metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(E)-10-(2,6-Di­methyl­phenyl­imino)-9-methyl-9,10-di­hydro­phenanthren-9-olato]penta­methyl­dialuminum(III)

aState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: gw@jlu.edu.cn, gaobo08@mails.jlu.edu.cn

(Received 10 August 2011; accepted 6 September 2011; online 14 September 2011)

The two Al atoms in the title compound, [Al2(CH3)5(C23H20NO)], are four-coordinated in a distorted tetra­hedral environment. The coordination of one Al atom includes three methyl-C atoms and the O atom from the ligand, whereas the second Al atom is surrounded by the O atom and one N atom from the ligand as well as by two methyl-C atoms. In the ligand, the dihedral angle between the two phenyl rings in the 9,10-dihydro­phenanthren unit is 20.64 (12)°.

Related literature

For background to Al complexes, see: Wang et al. (2006[Wang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579-2585.]); Evans (1993[Evans, K. A. (1993). Chemistry of Aluminium, Gallium, Indium and Thallium., edited by A. J. Downs, p. 248. Chapman & Hall: New York.]); Liu et al. (2005[Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614-1619.], 2006[Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem., pp. 1216-1222.]); Yao et al. (2008[Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486-2491.]); Gao et al. (2009[Gao, A., Su, Q. & Mu, Y. (2009). Acta Cryst. E65, m577.]). For background to anilido–imine complexes, see: Liu et al. (2005[Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614-1619.], 2006[Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem., pp. 1216-1222.]); Ren et al. (2007[Ren, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 1808-1814.]); Su et al. (2007[Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 4168-4175.]); Yao et al. (2008[Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486-2491.]); Wang et al. (2006[Wang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579-2585.]). For the synthesis of the ligand, see: Li (2009[Li, L. (2009). ARKIVOC, pp 95-111.]).

[Scheme 1]

Experimental

Crystal data
  • [Al2(CH3)5(C23H20NO)]

  • Mr = 455.53

  • Triclinic, [P \overline 1]

  • a = 10.4535 (17) Å

  • b = 11.4306 (18) Å

  • c = 12.221 (2) Å

  • α = 84.930 (3)°

  • β = 86.308 (3)°

  • γ = 64.092 (2)°

  • V = 1307.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 185 K

  • 0.36 × 0.32 × 0.19 mm

Data collection
  • SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.976

  • 6899 measured reflections

  • 4966 independent reflections

  • 3558 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.03

  • 4966 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Al1—O1 1.9273 (17)
Al1—C25 1.972 (3)
Al1—C26 1.974 (3)
Al1—C24 1.980 (3)
Al2—O1 1.8552 (17)
Al2—C28 1.944 (3)
Al2—C27 1.954 (3)
Al2—N1 1.993 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organoaluminum complexes have received considerable attention due to their interesting properties and potential applications in organic synthesis and catalysis. It is known that alkylaluminum reagents are widely applied to Lewis acid-mediated reactions while aluminium acetylides play an important role in addition reaction (Evans, 1993). Organoaluminum complexes supported by anilido-imine, β-diketiminate and salicyaldiminato ligands are of particular interest, owning to their interesting coordination chemistry and catalytic performance (Wang et al., 2006). Furthermore, we have previously reported a series of Zn(II) (Su et al., 2007), Al(III) (Liu et al., 2005; 2006; Yao et al., 2008) and B(III) (Ren et al., 2007) complexes with chelating anilido-imine ligands. As a part of our continuing study, we have investigated the two-step reaction procedures including the 1,2-addition reaction of trimethylaluminium with (E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one), and subseqent reaction with trimethylaluminium to form the corresponding product. Herein, the preparation and crystal structure of the title compound, (I), [Al2(CH3)5(C23H20NO)], is reported.

In the molecule of compound (I), (Fig. 1), the two Al atoms exist in different coordination environments, both adopting distorted tetrahedral geometries. The tetrahedral coordination around Al1 involves three methyl-C atoms and the O1 atom from the ligand. The coordination around the Al2 atom involves the O1 atom and N1 atom from the ligand and two methyl-C atoms. The Al—Al separation distance is 3.1625 (13) Å. The Al2—O1 distance (1.8552 (17) Å) is significantly shorter than the Al1—O1 distance (1.9273 (17) Å), indicating that the former has a more covalent character. The two Al2—O1 and Al1—O1 distances are somewhat longer than the corresponding distances in {µ-[2-(dimethylamino)phenyl] (2-fluorophenyl)methanolato}pentamethyldialuminum(III) (Gao et al., 2009; Al2—O1, 1.8165 (19) Å; Al1—O1, 1.9199 (19) Å), owing to a larger steric disturbance. The five-membered chelate ring, O1/Al2/N1/C13/C14, is nearly planar, with a maximum deviation of 0.059 (2) Å of O1 from the least-squares plane. The dihedral angles between the five-membered chelate ring and the phenyl rings C16—C11, C7—C11 and C1—C6 are 82.78 (12)°, 62.74 (11) ° and 46.99 (11) °, respectively. The coplarity of the 9,10-phenanthrene aromatic rings is not retained after the addition reaction of Al(CH3)3 to the CO bond of (E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one) with the dihedral angle between the two phenyl rings (C7—C12, C1—C6) being 20.64 (12)°.

Related literature top

For background to Al complexes, see: Wang et al. (2006); Evans (1993); Liu et al. (2005, 2006); Yao et al. (2008); Gao et al. (2009). For background to anilido–imine complexes, see: Liu et al. (2005, 2006); Ren et al. (2007); Su et al. (2007); Yao et al. (2008); Wang et al. (2006). For the synthesis of the ligand, see: Li (2009).

Experimental top

The dinuclear aluminium complex was prepared as following. The Schiff base ligand ((E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one) (1.0 mmol) which was synthesized according to the reported literature (Li, 2009), was dissolved in toluene (20 ml), and then trimethylaluminum (1.1 mmol) in hexane solution (1.1 ml, 1M) was added slowly at 243 K. The whole mixture was warmed up to room temperature in 2 h and refluxed for 5 h which provided a clear, yellow solution. Then volatile materials were removed under vacuum. The residue was recrystallized in toluene to give yellow crystalline solid (yield: 61%, 0.277 g). Anal. Calcd. for C28H35Al2NO (455.55): C 73.82, H 7.74, N 3.07; Found: C 73.80, H 7.72, N 3.04%. 1H NMR (300 MHz, CDCl3, 298 K) δ (p.p.m.): -0.93 (s, 3H,Al(CH3)2), -0.65(s, 9H,Al(CH3)3), -0.45 (s, 3H,Al(CH3)2), 1.41(s, 3H, Ar(CH3)2), 1.98 (s, 3H, CH3), 2.44 (s, 3H, Ar (CH3)2), 6.65 (m, 1H), 6.88 (m, 1H), 7.05 (m, 1H), 7.12 (m, 1H), 7.19 (m, 1H), 7.44 (m, 2H), 7.55 (m, 1H), 7.69 (m, 1H), 7.84 (m, 1H), 7.95 (m, 1H). 13C NMR (75 MHz, CDCl3, 298 K) δ (p.p.m.): -8.8,-7.2,-5.1,16.9, 18.2, 18.8, 30.6, 48.3, 123.9, 124.3, 124.8, 126.0, 126.4, 127.3, 127.6, 128.2, 128.6, 128.7, 129.1, 129.2, 129.3, 131.3, 131.8, 132.5, 133.9, 136.6.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic carbon) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Structure description top

Organoaluminum complexes have received considerable attention due to their interesting properties and potential applications in organic synthesis and catalysis. It is known that alkylaluminum reagents are widely applied to Lewis acid-mediated reactions while aluminium acetylides play an important role in addition reaction (Evans, 1993). Organoaluminum complexes supported by anilido-imine, β-diketiminate and salicyaldiminato ligands are of particular interest, owning to their interesting coordination chemistry and catalytic performance (Wang et al., 2006). Furthermore, we have previously reported a series of Zn(II) (Su et al., 2007), Al(III) (Liu et al., 2005; 2006; Yao et al., 2008) and B(III) (Ren et al., 2007) complexes with chelating anilido-imine ligands. As a part of our continuing study, we have investigated the two-step reaction procedures including the 1,2-addition reaction of trimethylaluminium with (E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one), and subseqent reaction with trimethylaluminium to form the corresponding product. Herein, the preparation and crystal structure of the title compound, (I), [Al2(CH3)5(C23H20NO)], is reported.

In the molecule of compound (I), (Fig. 1), the two Al atoms exist in different coordination environments, both adopting distorted tetrahedral geometries. The tetrahedral coordination around Al1 involves three methyl-C atoms and the O1 atom from the ligand. The coordination around the Al2 atom involves the O1 atom and N1 atom from the ligand and two methyl-C atoms. The Al—Al separation distance is 3.1625 (13) Å. The Al2—O1 distance (1.8552 (17) Å) is significantly shorter than the Al1—O1 distance (1.9273 (17) Å), indicating that the former has a more covalent character. The two Al2—O1 and Al1—O1 distances are somewhat longer than the corresponding distances in {µ-[2-(dimethylamino)phenyl] (2-fluorophenyl)methanolato}pentamethyldialuminum(III) (Gao et al., 2009; Al2—O1, 1.8165 (19) Å; Al1—O1, 1.9199 (19) Å), owing to a larger steric disturbance. The five-membered chelate ring, O1/Al2/N1/C13/C14, is nearly planar, with a maximum deviation of 0.059 (2) Å of O1 from the least-squares plane. The dihedral angles between the five-membered chelate ring and the phenyl rings C16—C11, C7—C11 and C1—C6 are 82.78 (12)°, 62.74 (11) ° and 46.99 (11) °, respectively. The coplarity of the 9,10-phenanthrene aromatic rings is not retained after the addition reaction of Al(CH3)3 to the CO bond of (E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one) with the dihedral angle between the two phenyl rings (C7—C12, C1—C6) being 20.64 (12)°.

For background to Al complexes, see: Wang et al. (2006); Evans (1993); Liu et al. (2005, 2006); Yao et al. (2008); Gao et al. (2009). For background to anilido–imine complexes, see: Liu et al. (2005, 2006); Ren et al. (2007); Su et al. (2007); Yao et al. (2008); Wang et al. (2006). For the synthesis of the ligand, see: Li (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of compound (I) showing the atom labelling scheme, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.
[(E)-10-(2,6-Dimethylphenylimino)-9-methyl-9,10-dihydrophenanthren-9- olato]pentamethyldialuminum(III) top
Crystal data top
[Al2(CH3)5(C23H20NO)]Z = 2
Mr = 455.53F(000) = 488
Triclinic, P1Dx = 1.157 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4535 (17) ÅCell parameters from 2148 reflections
b = 11.4306 (18) Åθ = 3.6–52.0°
c = 12.221 (2) ŵ = 0.13 mm1
α = 84.930 (3)°T = 185 K
β = 86.308 (3)°Block, colorless
γ = 64.092 (2)°0.36 × 0.32 × 0.19 mm
V = 1307.9 (4) Å3
Data collection top
SMART CCD area-detector
diffractometer
4966 independent reflections
Radiation source: fine-focus sealed tube3558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.955, Tmax = 0.976k = 1114
6899 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.4595P]
where P = (Fo2 + 2Fc2)/3
4966 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Al2(CH3)5(C23H20NO)]γ = 64.092 (2)°
Mr = 455.53V = 1307.9 (4) Å3
Triclinic, P1Z = 2
a = 10.4535 (17) ÅMo Kα radiation
b = 11.4306 (18) ŵ = 0.13 mm1
c = 12.221 (2) ÅT = 185 K
α = 84.930 (3)°0.36 × 0.32 × 0.19 mm
β = 86.308 (3)°
Data collection top
SMART CCD area-detector
diffractometer
4966 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3558 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.976Rint = 0.020
6899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
4966 reflectionsΔρmin = 0.36 e Å3
297 parameters
Special details top

Experimental. see experiment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.25584 (8)0.40105 (7)0.13162 (7)0.0300 (2)
Al20.06773 (8)0.36784 (8)0.33504 (6)0.0288 (2)
O10.08466 (16)0.29493 (15)0.21020 (13)0.0250 (4)
N10.1395 (2)0.25468 (19)0.31395 (16)0.0253 (5)
C10.3077 (2)0.0805 (2)0.19939 (19)0.0252 (5)
C20.4290 (3)0.1021 (3)0.1830 (2)0.0290 (6)
H20.42540.18230.19680.035*
C30.5548 (3)0.0042 (3)0.1463 (2)0.0334 (6)
H30.63550.01880.13360.040*
C40.5597 (3)0.1155 (3)0.1285 (2)0.0353 (6)
H40.64510.18220.10600.042*
C50.4395 (3)0.1376 (3)0.1436 (2)0.0323 (6)
H50.44490.21870.13070.039*
C60.3106 (3)0.0396 (2)0.17803 (19)0.0269 (5)
C70.1771 (3)0.0561 (2)0.19599 (19)0.0266 (5)
C80.1793 (3)0.1788 (2)0.2152 (2)0.0341 (6)
H80.26590.25270.21430.041*
C90.0543 (3)0.1924 (3)0.2355 (2)0.0360 (6)
H90.05700.27500.24610.043*
C100.0745 (3)0.0827 (3)0.2400 (2)0.0347 (6)
H100.15810.09170.25550.042*
C110.0793 (3)0.0401 (3)0.2216 (2)0.0308 (6)
H110.16630.11330.22510.037*
C120.0445 (3)0.0554 (2)0.19813 (19)0.0252 (5)
C130.0425 (2)0.1901 (2)0.17092 (19)0.0235 (5)
C140.1680 (2)0.1824 (2)0.23304 (19)0.0238 (5)
C150.0633 (3)0.2121 (2)0.0467 (2)0.0290 (6)
H15A0.01740.21710.00960.044*
H15B0.14790.14090.02130.044*
H15C0.07230.29200.03150.044*
C160.2479 (2)0.2390 (3)0.3914 (2)0.0293 (6)
C170.2796 (3)0.1390 (3)0.4746 (2)0.0370 (7)
C180.3754 (3)0.1313 (3)0.5532 (2)0.0490 (9)
H180.39960.06590.60960.059*
C190.4342 (3)0.2176 (3)0.5490 (3)0.0529 (9)
H190.49590.21110.60320.064*
C200.4026 (3)0.3144 (3)0.4649 (3)0.0462 (8)
H200.44440.37160.46230.055*
C210.3079 (3)0.3267 (3)0.3836 (2)0.0343 (6)
C220.2180 (3)0.0417 (3)0.4797 (2)0.0471 (8)
H22A0.11660.08590.49050.071*
H22B0.25800.02190.53970.071*
H22C0.24000.00090.41210.071*
C230.2785 (3)0.4301 (3)0.2915 (3)0.0416 (7)
H23A0.36040.40640.24280.062*
H23B0.25780.51170.32110.062*
H23C0.19840.43820.25180.062*
C240.3850 (3)0.4894 (3)0.2547 (3)0.0456 (8)
H24A0.38400.42540.31150.068*
H24B0.47990.53790.22870.068*
H24C0.35380.54770.28350.068*
C250.3291 (3)0.2930 (3)0.0638 (3)0.0489 (8)
H25A0.25230.22490.02710.073*
H25B0.39960.34630.01150.073*
H25C0.37110.25520.11970.073*
C260.2137 (3)0.5213 (3)0.0258 (3)0.0478 (8)
H26A0.15760.55460.06030.072*
H26B0.30110.59230.00230.072*
H26C0.16170.47540.03670.072*
C270.0914 (3)0.5476 (3)0.3150 (3)0.0488 (8)
H27A0.06400.56450.24100.073*
H27B0.03260.56050.36530.073*
H27C0.18920.60610.32890.073*
C280.1394 (3)0.3076 (3)0.4682 (2)0.0499 (8)
H28A0.23320.37200.48640.075*
H28B0.07740.29400.52750.075*
H28C0.14320.22720.45660.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0220 (4)0.0301 (4)0.0366 (4)0.0095 (3)0.0072 (3)0.0015 (3)
Al20.0225 (4)0.0305 (4)0.0322 (4)0.0090 (3)0.0017 (3)0.0079 (3)
O10.0195 (8)0.0269 (9)0.0283 (9)0.0090 (7)0.0039 (7)0.0031 (7)
N10.0210 (10)0.0268 (11)0.0276 (11)0.0090 (9)0.0056 (8)0.0026 (8)
C10.0198 (12)0.0293 (13)0.0224 (12)0.0065 (10)0.0025 (9)0.0018 (10)
C20.0259 (13)0.0326 (14)0.0292 (13)0.0125 (11)0.0067 (10)0.0027 (10)
C30.0203 (12)0.0446 (16)0.0322 (14)0.0109 (12)0.0025 (10)0.0032 (12)
C40.0218 (13)0.0404 (16)0.0334 (14)0.0032 (12)0.0017 (11)0.0059 (12)
C50.0293 (14)0.0303 (14)0.0341 (14)0.0091 (11)0.0039 (11)0.0044 (11)
C60.0250 (13)0.0292 (13)0.0236 (12)0.0090 (11)0.0043 (10)0.0000 (10)
C70.0283 (13)0.0297 (14)0.0221 (12)0.0126 (11)0.0018 (10)0.0030 (10)
C80.0346 (15)0.0252 (14)0.0379 (15)0.0086 (12)0.0028 (12)0.0016 (11)
C90.0450 (17)0.0295 (15)0.0391 (16)0.0216 (13)0.0042 (13)0.0010 (11)
C100.0357 (15)0.0413 (16)0.0344 (15)0.0243 (13)0.0035 (12)0.0034 (12)
C110.0264 (13)0.0343 (15)0.0323 (14)0.0139 (11)0.0028 (11)0.0007 (11)
C120.0267 (13)0.0262 (13)0.0238 (12)0.0124 (11)0.0028 (10)0.0013 (10)
C130.0182 (11)0.0239 (12)0.0274 (13)0.0078 (10)0.0012 (9)0.0028 (9)
C140.0227 (12)0.0235 (12)0.0261 (12)0.0113 (10)0.0041 (10)0.0028 (9)
C150.0258 (13)0.0310 (14)0.0286 (13)0.0106 (11)0.0032 (10)0.0014 (10)
C160.0192 (12)0.0353 (15)0.0275 (13)0.0045 (11)0.0044 (10)0.0098 (11)
C170.0312 (14)0.0365 (15)0.0284 (14)0.0001 (12)0.0027 (11)0.0055 (11)
C180.0433 (17)0.0500 (19)0.0288 (15)0.0046 (15)0.0106 (13)0.0048 (13)
C190.0350 (16)0.064 (2)0.0409 (18)0.0012 (16)0.0165 (13)0.0203 (16)
C200.0278 (15)0.057 (2)0.0526 (19)0.0130 (14)0.0085 (13)0.0239 (16)
C210.0234 (13)0.0384 (16)0.0377 (15)0.0077 (12)0.0043 (11)0.0130 (12)
C220.0500 (18)0.0384 (17)0.0394 (17)0.0088 (15)0.0020 (14)0.0058 (13)
C230.0346 (16)0.0386 (17)0.0578 (19)0.0208 (13)0.0055 (14)0.0047 (14)
C240.0261 (14)0.0463 (18)0.059 (2)0.0099 (13)0.0006 (13)0.0086 (15)
C250.0359 (16)0.0481 (18)0.062 (2)0.0137 (14)0.0192 (15)0.0092 (15)
C260.0395 (17)0.0454 (18)0.0518 (19)0.0136 (14)0.0099 (14)0.0106 (14)
C270.0315 (15)0.0367 (17)0.080 (2)0.0140 (13)0.0009 (15)0.0177 (16)
C280.0411 (17)0.063 (2)0.0366 (16)0.0146 (16)0.0030 (13)0.0062 (14)
Geometric parameters (Å, º) top
Al1—O11.9273 (17)C15—H15A0.9600
Al1—C251.972 (3)C15—H15B0.9600
Al1—C261.974 (3)C15—H15C0.9600
Al1—C241.980 (3)C16—C211.389 (4)
Al2—O11.8552 (17)C16—C171.399 (4)
Al2—C281.944 (3)C17—C181.401 (4)
Al2—C271.954 (3)C17—C221.504 (4)
Al2—N11.993 (2)C18—C191.367 (5)
O1—C131.436 (3)C18—H180.9300
N1—C141.281 (3)C19—C201.383 (5)
N1—C161.465 (3)C19—H190.9300
C1—C21.393 (3)C20—C211.403 (4)
C1—C61.407 (3)C20—H200.9300
C1—C141.477 (3)C21—C231.499 (4)
C2—C31.382 (3)C22—H22A0.9600
C2—H20.9300C22—H22B0.9600
C3—C41.382 (4)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C4—C51.384 (4)C23—H23B0.9600
C4—H40.9300C23—H23C0.9600
C5—C61.392 (3)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—C71.489 (3)C24—H24C0.9600
C7—C81.391 (4)C25—H25A0.9600
C7—C121.415 (3)C25—H25B0.9600
C8—C91.386 (4)C25—H25C0.9600
C8—H80.9300C26—H26A0.9600
C9—C101.384 (4)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
C10—C111.381 (4)C27—H27A0.9600
C10—H100.9300C27—H27B0.9600
C11—C121.388 (3)C27—H27C0.9600
C11—H110.9300C28—H28A0.9600
C12—C131.538 (3)C28—H28B0.9600
C13—C141.523 (3)C28—H28C0.9600
C13—C151.534 (3)
O1—Al1—C25111.41 (11)H15A—C15—H15B109.5
O1—Al1—C26107.52 (11)C13—C15—H15C109.5
C25—Al1—C26113.94 (15)H15A—C15—H15C109.5
O1—Al1—C24100.23 (11)H15B—C15—H15C109.5
C25—Al1—C24109.59 (14)C21—C16—C17123.2 (2)
C26—Al1—C24113.30 (14)C21—C16—N1119.6 (2)
O1—Al2—C28113.23 (12)C17—C16—N1117.1 (2)
O1—Al2—C27116.12 (12)C16—C17—C18116.5 (3)
C28—Al2—C27120.52 (15)C16—C17—C22122.6 (2)
O1—Al2—N184.06 (8)C18—C17—C22120.8 (3)
C28—Al2—N1109.79 (12)C19—C18—C17121.7 (3)
C27—Al2—N1106.33 (11)C19—C18—H18119.2
C13—O1—Al2116.20 (13)C17—C18—H18119.2
C13—O1—Al1128.09 (14)C18—C19—C20120.5 (3)
Al2—O1—Al1113.45 (9)C18—C19—H19119.7
C14—N1—C16121.9 (2)C20—C19—H19119.7
C14—N1—Al2113.25 (16)C19—C20—C21120.4 (3)
C16—N1—Al2124.23 (15)C19—C20—H20119.8
C2—C1—C6121.0 (2)C21—C20—H20119.8
C2—C1—C14122.9 (2)C16—C21—C20117.6 (3)
C6—C1—C14116.0 (2)C16—C21—C23123.0 (2)
C3—C2—C1119.9 (2)C20—C21—C23119.4 (3)
C3—C2—H2120.1C17—C22—H22A109.5
C1—C2—H2120.1C17—C22—H22B109.5
C2—C3—C4119.5 (2)H22A—C22—H22B109.5
C2—C3—H3120.2C17—C22—H22C109.5
C4—C3—H3120.2H22A—C22—H22C109.5
C3—C4—C5121.1 (2)H22B—C22—H22C109.5
C3—C4—H4119.5C21—C23—H23A109.5
C5—C4—H4119.5C21—C23—H23B109.5
C4—C5—C6120.5 (2)H23A—C23—H23B109.5
C4—C5—H5119.7C21—C23—H23C109.5
C6—C5—H5119.7H23A—C23—H23C109.5
C5—C6—C1118.0 (2)H23B—C23—H23C109.5
C5—C6—C7123.6 (2)Al1—C24—H24A109.5
C1—C6—C7118.4 (2)Al1—C24—H24B109.5
C8—C7—C12118.8 (2)H24A—C24—H24B109.5
C8—C7—C6121.6 (2)Al1—C24—H24C109.5
C12—C7—C6119.6 (2)H24A—C24—H24C109.5
C9—C8—C7120.9 (2)H24B—C24—H24C109.5
C9—C8—H8119.5Al1—C25—H25A109.5
C7—C8—H8119.5Al1—C25—H25B109.5
C10—C9—C8119.8 (2)H25A—C25—H25B109.5
C10—C9—H9120.1Al1—C25—H25C109.5
C8—C9—H9120.1H25A—C25—H25C109.5
C11—C10—C9120.2 (3)H25B—C25—H25C109.5
C11—C10—H10119.9Al1—C26—H26A109.5
C9—C10—H10119.9Al1—C26—H26B109.5
C10—C11—C12120.7 (2)H26A—C26—H26B109.5
C10—C11—H11119.7Al1—C26—H26C109.5
C12—C11—H11119.7H26A—C26—H26C109.5
C11—C12—C7119.5 (2)H26B—C26—H26C109.5
C11—C12—C13122.1 (2)Al2—C27—H27A109.5
C7—C12—C13118.3 (2)Al2—C27—H27B109.5
O1—C13—C14108.52 (18)H27A—C27—H27B109.5
O1—C13—C15110.23 (19)Al2—C27—H27C109.5
C14—C13—C15111.17 (19)H27A—C27—H27C109.5
O1—C13—C12113.07 (18)H27B—C27—H27C109.5
C14—C13—C12103.48 (19)Al2—C28—H28A109.5
C15—C13—C12110.20 (19)Al2—C28—H28B109.5
N1—C14—C1127.7 (2)H28A—C28—H28B109.5
N1—C14—C13117.1 (2)Al2—C28—H28C109.5
C1—C14—C13114.8 (2)H28A—C28—H28C109.5
C13—C15—H15A109.5H28B—C28—H28C109.5
C13—C15—H15B109.5

Experimental details

Crystal data
Chemical formula[Al2(CH3)5(C23H20NO)]
Mr455.53
Crystal system, space groupTriclinic, P1
Temperature (K)185
a, b, c (Å)10.4535 (17), 11.4306 (18), 12.221 (2)
α, β, γ (°)84.930 (3), 86.308 (3), 64.092 (2)
V3)1307.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.36 × 0.32 × 0.19
Data collection
DiffractometerSMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.955, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
6899, 4966, 3558
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.03
No. of reflections4966
No. of parameters297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Al1—O11.9273 (17)Al2—O11.8552 (17)
Al1—C251.972 (3)Al2—C281.944 (3)
Al1—C261.974 (3)Al2—C271.954 (3)
Al1—C241.980 (3)Al2—N11.993 (2)
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 21074043) for support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, K. A. (1993). Chemistry of Aluminium, Gallium, Indium and Thallium., edited by A. J. Downs, p. 248. Chapman & Hall: New York.  Google Scholar
First citationGao, A., Su, Q. & Mu, Y. (2009). Acta Cryst. E65, m577.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, L. (2009). ARKIVOC, pp 95–111.  Google Scholar
First citationLiu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem., pp. 1216–1222.  Google Scholar
First citationRen, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 1808–1814.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem., pp. 4168–4175.  Google Scholar
First citationWang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579–2585.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486–2491.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds