metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(hydrogen L-glutamato)palladium(II)

aInstitut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 16 August 2011; accepted 2 September 2011; online 14 September 2011)

In the title compound, [Pd(C5H8NO4)2], the Pd(II) atom is coordinated by two O atoms and two N atoms of two N,O-chelating hydrogen L-glutatmate ligands in a square–planar geometry with the N and O atoms in a mutually trans arrangement. The complex units are embedded in a network of N—H⋯O and O—H⋯O hydrogen-bonding inter­actions that stabilize the three-dimensional crystal structure. The strongest hydrogen bonds are formed between the γ-COOH untis of adjacent glutamate ligands, leading to dimers of the type R22(8) with O⋯O separations of 2.640 (6) Å.

Related literature

For the synthesis of the title compound, see: Spacu & Scherzer (1962[Spacu, P. & Scherzer, I. (1962). Z. Anorg. Allg. Chem. 319, 101-106.]). For the structures of related palladium complexes with amino acid ligands, see: Vagg (1979[Vagg, R. S. (1979). Acta Cryst. B35, 341-344.]); Jarzab et al. (1973[Jarzab, T. C., Hare, C. R. & Langs, D. A. (1973). Cryst. Struct. Commun. 2, 399-403.]); Sabat et al. (1979[Sabat, M., Jezowska, M. & Kozlowski, H. (1979). Inorg. Chim. Acta, 37, L511-L512.]); Pletnev et al. (1992[Pletnev, V. Z., Zolotarev, Yu. A., Galitskii, N. M. & Verenich, A. I. (1992). Zh. Strukt. Khim. 33, 115-120.]); Hao et al. (2007[Hao, Y.-Z., Li, Z.-X. & Tian, J.-L. (2007). J. Mol. Catal. A Chem. 265, 258-267.]); Gao et al. (2008[Gao, E. J., Yin, H. X., Zhang, W. Z., Wang, K. H., Gu, X. F., Zhu, M. C., Wu, Q., Liu, L. & Sun, Y. G. (2008). Koord. Khim. 34, 516-521.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C5H8NO4)2]

  • Mr = 398.66

  • Triclinic, P 1

  • a = 4.8858 (3) Å

  • b = 5.1605 (4) Å

  • c = 13.3651 (9) Å

  • α = 93.725 (6)°

  • β = 99.734 (6)°

  • γ = 104.245 (6)°

  • V = 319.90 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 200 K

  • 0.17 × 0.06 × 0.04 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.806, Tmax = 0.973

  • 4724 measured reflections

  • 2406 independent reflections

  • 2389 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.04

  • 2406 reflections

  • 208 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.74 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1146 Friedel pairs

  • Flack parameter: −0.02 (4)

Table 1
Selected bond lengths (Å)

Pd—N1 2.072 (9)
Pd—N2 2.005 (11)
Pd—O1 1.976 (8)
Pd—O5 2.024 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9⋯O6i 0.85 (2) 2.15 (4) 2.979 (15) 162 (8)
N2—H10⋯O5ii 0.85 (2) 2.43 (8) 3.121 (13) 138 (10)
O7—H16⋯O4iii 0.85 (2) 1.80 (2) 2.639 (6) 169 (7)
O3—H8⋯O8iv 0.86 (2) 1.79 (3) 2.640 (6) 167 (7)
N1—H1⋯O2v 0.85 (2) 2.15 (3) 2.996 (15) 170 (9)
N1—H2⋯O1vi 0.85 (2) 2.30 (8) 2.998 (13) 139 (10)
N1—H2⋯O5vii 0.85 (2) 2.42 (7) 3.117 (13) 140 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x-1, y+1, z+1; (iv) x+1, y-1, z-1; (v) x-1, y-1, z; (vi) x, y-1, z; (vii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, [Pd(C5H8NO4)2] (I), consists of a palladium(II) atom which is coordinated by two N and two O atoms of two chelating hydrogen glutamate ligands. The metal atom adopts a distorted square–planar coordination with the two N atoms and the two O atoms in mutual trans arrangements. The maximum deviation from the least squares plane through the atoms Pd, N1, N2, O1 and O5 is 0.026 Å for N2. The distances Pd—O (1.976 (8), 2.024 (7) Å) and Pd—N (2.005 (11), 2.072 (9) Å) are in agreement with the values observed for other Pd(II) amino acid derivatives, like cis-bis(L-tyrosinato)-palladium(II) hemihydrate (Jarzab et al., 1973), bis(L-tyrosinato)-palladium(II) (Sabat et al., 1979), bis(L-valinato)-palladium(II) monohydrate (Pletnev et al., 1992); Hao et al., 2007), cis-bis(L-aspartato-N,O)-palladium(II) (Gao et al., 2008) or bis(L-serinato)-palladium(II) (Vagg, 1979). For both the hydrogen glutatmate ligands, the five membered PdNC2O chelate rings adopt envelope conformations with a nearly coplanar arrangement of the Pd, O, C and N atoms at the flap positions.

The main conformational difference between both chelate rings arises from the orientation of the carboxyethyl groups. In the case of C2 the carboxyethyl group is in an axial position and for C7 an equatorially arrangend carboxyethyl group is observed (Fig. 1).

The packing of the complex units is supported by different types of hydrogen bonding interactions. The strongest hydrogen bridges are formed between the γ-carboxyl groups of neighbouring molecules. Consequently, R22(8) motifs are observed and the complex units are arranged in chains. Additionally, there are N—H···O hydrogen bridges of the type C11(4) and C11(5) which are formed between amino groups and oxygen atoms of adjacent α-carboxylate groups (Fig. 2)

Related literature top

For the synthesis, see: Spacu & Scherzer (1962). For the structures of related palladium complexes with amino acid ligands, see: Vagg (1979); Jarzab et al. (1973); Sabat et al. (1979); Pletnev et al. (1992); Hao et al. (2007); Gao et al. (2008).

Experimental top

The title compound was prepared from K2PdCl4 and sodium hydrogen glutamate according to a procedure described by Spacu & Scherzer (1962). For the growth of single crystals, the reaction mixture was stored at 278 K for several weeks.

Refinement top

C-bound H atoms of the hydrogen glutamate units were positioned geometrically and refinded using a riding model with Uiso(H) = 1.2 Ueq(C) [d(C—H) = 0.99 (for C–H) and 1.00 Å (for CH2)]. H atoms attached to N and O were located from difference fourier maps and refined with N—H distances fixed at 0.85 (2) Å (Uiso(H) = 1.2 Ueq(N)) and O—H distances fixed at 0.85 (2) and 0.86 (2) Å (Uiso(H) = 1.2 Ueq(O)).

Structure description top

The title compound, [Pd(C5H8NO4)2] (I), consists of a palladium(II) atom which is coordinated by two N and two O atoms of two chelating hydrogen glutamate ligands. The metal atom adopts a distorted square–planar coordination with the two N atoms and the two O atoms in mutual trans arrangements. The maximum deviation from the least squares plane through the atoms Pd, N1, N2, O1 and O5 is 0.026 Å for N2. The distances Pd—O (1.976 (8), 2.024 (7) Å) and Pd—N (2.005 (11), 2.072 (9) Å) are in agreement with the values observed for other Pd(II) amino acid derivatives, like cis-bis(L-tyrosinato)-palladium(II) hemihydrate (Jarzab et al., 1973), bis(L-tyrosinato)-palladium(II) (Sabat et al., 1979), bis(L-valinato)-palladium(II) monohydrate (Pletnev et al., 1992); Hao et al., 2007), cis-bis(L-aspartato-N,O)-palladium(II) (Gao et al., 2008) or bis(L-serinato)-palladium(II) (Vagg, 1979). For both the hydrogen glutatmate ligands, the five membered PdNC2O chelate rings adopt envelope conformations with a nearly coplanar arrangement of the Pd, O, C and N atoms at the flap positions.

The main conformational difference between both chelate rings arises from the orientation of the carboxyethyl groups. In the case of C2 the carboxyethyl group is in an axial position and for C7 an equatorially arrangend carboxyethyl group is observed (Fig. 1).

The packing of the complex units is supported by different types of hydrogen bonding interactions. The strongest hydrogen bridges are formed between the γ-carboxyl groups of neighbouring molecules. Consequently, R22(8) motifs are observed and the complex units are arranged in chains. Additionally, there are N—H···O hydrogen bridges of the type C11(4) and C11(5) which are formed between amino groups and oxygen atoms of adjacent α-carboxylate groups (Fig. 2)

For the synthesis, see: Spacu & Scherzer (1962). For the structures of related palladium complexes with amino acid ligands, see: Vagg (1979); Jarzab et al. (1973); Sabat et al. (1979); Pletnev et al. (1992); Hao et al. (2007); Gao et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probabiltiy level.
[Figure 2] Fig. 2. Arrangement of the hydrogen bonds around the complex unit. [Symmetry operators: (i) x + 1, y + 1, z; (ii) x, y + 1, z; (iii) x - 1, y + 1, z + 1; (iv) x + 1, y - 1, z - 1; (v) x - 1, y - 1, z; (vi) x, y - 1, z; (vii) x + 1, y, z; (viii) x - 1, y, z.]
Bis(hydrogen L-glutamato)palladium(II) top
Crystal data top
[Pd(C5H8NO4)2]Z = 1
Mr = 398.66F(000) = 201
Triclinic, P1Dx = 2.070 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8858 (3) ÅCell parameters from 7673 reflections
b = 5.1605 (4) Åθ = 3.1–29.3°
c = 13.3651 (9) ŵ = 1.49 mm1
α = 93.725 (6)°T = 200 K
β = 99.734 (6)°Prism, yellow
γ = 104.245 (6)°0.17 × 0.06 × 0.04 mm
V = 319.90 (4) Å3
Data collection top
Stoe IPDS 2T
diffractometer
2406 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2389 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω–scansh = 66
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
k = 66
Tmin = 0.806, Tmax = 0.973l = 1616
4724 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.1842P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2406 reflectionsΔρmax = 0.37 e Å3
208 parametersΔρmin = 0.74 e Å3
9 restraintsAbsolute structure: Flack (1983), 1146 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
[Pd(C5H8NO4)2]γ = 104.245 (6)°
Mr = 398.66V = 319.90 (4) Å3
Triclinic, P1Z = 1
a = 4.8858 (3) ÅMo Kα radiation
b = 5.1605 (4) ŵ = 1.49 mm1
c = 13.3651 (9) ÅT = 200 K
α = 93.725 (6)°0.17 × 0.06 × 0.04 mm
β = 99.734 (6)°
Data collection top
Stoe IPDS 2T
diffractometer
2406 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
2389 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.973Rint = 0.044
4724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.74 e Å3
2406 reflectionsAbsolute structure: Flack (1983), 1146 Friedel pairs
208 parametersAbsolute structure parameter: 0.02 (4)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.649 (3)0.240 (2)0.7428 (9)0.020 (3)
C20.478 (2)0.043 (2)0.7031 (8)0.015 (2)
H30.60760.14640.67910.017*
C30.2260 (11)0.0501 (11)0.6139 (4)0.0219 (11)
H40.11380.23950.59390.026*
H50.09710.04870.63940.026*
C40.3130 (13)0.0694 (11)0.5184 (4)0.0234 (11)
H60.14100.10140.47550.028*
H70.45460.24600.53980.028*
C50.4388 (11)0.1010 (11)0.4554 (4)0.0224 (11)
C60.125 (2)0.009 (2)1.0111 (8)0.018 (2)
C70.098 (2)0.272 (2)1.0603 (9)0.019 (2)
H110.26620.22441.10170.023*
C80.0210 (12)0.4448 (10)1.1299 (4)0.0213 (11)
H120.20960.46041.09380.026*
H130.11100.62791.14470.026*
C90.0580 (13)0.3289 (13)1.2308 (4)0.0249 (12)
H140.17940.14141.21620.030*
H150.13250.32541.26940.030*
C100.1944 (12)0.4914 (11)1.2950 (4)0.0210 (11)
N10.345 (2)0.179 (2)0.7842 (7)0.018 (2)
H20.464 (16)0.25 (2)0.820 (7)0.022*
H10.196 (12)0.311 (12)0.767 (7)0.022*
N20.194 (2)0.405 (2)0.9716 (8)0.020 (2)
H100.054 (15)0.46 (2)0.944 (8)0.024*
H90.346 (13)0.526 (13)0.999 (7)0.024*
O10.5808 (17)0.3460 (16)0.8246 (6)0.023 (2)
O20.8325 (17)0.3614 (16)0.6976 (6)0.0259 (16)
O30.3977 (9)0.0697 (8)0.3575 (3)0.0278 (8)
H80.503 (13)0.150 (12)0.328 (5)0.033*
O40.5723 (10)0.2598 (10)0.4909 (3)0.0289 (9)
O50.0695 (16)0.1097 (14)0.9320 (6)0.0206 (18)
O60.3437 (17)0.0908 (16)1.0453 (6)0.0237 (15)
O70.1369 (9)0.4718 (8)1.3941 (3)0.0267 (8)
H160.220 (15)0.553 (12)1.432 (5)0.032*
O80.3538 (9)0.6250 (9)1.2573 (3)0.0319 (9)
Pd0.26234 (18)0.11739 (15)0.87796 (9)0.01627 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (6)0.011 (5)0.029 (6)0.004 (4)0.005 (5)0.001 (4)
C20.007 (4)0.025 (4)0.014 (4)0.007 (3)0.004 (3)0.003 (3)
C30.017 (2)0.026 (3)0.023 (3)0.007 (2)0.003 (2)0.000 (2)
C40.027 (3)0.024 (3)0.021 (3)0.011 (2)0.005 (2)0.002 (2)
C50.017 (3)0.025 (3)0.022 (3)0.001 (2)0.004 (2)0.001 (2)
C60.014 (5)0.024 (6)0.015 (5)0.009 (5)0.001 (4)0.001 (4)
C70.012 (4)0.016 (4)0.027 (4)0.000 (3)0.002 (3)0.003 (3)
C80.028 (3)0.017 (2)0.020 (3)0.004 (2)0.010 (2)0.001 (2)
C90.027 (3)0.027 (3)0.023 (3)0.009 (3)0.008 (3)0.001 (2)
C100.021 (3)0.026 (3)0.019 (3)0.007 (2)0.008 (2)0.003 (2)
N10.020 (5)0.016 (5)0.018 (4)0.004 (4)0.006 (4)0.009 (3)
N20.015 (5)0.022 (5)0.027 (5)0.005 (4)0.006 (4)0.013 (4)
O10.028 (4)0.023 (5)0.019 (4)0.010 (4)0.003 (3)0.006 (4)
O20.024 (3)0.023 (3)0.029 (3)0.001 (2)0.011 (2)0.001 (2)
O30.037 (2)0.033 (2)0.0169 (18)0.0129 (18)0.0092 (16)0.0034 (16)
O40.035 (3)0.038 (3)0.021 (2)0.022 (2)0.0092 (19)0.003 (2)
O50.018 (4)0.013 (4)0.031 (4)0.000 (3)0.010 (3)0.002 (3)
O60.021 (3)0.024 (3)0.026 (3)0.003 (2)0.007 (2)0.004 (2)
O70.031 (2)0.035 (2)0.0165 (18)0.0136 (18)0.0065 (16)0.0001 (16)
O80.035 (2)0.048 (3)0.020 (2)0.023 (2)0.0071 (17)0.0018 (18)
Pd0.01683 (17)0.01537 (15)0.01715 (16)0.00487 (11)0.00451 (11)0.00026 (10)
Geometric parameters (Å, º) top
C1—O21.231 (14)C7—H111.0000
C1—O11.318 (14)C8—C91.530 (7)
C1—C21.508 (17)C8—H120.9900
C2—N11.483 (16)C8—H130.9900
C2—C31.553 (11)C9—C101.503 (8)
C2—H31.0000C9—H140.9900
C3—C41.532 (7)C9—H150.9900
C3—H40.9900C10—O81.230 (7)
C3—H50.9900C10—O71.323 (7)
C4—C51.485 (7)Pd—N12.072 (9)
C4—H60.9900N1—H20.85 (2)
C4—H70.9900N1—H10.85 (2)
C5—O41.238 (7)Pd—N22.005 (11)
C5—O31.316 (7)N2—H100.85 (2)
C6—O61.243 (14)N2—H90.85 (2)
C6—O51.289 (14)Pd—O11.976 (8)
C6—C71.538 (16)O3—H80.86 (2)
C7—N21.493 (16)O5—Pd2.024 (7)
C7—C81.529 (12)O7—H160.85 (2)
O2—C1—O1124.1 (11)C9—C8—H12109.1
O2—C1—C2120.1 (10)C7—C8—H13109.1
O1—C1—C2115.7 (11)C9—C8—H13109.1
N1—C2—C1110.6 (9)H12—C8—H13107.8
N1—C2—C3106.2 (8)C10—C9—C8111.8 (5)
C1—C2—C3111.7 (9)C10—C9—H14109.3
N1—C2—H3109.4C8—C9—H14109.3
C1—C2—H3109.4C10—C9—H15109.3
C3—C2—H3109.4C8—C9—H15109.3
C4—C3—C2115.7 (5)H14—C9—H15107.9
C4—C3—H4108.4O8—C10—O7123.0 (5)
C2—C3—H4108.4O8—C10—C9122.2 (5)
C4—C3—H5108.4O7—C10—C9114.8 (5)
C2—C3—H5108.4C2—N1—Pd106.8 (8)
H4—C3—H5107.4C2—N1—H2110 (6)
C5—C4—C3114.6 (4)Pd—N1—H2108 (8)
C5—C4—H6108.6C2—N1—H1119 (7)
C3—C4—H6108.6Pd—N1—H1110 (7)
C5—C4—H7108.6H2—N1—H1102 (9)
C3—C4—H7108.6C7—N2—Pd106.3 (7)
H6—C4—H7107.6C7—N2—H10105 (7)
O4—C5—O3122.1 (5)Pd—N2—H10111 (9)
O4—C5—C4123.5 (5)C7—N2—H9103 (7)
O3—C5—C4114.5 (5)Pd—N2—H9114 (8)
O6—C6—O5120.4 (11)H10—N2—H9115 (10)
O6—C6—C7123.5 (10)C1—O1—Pd116.3 (8)
O5—C6—C7116.1 (10)C5—O3—H8109 (5)
N2—C7—C8114.0 (9)C6—O5—Pd113.1 (8)
N2—C7—C6104.2 (10)C10—O7—H16117 (5)
C8—C7—C6112.8 (8)O1—Pd—N297.7 (4)
N2—C7—H11108.6O1—Pd—O5178.6 (4)
C8—C7—H11108.6N2—Pd—O581.3 (4)
C6—C7—H11108.6O1—Pd—N181.7 (4)
C7—C8—C9112.6 (6)N2—Pd—N1178.3 (6)
C7—C8—H12109.1O5—Pd—N199.3 (4)
O2—C1—C2—N1161.2 (10)C8—C9—C10—O7155.6 (5)
O1—C1—C2—N120.8 (13)C1—C2—N1—Pd30.8 (10)
O2—C1—C2—C380.7 (12)C3—C2—N1—Pd90.6 (8)
O1—C1—C2—C397.3 (11)C8—C7—N2—Pd168.6 (6)
N1—C2—C3—C4177.5 (6)C6—C7—N2—Pd45.3 (9)
C1—C2—C3—C461.8 (10)O2—C1—O1—Pd176.4 (9)
C2—C3—C4—C574.0 (8)C2—C1—O1—Pd1.5 (12)
C3—C4—C5—O428.6 (8)O6—C6—O5—Pd171.2 (8)
C3—C4—C5—O3151.5 (5)C7—C6—O5—Pd10.6 (11)
O6—C6—C7—N2144.1 (10)C1—O1—Pd—N2166.0 (8)
O5—C6—C7—N237.8 (12)C1—O1—Pd—N115.7 (8)
O6—C6—C7—C820.0 (15)C7—N2—Pd—O1147.4 (7)
O5—C6—C7—C8161.8 (8)C7—N2—Pd—O533.7 (7)
N2—C7—C8—C9168.1 (8)C6—O5—Pd—N213.5 (7)
C6—C7—C8—C973.4 (10)C6—O5—Pd—N1164.8 (7)
C7—C8—C9—C10176.1 (6)C2—N1—Pd—O125.3 (7)
C8—C9—C10—O826.5 (8)C2—N1—Pd—O5153.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···O6i0.85 (2)2.15 (4)2.979 (15)162 (8)
N2—H10···O5ii0.85 (2)2.43 (8)3.121 (13)138 (10)
O7—H16···O4iii0.85 (2)1.80 (2)2.639 (6)169 (7)
O3—H8···O8iv0.86 (2)1.79 (3)2.640 (6)167 (7)
N1—H1···O2v0.85 (2)2.15 (3)2.996 (15)170 (9)
N1—H2···O1vi0.85 (2)2.30 (8)2.998 (13)139 (10)
N1—H2···O5vii0.85 (2)2.42 (7)3.117 (13)140 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1, y+1, z+1; (iv) x+1, y1, z1; (v) x1, y1, z; (vi) x, y1, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C5H8NO4)2]
Mr398.66
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)4.8858 (3), 5.1605 (4), 13.3651 (9)
α, β, γ (°)93.725 (6), 99.734 (6), 104.245 (6)
V3)319.90 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.17 × 0.06 × 0.04
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2009)
Tmin, Tmax0.806, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
4724, 2406, 2389
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.04
No. of reflections2406
No. of parameters208
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.74
Absolute structureFlack (1983), 1146 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd—N12.072 (9)Pd—O11.976 (8)
Pd—N22.005 (11)O5—Pd2.024 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···O6i0.85 (2)2.15 (4)2.979 (15)162 (8)
N2—H10···O5ii0.85 (2)2.43 (8)3.121 (13)138 (10)
O7—H16···O4iii0.85 (2)1.80 (2)2.639 (6)169 (7)
O3—H8···O8iv0.86 (2)1.79 (3)2.640 (6)167 (7)
N1—H1···O2v0.85 (2)2.15 (3)2.996 (15)170 (9)
N1—H2···O1vi0.85 (2)2.30 (8)2.998 (13)139 (10)
N1—H2···O5vii0.85 (2)2.42 (7)3.117 (13)140 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1, y+1, z+1; (iv) x+1, y1, z1; (v) x1, y1, z; (vi) x, y1, z; (vii) x+1, y, z.
 

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, E. J., Yin, H. X., Zhang, W. Z., Wang, K. H., Gu, X. F., Zhu, M. C., Wu, Q., Liu, L. & Sun, Y. G. (2008). Koord. Khim. 34, 516–521.  CrossRef CAS Google Scholar
First citationHao, Y.-Z., Li, Z.-X. & Tian, J.-L. (2007). J. Mol. Catal. A Chem. 265, 258–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationJarzab, T. C., Hare, C. R. & Langs, D. A. (1973). Cryst. Struct. Commun. 2, 399–403.  CAS Google Scholar
First citationPletnev, V. Z., Zolotarev, Yu. A., Galitskii, N. M. & Verenich, A. I. (1992). Zh. Strukt. Khim. 33, 115–120.  CAS Google Scholar
First citationSabat, M., Jezowska, M. & Kozlowski, H. (1979). Inorg. Chim. Acta, 37, L511–L512.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpacu, P. & Scherzer, I. (1962). Z. Anorg. Allg. Chem. 319, 101–106.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVagg, R. S. (1979). Acta Cryst. B35, 341–344.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds