
Li3ii—O42—H422111.7 (16)O12ii—Li2—N1294.65 (10)
Li4—O42—H421109 (2)N22—Li2—N1296.76 (11)
Li3ii—O42—H421121 (2)O23—Li2—Li4iv71.49 (9)
H422—O42—H421108 (2)O13—Li2—Li4iv34.23 (7)
C17—O11—Li1120.35 (11)O12ii—Li2—Li4iv87.26 (10)
C26—N21—N22119.26 (10)N22—Li2—Li4iv150.33 (11)
C26—N21—Li1108.68 (10)N12—Li2—Li4iv110.40 (10)
N22—N21—Li1129.45 (10)O11—Li1—O21100.76 (12)
C28—O23—Li2117.34 (10)O11—Li1—O24i106.87 (12)
C18—O14—Li4144.59 (13)O21—Li1—O24i98.88 (12)
C28—O24—Li1i116.63 (11)O11—Li1—N1177.16 (9)
N12—N11—C16119.33 (10)O21—Li1—N11155.87 (15)
N12—N11—Li1129.04 (10)O24i—Li1—N11104.75 (12)
C16—N11—Li1110.95 (10)O11—Li1—N21155.62 (15)
C23—N22—N21119.79 (10)O21—Li1—N2176.83 (9)
C23—N22—Li2111.01 (10)O24i—Li1—N2197.44 (10)
N21—N22—Li2128.28 (10)N11—Li1—N2195.10 (11)
N21—C26—C25123.30 (11)Li4—O41—H441113.3 (16)
N21—C26—C27115.14 (10)Li4—O41—H442132.4 (15)
C25—C26—C27121.54 (11)H441—O41—H442109 (2)
O11—C17—O12127.16 (11)H11—O1—H12112 (3)
O11—C17—C16116.17 (10)O14—Li4—O41101.46 (13)
O12—C17—C16116.66 (11)O14—Li4—O42119.36 (13)
N11—C16—C15123.40 (11)O41—Li4—O42113.99 (14)
N11—C16—C17113.81 (10)O14—Li4—O13iv117.61 (13)
C15—C16—C17122.76 (10)O41—Li4—O13iv98.62 (12)
C14—C15—C16117.16 (11)O42—Li4—O13iv104.16 (13)
C14—C15—H15121.4O14—Li4—Li3ii99.97 (11)
C16—C15—H15121.4O41—Li4—Li3ii151.72 (13)
O23—C28—O24127.23 (12)O42—Li4—Li3ii38.23 (8)
O23—C28—C23116.20 (10)O13iv—Li4—Li3ii87.47 (11)
O24—C28—C23116.54 (11)O14—Li4—Li2iv147.07 (12)
N22—C23—C24122.97 (11)O41—Li4—Li2iv73.92 (10)
N22—C23—C28114.46 (10)O42—Li4—Li2iv91.18 (10)
C24—C23—C28122.55 (10)O13iv—Li4—Li2iv35.52 (7)
O14—C18—O13126.36 (12)Li3ii—Li4—Li2iv97.25 (9)
O14—C18—C13116.92 (11)O14—Li4—H422140.9 (7)
O13—C18—C13116.71 (11)O41—Li4—H422101.3 (6)
N12—C13—C14123.64 (11)O42—Li4—H42221.6 (6)
N12—C13—C18114.30 (10)O13iv—Li4—H42289.7 (7)
C14—C13—C18122.05 (11)Li3ii—Li4—H42250.9 (6)
C15—C14—C13116.97 (11)Li2iv—Li4—H42270.4 (7)
C15—C14—H14121.5C25—C24—C23117.20 (11)
C13—C14—H14121.5C25—C24—H24121.4
O31—Li3—O22iii103.19 (14)C23—C24—H24121.4
O31—Li3—O2196.46 (12)C24—C25—C26117.37 (11)
O22iii—Li3—O21125.74 (14)C24—C25—H25121.3
O31—Li3—O42ii111.96 (14)C26—C25—H25121.3
O22iii—Li3—O42ii107.33 (12)O22—C27—O21126.48 (12)
O21—Li3—O42ii111.05 (13)O22—C27—C26117.17 (11)
O31—Li3—Li4ii74.81 (11)O21—C27—C26116.35 (11)
O22iii—Li3—Li4ii113.96 (11)C27—O21—Li3108.76 (11)
O21—Li3—Li4ii119.92 (12)C27—O21—Li1117.39 (11)
O42ii—Li3—Li4ii37.31 (7)Li3—O21—Li1133.16 (11)
O31—Li3—Li3iii149.11 (18)C27—O22—Li3iii134.00 (13)
O22iii—Li3—Li3iii57.89 (8)Li3—O31—H311122.0 (18)
O21—Li3—Li3iii79.98 (11)Li3—O31—H312127 (2)
O42ii—Li3—Li3iii97.71 (12)H311—O31—H312110 (3)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y, z+3; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H312···O14v0.75 (3)2.11 (3)2.8572 (17)171 (3)
O42—H421···O10.82 (3)1.97 (3)2.768 (2)165 (3)
O42—H422···O23iv0.86 (3)1.95 (3)2.7676 (16)158 (2)
O1—H11···O24vi0.91 (3)2.00 (3)2.9036 (19)175 (2)
O31—H311···O110.81 (3)1.92 (3)2.7117 (17)163 (2)
O41—H442···O14vii0.84 (2)2.10 (2)2.9306 (18)167 (2)
O41—H441···O12viii0.84 (3)1.92 (3)2.7607 (16)172 (2)
Symmetry codes: (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x1, y+1, z; (vii) x+1, y+1, z+1; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Li4(C6H2N2O4)2(H2O)3]·H2O
Mr432.02
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1460 (14), 10.553 (2), 11.849 (2)
α, β, γ (°)74.76 (3), 88.84 (3), 82.66 (3)
V3)855.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.63 × 0.11 × 0.10
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5238, 4991, 3628
Rint0.040
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.07
No. of reflections4991
No. of parameters321
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.40

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H312···O14i0.75 (3)2.11 (3)2.8572 (17)171 (3)
O42—H421···O10.82 (3)1.97 (3)2.768 (2)165 (3)
O42—H422···O23ii0.86 (3)1.95 (3)2.7676 (16)158 (2)
O1—H11···O24iii0.91 (3)2.00 (3)2.9036 (19)175 (2)
O31—H311···O110.81 (3)1.92 (3)2.7117 (17)163 (2)
O41—H442···O14iv0.84 (2)2.10 (2)2.9306 (18)167 (2)
O41—H441···O12v0.84 (3)1.92 (3)2.7607 (16)172 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y, z1.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1362–m1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds