metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(5,7-di­methyl­quinolin-8-olato-κ2N,O)hafnium(IV) di­methyl­formamide disolvate

aDepartment of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: ViljoenJA@ufs.ac.za

(Received 13 September 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, [Hf(C11H10NO)4]·2C3H7NO, the HfIV atom is coordinated by four N,O-donating bidentate 5,7-dimethyl-8-quinolino­late (Ox) ligands arranged to give a distorted square-anti­prismatic coordination polyhedron. The average Hf—O and Hf—N distances are 2.098 and 2.298 Å, respectively, and the average O—Hf—N bite angle is 70.2°. The crystal packing is controlled by ππ inter­actions between Ox ligands of neighbouring mol­ecules, giving rise to a three-dimensional supra­molecular grid network. The inter­planar distances vary from 3.441 (1) to 3.509 (1) Å, while the centroid–centroid distances vary from 3.688 (2) to 3.759 (12) Å. A non-classical C—H⋯O hydrogen bond is observed between the complex and one of the solvate mol­ecules.

Related literature

For related literature on HfIV and ZrIV N,O- and O,O′-dike­to­nato complexes, see: Viljoen et al. (2008[Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.], 2009a[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1367-m1368.],b[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1514-m1515.], 2010a[Viljoen, J. A., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, m603-m604.],b[Viljoen, J. A., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, m1053-m1054.]); Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.], 2011[Steyn, M., Visser, H. G., Roodt, A. & Muller, T. J. (2011). Acta Cryst. E67, m1240-m1241.]). For relevant studies on N,O- and O,O′-bidentate ligands with other transition metal atoms, see: Graham et al. (1991[Graham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. & Leipoldt, J. G. (1991). Transition Met. Chem. 16, 193-195.]); Mtshali et al. (2006[Mtshali, T. N., Purcell, W., Visser, H. G. & Basson, S. S. (2006). Polyhedron, 25, 2415-2425.]); Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev.. doi:10.1080/0889311X.2011.593032]); Schutte et al. (2008[Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610-m1611.]); Steyn et al. (1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536, 197-205.]); Van Aswegen et al. (1991[Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Lamprecht, G. J., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369-371.]); Van der Westhuizen et al. (2010[Van der Westhuizen, H. J., Meijboom, R., Schutte, M. & Roodt, A. (2010). Inorg. Chem. 49, 9599-9608.]).

[Scheme 1]

Experimental

Crystal data
  • [Hf(C11H10NO)4]·2C3H7NO

  • Mr = 1013.48

  • Monoclinic, P 21 /c

  • a = 9.978 (2) Å

  • b = 16.059 (3) Å

  • c = 28.509 (5) Å

  • β = 101.582 (1)°

  • V = 4475.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 100 K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.576, Tmax = 0.673

  • 76225 measured reflections

  • 11107 independent reflections

  • 8976 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.04

  • 11107 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42⋯O5 0.93 2.55 3.348 (4) 144

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This study forms part of an ongoing research project that investigates the chelating behaviour of O,O'- and N,O-bidentate ligands with hafnium(IV) and zirconium(IV) for possible separation of these two metals (Steyn et al., (2008, 2011); Viljoen et al., (2008, 2009a, 2009b, 2010a, 2010b). If hafnium and zirconium show differences in their chelating behaviour, either by reaction rates, solubilities, coordination modes, equilibrium behaviour, etc., it could possibly be exploited as a novel separation technique for the two metals. The introduction of N,O-bidentate ligands with the oxine or aminovinylketone backbones significantly influences both steric and electronic properties of transition metals as illustrated by literature examples (Graham et al., 1991; Mtshali et al., 2006; Roodt et al., 2011; Schutte et al., 2008; Steyn et al., 1997; Van Aswegen et al., 1991; Van der Westhuizen et al., 2010).

Red parallelepiped-like crystals of the title compound crystallize with two dimethylformamide solvent molecules in the asymmetric unit (Figure 1). The structure of the title compound is composed of an eight-coordinate Hf(IV) atom in which the four N,O-donating bidentate ligands, 5,7-dimethyl-8-hydroxyquinoline (Ox-), are arranged around the metal atom to give a distorted square antiprismatic geometry. The Hf—O and Hf—N bond lengths vary from 2.094 (2) to 2.1036 (19) Å and 2.377 (2) to 2.413 (2) Å, respectivily, and the O—Hf—N bite angles vary from 69.58 (8) to 70.87 (1)°. Only one C—H···O hydrogen bonding interaction is observed between a solvent molecule and one of the oxygen atoms in the complex molecule (Table 1). The molecular units of the title compound are stablilized by ππ interactions between different Ox- ligands of neighbouring molecules, producing a three dimensional supramolecular grid network, with interplaner distances varying between 3.441 (1) and 3.509 (1) Å and centroid-to-centroid distances from 3.668 (2) to 3.759 (2) Å (Figure 2).

Related literature top

For related literature on Hf(IV) and Zr(IV) N,O- and O,O'-diketonato complexes, see: Viljoen et al. (2008, 2009a,b, 2010a,b); Steyn et al. (2008, 2011). For relevant studies on N,O- and O,O'-bidentate ligands with other transition metal atoms, see: Graham et al. (1991); Mtshali et al. (2006); Roodt et al. (2011); Schutte et al. (2008); Steyn et al. (1997); Van Aswegen et al. (1991); Van der Westhuizen et al. (2010).

Experimental top

Chemicals were purchased from Sigma-Aldrich and used as received. HfCl4 (206 mg, 0.64 mmol) was dissolved in a minimal amount of DMF. While stirring this solution at room temperature, another solution of 5,7-dimethyl-8-quinolinol (OxH, C11H11NO) (445 mg, 2.5 mmol) was dissolved in a minimal amount of DMF and slowly added to the HfCl4 solution, resulting in the formation of a bright yellow solution. The solution was left to stand for ca a week for reddish crystals to form.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. The highest residual electron density was located 1.34 Å from H33 and was essentially meaningless.

Structure description top

This study forms part of an ongoing research project that investigates the chelating behaviour of O,O'- and N,O-bidentate ligands with hafnium(IV) and zirconium(IV) for possible separation of these two metals (Steyn et al., (2008, 2011); Viljoen et al., (2008, 2009a, 2009b, 2010a, 2010b). If hafnium and zirconium show differences in their chelating behaviour, either by reaction rates, solubilities, coordination modes, equilibrium behaviour, etc., it could possibly be exploited as a novel separation technique for the two metals. The introduction of N,O-bidentate ligands with the oxine or aminovinylketone backbones significantly influences both steric and electronic properties of transition metals as illustrated by literature examples (Graham et al., 1991; Mtshali et al., 2006; Roodt et al., 2011; Schutte et al., 2008; Steyn et al., 1997; Van Aswegen et al., 1991; Van der Westhuizen et al., 2010).

Red parallelepiped-like crystals of the title compound crystallize with two dimethylformamide solvent molecules in the asymmetric unit (Figure 1). The structure of the title compound is composed of an eight-coordinate Hf(IV) atom in which the four N,O-donating bidentate ligands, 5,7-dimethyl-8-hydroxyquinoline (Ox-), are arranged around the metal atom to give a distorted square antiprismatic geometry. The Hf—O and Hf—N bond lengths vary from 2.094 (2) to 2.1036 (19) Å and 2.377 (2) to 2.413 (2) Å, respectivily, and the O—Hf—N bite angles vary from 69.58 (8) to 70.87 (1)°. Only one C—H···O hydrogen bonding interaction is observed between a solvent molecule and one of the oxygen atoms in the complex molecule (Table 1). The molecular units of the title compound are stablilized by ππ interactions between different Ox- ligands of neighbouring molecules, producing a three dimensional supramolecular grid network, with interplaner distances varying between 3.441 (1) and 3.509 (1) Å and centroid-to-centroid distances from 3.668 (2) to 3.759 (2) Å (Figure 2).

For related literature on Hf(IV) and Zr(IV) N,O- and O,O'-diketonato complexes, see: Viljoen et al. (2008, 2009a,b, 2010a,b); Steyn et al. (2008, 2011). For relevant studies on N,O- and O,O'-bidentate ligands with other transition metal atoms, see: Graham et al. (1991); Mtshali et al. (2006); Roodt et al. (2011); Schutte et al. (2008); Steyn et al. (1997); Van Aswegen et al. (1991); Van der Westhuizen et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the molecular title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Graphical illustration of ππ interaction and stacking between different Ox--ligands of neighboring molecules to form a three-dimensional network (displacement ellipsoids are drawn at the 50% probability level). Hydrogen atoms and solvent water molecules were omitted for clarity.
Tetrakis(5,7-dimethylquinolin-8-olato-κ2N,O)hafnium(IV) dimethylformamide disolvate top
Crystal data top
[Hf(C11H10NO)4]·2C3H7NOF(000) = 2064
Mr = 1013.48Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9967 reflections
a = 9.978 (2) Åθ = 3.1–28.1°
b = 16.059 (3) ŵ = 2.39 mm1
c = 28.509 (5) ÅT = 100 K
β = 101.582 (1)°Parallelepiped, reddish
V = 4475.2 (15) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
11107 independent reflections
Radiation source: fine-focus sealed tube8976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω– and φ–scansθmax = 28.3°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.576, Tmax = 0.673k = 2121
76225 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0224P)2 + 5.254P]
where P = (Fo2 + 2Fc2)/3
11107 reflections(Δ/σ)max = 0.004
581 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Hf(C11H10NO)4]·2C3H7NOV = 4475.2 (15) Å3
Mr = 1013.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.978 (2) ŵ = 2.39 mm1
b = 16.059 (3) ÅT = 100 K
c = 28.509 (5) Å0.26 × 0.22 × 0.18 mm
β = 101.582 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
11107 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
8976 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.673Rint = 0.058
76225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.04Δρmax = 1.44 e Å3
11107 reflectionsΔρmin = 0.67 e Å3
581 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.1539 (4)0.2498 (2)0.42031 (16)0.0448 (10)
H010.20350.28270.44450.054*
C020.3731 (4)0.1983 (3)0.40668 (19)0.0613 (13)
H02A0.40730.23450.43320.092*
H02B0.4070.21630.37910.092*
H02C0.4030.14240.41470.092*
C030.1559 (5)0.1477 (3)0.35772 (15)0.0507 (11)
H03A0.05890.15640.35290.076*
H03B0.17640.09050.36610.076*
H03C0.18680.16070.32880.076*
C040.7126 (3)0.2436 (2)0.44193 (14)0.0327 (8)
H040.72750.29640.43060.039*
C050.7017 (4)0.0957 (2)0.42779 (13)0.0367 (9)
H05A0.68510.09610.45980.055*
H05B0.78430.06540.42720.055*
H05C0.62630.06950.40680.055*
C060.7343 (4)0.1912 (2)0.36369 (13)0.0416 (9)
H06A0.76010.24780.35920.062*
H06B0.65020.17870.34190.062*
H06C0.80490.15440.35770.062*
C110.3746 (3)0.42689 (19)0.76399 (10)0.0205 (6)
H110.28390.40980.75950.025*
C120.4259 (4)0.48198 (19)0.80169 (11)0.0273 (8)
H120.36850.50170.82120.033*
C130.5599 (4)0.50671 (19)0.80984 (11)0.0267 (8)
H130.59290.54370.83460.032*
C140.6479 (3)0.47604 (17)0.78070 (10)0.0200 (6)
C150.7893 (3)0.49382 (18)0.78624 (11)0.0237 (7)
C0150.8620 (4)0.54853 (19)0.82691 (11)0.0310 (8)
H1A0.95740.55210.82580.047*
H1B0.85220.52480.8570.047*
H1C0.82250.60330.82370.047*
C160.8590 (3)0.45965 (19)0.75367 (11)0.0246 (7)
H160.95240.470.75790.03*
C0170.8763 (3)0.37667 (19)0.67860 (11)0.0220 (7)
H1D0.97180.38860.68950.033*
H1E0.84430.40270.64810.033*
H1F0.86330.31750.67550.033*
C170.7972 (3)0.40981 (17)0.71426 (10)0.0181 (6)
C180.6598 (3)0.39250 (16)0.70831 (10)0.0158 (6)
C190.5860 (3)0.42315 (17)0.74224 (10)0.0173 (6)
C210.6353 (3)0.19763 (17)0.73648 (10)0.0154 (6)
H210.69050.21730.71620.018*
C220.6915 (3)0.14223 (17)0.77322 (10)0.0181 (6)
H220.78170.12460.77660.022*
C230.6120 (3)0.11425 (17)0.80407 (10)0.0177 (6)
H230.64880.0780.82870.021*
C240.4751 (3)0.14027 (16)0.79851 (10)0.0146 (6)
C250.3821 (3)0.11410 (17)0.82769 (10)0.0168 (6)
C0250.4293 (3)0.05752 (18)0.87035 (10)0.0204 (6)
H2A0.35240.04260.88410.031*
H2B0.4960.0860.89380.031*
H2C0.46940.00810.86010.031*
C260.2499 (3)0.14117 (18)0.81527 (10)0.0190 (6)
H260.18940.12430.83430.023*
C0270.0485 (3)0.2153 (2)0.76270 (12)0.0283 (8)
H2D0.00480.18310.73550.042*
H2E0.0390.27350.75510.042*
H2F0.00640.20350.78940.042*
C270.1978 (3)0.19314 (18)0.77535 (10)0.0180 (6)
C280.2880 (3)0.22049 (17)0.74737 (10)0.0148 (6)
C290.4263 (3)0.19433 (16)0.75958 (9)0.0122 (5)
C310.0712 (3)0.26449 (17)0.60250 (10)0.0175 (6)
H310.04110.30280.62260.021*
C320.0253 (3)0.22841 (19)0.56515 (11)0.0238 (7)
H320.11770.24130.56160.029*
C330.0175 (3)0.17449 (18)0.53435 (11)0.0223 (7)
H330.04520.15230.50890.027*
C340.1571 (3)0.15222 (17)0.54098 (10)0.0188 (6)
C350.2163 (3)0.09796 (18)0.51084 (11)0.0221 (7)
C0350.1280 (3)0.05593 (19)0.46719 (11)0.0233 (7)
H3D0.18590.02970.44840.035*
H3E0.07180.0970.44810.035*
H3F0.07070.01470.47760.035*
C360.3541 (3)0.08390 (18)0.52293 (10)0.0215 (6)
H360.39270.04990.50280.026*
C0370.5934 (3)0.09776 (19)0.57447 (11)0.0246 (7)
H3A0.63610.12470.60370.037*
H3B0.63380.11760.54870.037*
H3C0.60630.03860.57770.037*
C370.4428 (3)0.11716 (17)0.56384 (10)0.0186 (6)
C380.3866 (3)0.16917 (16)0.59365 (10)0.0155 (6)
C390.2449 (3)0.18882 (17)0.58077 (10)0.0150 (6)
C410.4751 (3)0.33761 (17)0.55930 (10)0.0163 (6)
H410.54040.29660.56940.02*
C420.4644 (3)0.37153 (18)0.51340 (10)0.0192 (6)
H420.52050.35240.49330.023*
C430.3705 (3)0.43303 (17)0.49844 (10)0.0180 (6)
H430.36190.45510.46780.022*
C440.2867 (3)0.46324 (17)0.52910 (9)0.0141 (6)
C450.1898 (3)0.52914 (17)0.51813 (10)0.0170 (6)
C0450.1656 (3)0.57097 (19)0.46935 (10)0.0220 (7)
H4D0.0860.60590.46570.033*
H4E0.15160.52920.44470.033*
H4F0.24370.60420.46680.033*
C460.1203 (3)0.55275 (17)0.55295 (10)0.0171 (6)
H460.05710.59580.54590.021*
C470.1387 (3)0.51566 (16)0.59901 (10)0.0144 (6)
C0470.0584 (3)0.54758 (17)0.63478 (10)0.0172 (6)
H4A0.09410.52360.66560.026*
H4B0.0360.53230.62470.026*
H4C0.06610.60710.63680.026*
C480.2301 (3)0.45009 (16)0.60983 (9)0.0126 (5)
C490.3039 (3)0.42446 (16)0.57450 (9)0.0120 (5)
N10.4521 (3)0.39864 (14)0.73466 (8)0.0163 (5)
N20.5067 (2)0.22294 (14)0.72955 (8)0.0132 (5)
N30.2023 (2)0.24606 (14)0.61007 (8)0.0149 (5)
N40.3956 (2)0.36196 (13)0.58873 (8)0.0134 (5)
N50.7160 (3)0.18009 (16)0.41223 (10)0.0304 (7)
N60.2248 (3)0.20101 (19)0.39606 (12)0.0384 (7)
O10.58992 (19)0.34870 (11)0.67177 (6)0.0138 (4)
O20.2508 (2)0.26785 (12)0.70859 (7)0.0160 (4)
O30.4573 (2)0.20388 (11)0.63314 (7)0.0150 (4)
O40.25780 (19)0.41113 (11)0.65191 (6)0.0142 (4)
O50.6915 (3)0.23919 (16)0.48278 (10)0.0424 (7)
O60.0297 (3)0.25457 (18)0.41325 (11)0.0560 (8)
Hf10.388124 (12)0.307882 (7)0.666362 (4)0.01319 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.041 (2)0.030 (2)0.061 (3)0.0024 (18)0.006 (2)0.0053 (19)
C020.033 (2)0.057 (3)0.092 (4)0.001 (2)0.010 (2)0.017 (3)
C030.054 (3)0.058 (3)0.041 (2)0.000 (2)0.013 (2)0.004 (2)
C040.0207 (18)0.0263 (18)0.046 (2)0.0006 (14)0.0064 (16)0.0087 (16)
C050.045 (2)0.0272 (18)0.036 (2)0.0010 (16)0.0037 (17)0.0005 (15)
C060.054 (3)0.0322 (19)0.036 (2)0.0063 (18)0.0024 (18)0.0033 (17)
C110.0246 (17)0.0221 (15)0.0157 (14)0.0077 (13)0.0060 (12)0.0029 (12)
C120.046 (2)0.0231 (16)0.0135 (15)0.0150 (15)0.0085 (14)0.0008 (12)
C130.049 (2)0.0167 (15)0.0127 (15)0.0087 (15)0.0019 (14)0.0014 (12)
C140.0348 (19)0.0106 (13)0.0125 (14)0.0030 (12)0.0006 (13)0.0012 (11)
C150.0360 (19)0.0128 (14)0.0184 (15)0.0035 (13)0.0038 (14)0.0027 (12)
C0150.047 (2)0.0207 (16)0.0216 (17)0.0062 (15)0.0025 (15)0.0028 (13)
C160.0280 (18)0.0199 (15)0.0223 (16)0.0042 (13)0.0039 (14)0.0039 (13)
C0170.0176 (16)0.0263 (16)0.0212 (16)0.0026 (13)0.0015 (13)0.0025 (13)
C170.0196 (16)0.0140 (13)0.0193 (15)0.0023 (11)0.0007 (12)0.0042 (11)
C180.0237 (16)0.0103 (12)0.0131 (14)0.0024 (11)0.0032 (12)0.0036 (10)
C190.0261 (17)0.0114 (13)0.0136 (14)0.0024 (12)0.0020 (12)0.0013 (11)
C210.0144 (14)0.0158 (13)0.0168 (14)0.0010 (12)0.0051 (11)0.0004 (11)
C220.0170 (15)0.0171 (14)0.0204 (15)0.0042 (12)0.0047 (12)0.0029 (12)
C230.0242 (16)0.0141 (13)0.0130 (14)0.0016 (12)0.0003 (12)0.0026 (11)
C240.0198 (15)0.0115 (12)0.0119 (13)0.0010 (11)0.0021 (11)0.0010 (10)
C250.0255 (17)0.0136 (13)0.0120 (13)0.0042 (12)0.0051 (12)0.0004 (11)
C0250.0265 (17)0.0204 (15)0.0148 (14)0.0034 (12)0.0051 (12)0.0044 (12)
C260.0208 (16)0.0235 (15)0.0141 (14)0.0037 (12)0.0071 (12)0.0020 (12)
C0270.0179 (17)0.044 (2)0.0255 (17)0.0009 (14)0.0103 (14)0.0122 (15)
C270.0177 (15)0.0212 (14)0.0159 (14)0.0005 (12)0.0050 (11)0.0012 (12)
C280.0170 (15)0.0144 (13)0.0133 (13)0.0001 (11)0.0039 (11)0.0003 (11)
C290.0156 (14)0.0116 (12)0.0099 (12)0.0007 (11)0.0039 (10)0.0013 (11)
C310.0188 (16)0.0166 (14)0.0174 (15)0.0033 (12)0.0048 (12)0.0013 (11)
C320.0198 (17)0.0188 (15)0.0319 (18)0.0025 (13)0.0032 (14)0.0037 (13)
C330.0220 (17)0.0178 (15)0.0243 (16)0.0017 (12)0.0019 (13)0.0015 (12)
C340.0261 (17)0.0128 (13)0.0171 (14)0.0012 (12)0.0037 (12)0.0021 (11)
C350.0294 (18)0.0176 (15)0.0193 (15)0.0021 (13)0.0046 (13)0.0036 (12)
C0350.0262 (18)0.0232 (16)0.0201 (15)0.0014 (13)0.0040 (13)0.0075 (12)
C360.0322 (18)0.0143 (14)0.0195 (15)0.0040 (13)0.0089 (13)0.0044 (12)
C0370.0282 (18)0.0256 (16)0.0211 (16)0.0083 (14)0.0075 (14)0.0043 (13)
C370.0234 (16)0.0156 (14)0.0180 (15)0.0028 (12)0.0071 (12)0.0015 (11)
C380.0196 (15)0.0117 (13)0.0163 (14)0.0014 (11)0.0062 (12)0.0043 (11)
C390.0197 (15)0.0124 (12)0.0140 (13)0.0012 (12)0.0056 (11)0.0021 (11)
C410.0170 (15)0.0141 (13)0.0182 (14)0.0006 (11)0.0049 (12)0.0004 (11)
C420.0234 (16)0.0199 (14)0.0170 (15)0.0025 (12)0.0108 (12)0.0020 (12)
C430.0267 (17)0.0170 (14)0.0102 (13)0.0085 (12)0.0036 (12)0.0009 (11)
C440.0144 (14)0.0141 (13)0.0123 (13)0.0049 (11)0.0008 (11)0.0001 (11)
C450.0172 (15)0.0153 (13)0.0155 (14)0.0063 (11)0.0040 (12)0.0040 (11)
C0450.0195 (16)0.0205 (15)0.0218 (15)0.0018 (12)0.0054 (12)0.0095 (13)
C460.0123 (14)0.0126 (13)0.0234 (15)0.0003 (11)0.0039 (12)0.0053 (11)
C470.0127 (14)0.0126 (13)0.0170 (14)0.0012 (11)0.0012 (11)0.0025 (11)
C0470.0155 (15)0.0158 (13)0.0192 (15)0.0029 (11)0.0009 (12)0.0039 (11)
C480.0130 (14)0.0117 (12)0.0124 (13)0.0014 (10)0.0009 (11)0.0002 (10)
C490.0126 (14)0.0116 (12)0.0115 (13)0.0029 (11)0.0019 (10)0.0007 (10)
N10.0224 (14)0.0144 (11)0.0124 (12)0.0053 (10)0.0046 (10)0.0034 (9)
N20.0175 (13)0.0120 (10)0.0108 (11)0.0016 (9)0.0043 (10)0.0010 (9)
N30.0201 (13)0.0114 (11)0.0140 (12)0.0015 (10)0.0051 (10)0.0028 (9)
N40.0156 (12)0.0101 (10)0.0151 (12)0.0003 (9)0.0048 (10)0.0005 (9)
N50.0381 (17)0.0220 (14)0.0281 (15)0.0032 (12)0.0006 (13)0.0011 (12)
N60.0297 (17)0.0367 (17)0.049 (2)0.0018 (14)0.0087 (15)0.0067 (15)
O10.0174 (11)0.0137 (9)0.0104 (9)0.0009 (8)0.0030 (8)0.0010 (7)
O20.0151 (10)0.0195 (10)0.0140 (10)0.0038 (8)0.0042 (8)0.0054 (8)
O30.0185 (10)0.0130 (9)0.0134 (9)0.0023 (8)0.0029 (8)0.0009 (8)
O40.0186 (10)0.0147 (9)0.0098 (9)0.0050 (8)0.0041 (8)0.0018 (7)
O50.0346 (15)0.0446 (16)0.0445 (17)0.0015 (12)0.0002 (13)0.0210 (13)
O60.0421 (18)0.0466 (17)0.079 (2)0.0113 (14)0.0119 (16)0.0051 (16)
Hf10.01641 (6)0.01255 (6)0.01140 (6)0.00269 (5)0.00470 (4)0.00157 (5)
Geometric parameters (Å, º) top
C01—O61.218 (5)C027—H2D0.96
C01—N61.337 (5)C027—H2E0.96
C01—H010.93C027—H2F0.96
C02—N61.450 (5)C27—C281.389 (4)
C02—H02A0.96C28—O21.332 (3)
C02—H02B0.96C28—C291.417 (4)
C02—H02C0.96C29—N21.365 (3)
C03—N61.449 (5)C31—N31.316 (4)
C03—H03A0.96C31—C321.409 (4)
C03—H03B0.96C31—H310.93
C03—H03C0.96C32—C331.362 (4)
C04—O51.226 (4)C32—H320.93
C04—N51.330 (4)C33—C341.413 (4)
C04—H040.93C33—H330.93
C05—N51.442 (4)C34—C391.414 (4)
C05—H05A0.96C34—C351.432 (4)
C05—H05B0.96C35—C361.367 (4)
C05—H05C0.96C35—C0351.530 (4)
C06—N51.443 (5)C035—H3D0.96
C06—H06A0.96C035—H3E0.96
C06—H06B0.96C035—H3F0.96
C06—H06C0.96C36—C371.419 (4)
C11—N11.328 (4)C36—H360.93
C11—C121.407 (4)C037—C371.504 (4)
C11—H110.93C037—H3A0.96
C12—C131.368 (5)C037—H3B0.96
C12—H120.93C037—H3C0.96
C13—C141.414 (4)C37—C381.387 (4)
C13—H130.93C38—O31.325 (3)
C14—C151.417 (5)C38—C391.423 (4)
C14—C191.426 (4)C39—N31.366 (3)
C15—C161.381 (4)C41—N41.324 (3)
C15—C0151.518 (4)C41—C421.401 (4)
C015—H1A0.96C41—H410.93
C015—H1B0.96C42—C431.369 (4)
C015—H1C0.96C42—H420.93
C16—C171.416 (4)C43—C441.412 (4)
C16—H160.93C43—H430.93
C017—C171.504 (4)C44—C491.415 (4)
C017—H1D0.96C44—C451.425 (4)
C017—H1E0.96C45—C461.373 (4)
C017—H1F0.96C45—C0451.519 (4)
C17—C181.375 (4)C045—H4D0.96
C18—O11.332 (3)C045—H4E0.96
C18—C191.417 (4)C045—H4F0.96
C19—N11.367 (4)C46—C471.420 (4)
C21—N21.322 (4)C46—H460.93
C21—C221.403 (4)C47—C481.387 (4)
C21—H210.93C47—C0471.507 (4)
C22—C231.373 (4)C047—H4A0.96
C22—H220.93C047—H4B0.96
C23—C241.407 (4)C047—H4C0.96
C23—H230.93C48—O41.332 (3)
C24—C291.416 (4)C48—C491.423 (4)
C24—C251.428 (4)C49—N41.364 (3)
C25—C261.367 (4)N1—Hf12.413 (2)
C25—C0251.515 (4)N2—Hf12.377 (2)
C025—H2A0.96N3—Hf12.409 (2)
C025—H2B0.96N4—Hf12.393 (2)
C025—H2C0.96O1—Hf12.094 (2)
C26—C271.423 (4)O2—Hf12.0981 (19)
C26—H260.93O3—Hf12.1036 (19)
C027—C271.503 (4)O4—Hf12.0964 (19)
O6—C01—N6125.3 (4)C33—C34—C35126.0 (3)
O6—C01—H01117.3C39—C34—C35118.1 (3)
N6—C01—H01117.3C36—C35—C34117.7 (3)
N6—C02—H02A109.5C36—C35—C035121.2 (3)
N6—C02—H02B109.5C34—C35—C035121.1 (3)
H02A—C02—H02B109.5C35—C035—H3D109.5
N6—C02—H02C109.5C35—C035—H3E109.5
H02A—C02—H02C109.5H3D—C035—H3E109.5
H02B—C02—H02C109.5C35—C035—H3F109.5
N6—C03—H03A109.5H3D—C035—H3F109.5
N6—C03—H03B109.5H3E—C035—H3F109.5
H03A—C03—H03B109.5C35—C36—C37125.1 (3)
N6—C03—H03C109.5C35—C36—H36117.5
H03A—C03—H03C109.5C37—C36—H36117.5
H03B—C03—H03C109.5C37—C037—H3A109.5
O5—C04—N5126.3 (3)C37—C037—H3B109.5
O5—C04—H04116.9H3A—C037—H3B109.5
N5—C04—H04116.9C37—C037—H3C109.5
N5—C05—H05A109.5H3A—C037—H3C109.5
N5—C05—H05B109.5H3B—C037—H3C109.5
H05A—C05—H05B109.5C38—C37—C36117.9 (3)
N5—C05—H05C109.5C38—C37—C037120.7 (3)
H05A—C05—H05C109.5C36—C37—C037121.4 (3)
H05B—C05—H05C109.5O3—C38—C37124.2 (3)
N5—C06—H06A109.5O3—C38—C39117.2 (2)
N5—C06—H06B109.5C37—C38—C39118.6 (3)
H06A—C06—H06B109.5N3—C39—C34123.5 (3)
N5—C06—H06C109.5N3—C39—C38114.0 (2)
H06A—C06—H06C109.5C34—C39—C38122.5 (3)
H06B—C06—H06C109.5N4—C41—C42122.2 (3)
N1—C11—C12121.8 (3)N4—C41—H41118.9
N1—C11—H11119.1C42—C41—H41118.9
C12—C11—H11119.1C43—C42—C41119.4 (3)
C13—C12—C11120.4 (3)C43—C42—H42120.3
C13—C12—H12119.8C41—C42—H42120.3
C11—C12—H12119.8C42—C43—C44120.6 (3)
C12—C13—C14120.0 (3)C42—C43—H43119.7
C12—C13—H13120C44—C43—H43119.7
C14—C13—H13120C43—C44—C49115.9 (3)
C13—C14—C15125.9 (3)C43—C44—C45125.4 (3)
C13—C14—C19115.8 (3)C49—C44—C45118.7 (3)
C15—C14—C19118.3 (3)C46—C45—C44117.7 (3)
C16—C15—C14118.0 (3)C46—C45—C045121.9 (3)
C16—C15—C015121.0 (3)C44—C45—C045120.4 (3)
C14—C15—C015120.9 (3)C45—C045—H4D109.5
C15—C015—H1A109.5C45—C045—H4E109.5
C15—C015—H1B109.5H4D—C045—H4E109.5
H1A—C015—H1B109.5C45—C045—H4F109.5
C15—C015—H1C109.5H4D—C045—H4F109.5
H1A—C015—H1C109.5H4E—C045—H4F109.5
H1B—C015—H1C109.5C45—C46—C47124.2 (3)
C15—C16—C17124.1 (3)C45—C46—H46117.9
C15—C16—H16118C47—C46—H46117.9
C17—C16—H16118C48—C47—C46118.8 (3)
C17—C017—H1D109.5C48—C47—C047121.5 (2)
C17—C017—H1E109.5C46—C47—C047119.7 (2)
H1D—C017—H1E109.5C47—C047—H4A109.5
C17—C017—H1F109.5C47—C047—H4B109.5
H1D—C017—H1F109.5H4A—C047—H4B109.5
H1E—C017—H1F109.5C47—C047—H4C109.5
C18—C17—C16118.5 (3)H4A—C047—H4C109.5
C18—C17—C017119.4 (3)H4B—C047—H4C109.5
C16—C17—C017122.1 (3)O4—C48—C47124.4 (2)
O1—C18—C17123.8 (3)O4—C48—C49117.3 (2)
O1—C18—C19117.1 (3)C47—C48—C49118.2 (2)
C17—C18—C19119.2 (3)N4—C49—C44123.2 (2)
N1—C19—C18114.7 (2)N4—C49—C48114.5 (2)
N1—C19—C14123.5 (3)C44—C49—C48122.3 (2)
C18—C19—C14121.8 (3)C11—N1—C19118.4 (3)
N2—C21—C22122.5 (3)C11—N1—Hf1128.4 (2)
N2—C21—H21118.7C19—N1—Hf1113.17 (17)
C22—C21—H21118.7C21—N2—C29118.5 (2)
C23—C22—C21119.3 (3)C21—N2—Hf1127.59 (18)
C23—C22—H22120.3C29—N2—Hf1113.74 (17)
C21—C22—H22120.3C31—N3—C39118.2 (2)
C22—C23—C24120.2 (3)C31—N3—Hf1128.55 (19)
C22—C23—H23119.9C39—N3—Hf1113.09 (18)
C24—C23—H23119.9C41—N4—C49118.7 (2)
C23—C24—C29116.3 (2)C41—N4—Hf1127.79 (19)
C23—C24—C25125.2 (3)C49—N4—Hf1113.50 (17)
C29—C24—C25118.4 (3)C04—N5—C05120.5 (3)
C26—C25—C24117.5 (3)C04—N5—C06122.7 (3)
C26—C25—C025121.8 (3)C05—N5—C06116.8 (3)
C24—C25—C025120.7 (3)C01—N6—C03121.1 (3)
C25—C025—H2A109.5C01—N6—C02122.2 (4)
C25—C025—H2B109.5C03—N6—C02116.7 (4)
H2A—C025—H2B109.5C18—O1—Hf1124.59 (17)
C25—C025—H2C109.5C28—O2—Hf1123.09 (17)
H2A—C025—H2C109.5C38—O3—Hf1123.35 (17)
H2B—C025—H2C109.5C48—O4—Hf1123.83 (16)
C25—C26—C27124.9 (3)O1—Hf1—O4108.44 (8)
C25—C26—H26117.5O1—Hf1—O2141.52 (7)
C27—C26—H26117.5O4—Hf1—O284.51 (8)
C27—C027—H2D109.5O1—Hf1—O383.35 (8)
C27—C027—H2E109.5O4—Hf1—O3141.82 (7)
H2D—C027—H2E109.5O2—Hf1—O3109.03 (8)
C27—C027—H2F109.5O1—Hf1—N278.40 (8)
H2D—C027—H2F109.5O4—Hf1—N2142.90 (7)
H2E—C027—H2F109.5O2—Hf1—N270.87 (8)
C28—C27—C26118.0 (3)O3—Hf1—N274.17 (7)
C28—C27—C027120.8 (3)O1—Hf1—N475.30 (7)
C26—C27—C027121.1 (3)O4—Hf1—N470.39 (7)
O2—C28—C27123.5 (3)O2—Hf1—N4141.93 (8)
O2—C28—C29117.9 (2)O3—Hf1—N478.33 (7)
C27—C28—C29118.5 (3)N2—Hf1—N4143.72 (8)
N2—C29—C24123.0 (2)O1—Hf1—N3141.10 (7)
N2—C29—C28114.3 (2)O4—Hf1—N380.26 (8)
C24—C29—C28122.6 (2)O2—Hf1—N375.64 (8)
N3—C31—C32122.5 (3)O3—Hf1—N369.58 (8)
N3—C31—H31118.7N2—Hf1—N3117.89 (8)
C32—C31—H31118.7N4—Hf1—N372.32 (8)
C33—C32—C31119.5 (3)O1—Hf1—N169.92 (8)
C33—C32—H32120.2O4—Hf1—N174.58 (8)
C31—C32—H32120.2O2—Hf1—N179.61 (8)
C32—C33—C34120.2 (3)O3—Hf1—N1141.74 (8)
C32—C33—H33119.9N2—Hf1—N174.00 (8)
C34—C33—H33119.9N4—Hf1—N1118.34 (8)
C33—C34—C39115.9 (3)N3—Hf1—N1146.09 (8)
N1—C11—C12—C131.5 (4)C32—C31—N3—C390.9 (4)
C11—C12—C13—C140.8 (4)C32—C31—N3—Hf1173.9 (2)
C12—C13—C14—C15177.4 (3)C34—C39—N3—C314.0 (4)
C12—C13—C14—C193.2 (4)C38—C39—N3—C31176.2 (2)
C13—C14—C15—C16178.6 (3)C34—C39—N3—Hf1171.6 (2)
C19—C14—C15—C160.7 (4)C38—C39—N3—Hf18.2 (3)
C13—C14—C15—C0151.6 (4)C42—C41—N4—C492.6 (4)
C19—C14—C15—C015179.0 (3)C42—C41—N4—Hf1176.4 (2)
C14—C15—C16—C171.9 (4)C44—C49—N4—C411.9 (4)
C015—C15—C16—C17178.4 (3)C48—C49—N4—C41175.8 (2)
C15—C16—C17—C181.5 (4)C44—C49—N4—Hf1177.3 (2)
C15—C16—C17—C017177.6 (3)C48—C49—N4—Hf15.0 (3)
C16—C17—C18—O1177.7 (2)O5—C04—N5—C053.6 (6)
C017—C17—C18—O11.4 (4)O5—C04—N5—C06176.6 (3)
C16—C17—C18—C191.6 (4)O6—C01—N6—C030.0 (6)
C017—C17—C18—C19179.4 (3)O6—C01—N6—C02179.7 (4)
O1—C18—C19—N14.2 (4)C17—C18—O1—Hf1171.5 (2)
C17—C18—C19—N1176.5 (2)C19—C18—O1—Hf19.2 (3)
O1—C18—C19—C14175.1 (2)C27—C28—O2—Hf1179.5 (2)
C17—C18—C19—C144.2 (4)C29—C28—O2—Hf11.8 (3)
C13—C14—C19—N13.6 (4)C37—C38—O3—Hf1161.2 (2)
C15—C14—C19—N1177.0 (3)C39—C38—O3—Hf117.1 (3)
C13—C14—C19—C18175.7 (3)C47—C48—O4—Hf1176.5 (2)
C15—C14—C19—C183.8 (4)C49—C48—O4—Hf16.2 (3)
N2—C21—C22—C231.5 (4)C18—O1—Hf1—O472.3 (2)
C21—C22—C23—C240.7 (4)C18—O1—Hf1—O232.6 (2)
C22—C23—C24—C291.1 (4)C18—O1—Hf1—O3145.0 (2)
C22—C23—C24—C25178.7 (3)C18—O1—Hf1—N269.82 (19)
C23—C24—C25—C26175.7 (3)C18—O1—Hf1—N4135.4 (2)
C29—C24—C25—C261.9 (4)C18—O1—Hf1—N3169.79 (17)
C23—C24—C25—C0253.6 (4)C18—O1—Hf1—N17.20 (18)
C29—C24—C25—C025178.9 (2)C48—O4—Hf1—O172.7 (2)
C24—C25—C26—C270.3 (4)C48—O4—Hf1—O2144.5 (2)
C025—C25—C26—C27178.9 (3)C48—O4—Hf1—O330.4 (3)
C25—C26—C27—C281.7 (4)C48—O4—Hf1—N2167.82 (18)
C25—C26—C27—C027176.1 (3)C48—O4—Hf1—N46.44 (19)
C26—C27—C28—O2178.6 (3)C48—O4—Hf1—N368.1 (2)
C027—C27—C28—O20.7 (4)C48—O4—Hf1—N1134.8 (2)
C26—C27—C28—C290.9 (4)C28—O2—Hf1—O137.5 (3)
C027—C27—C28—C29176.9 (3)C28—O2—Hf1—O4150.5 (2)
C23—C24—C29—N22.2 (4)C28—O2—Hf1—O366.2 (2)
C25—C24—C29—N2180.0 (2)C28—O2—Hf1—N21.34 (19)
C23—C24—C29—C28175.0 (3)C28—O2—Hf1—N4161.55 (18)
C25—C24—C29—C282.7 (4)C28—O2—Hf1—N3128.2 (2)
O2—C28—C29—N21.0 (4)C28—O2—Hf1—N175.2 (2)
C27—C28—C29—N2178.8 (2)C38—O3—Hf1—O1136.1 (2)
O2—C28—C29—C24176.5 (2)C38—O3—Hf1—O424.6 (2)
C27—C28—C29—C241.3 (4)C38—O3—Hf1—O281.4 (2)
N3—C31—C32—C332.4 (4)C38—O3—Hf1—N2144.1 (2)
C31—C32—C33—C342.6 (4)C38—O3—Hf1—N459.77 (19)
C32—C33—C34—C390.3 (4)C38—O3—Hf1—N315.51 (19)
C32—C33—C34—C35178.5 (3)C38—O3—Hf1—N1178.84 (18)
C33—C34—C35—C36179.8 (3)C21—N2—Hf1—O128.5 (2)
C39—C34—C35—C361.0 (4)C29—N2—Hf1—O1155.80 (19)
C33—C34—C35—C0351.4 (5)C21—N2—Hf1—O4133.8 (2)
C39—C34—C35—C035179.9 (3)C29—N2—Hf1—O450.5 (2)
C34—C35—C36—C371.8 (5)C21—N2—Hf1—O2175.0 (2)
C035—C35—C36—C37177.1 (3)C29—N2—Hf1—O20.71 (17)
C35—C36—C37—C381.1 (4)C21—N2—Hf1—O357.8 (2)
C35—C36—C37—C037179.6 (3)C29—N2—Hf1—O3117.90 (19)
C36—C37—C38—O3179.4 (2)C21—N2—Hf1—N415.6 (3)
C037—C37—C38—O31.3 (4)C29—N2—Hf1—N4160.04 (16)
C36—C37—C38—C392.3 (4)C21—N2—Hf1—N3113.7 (2)
C037—C37—C38—C39177.0 (3)C29—N2—Hf1—N361.99 (19)
C33—C34—C39—N33.7 (4)C21—N2—Hf1—N1100.7 (2)
C35—C34—C39—N3175.2 (3)C29—N2—Hf1—N183.61 (18)
C33—C34—C39—C38176.6 (3)C41—N4—Hf1—O158.9 (2)
C35—C34—C39—C384.5 (4)C49—N4—Hf1—O1122.02 (19)
O3—C38—C39—N33.8 (3)C41—N4—Hf1—O4175.0 (2)
C37—C38—C39—N3174.5 (2)C49—N4—Hf1—O45.88 (17)
O3—C38—C39—C34176.4 (2)C41—N4—Hf1—O2133.3 (2)
C37—C38—C39—C345.2 (4)C49—N4—Hf1—O245.8 (2)
N4—C41—C42—C431.2 (4)C41—N4—Hf1—O327.2 (2)
C41—C42—C43—C441.1 (4)C49—N4—Hf1—O3151.88 (19)
C42—C43—C44—C491.8 (4)C41—N4—Hf1—N214.0 (3)
C42—C43—C44—C45177.3 (3)C49—N4—Hf1—N2166.89 (16)
C43—C44—C45—C46177.6 (3)C41—N4—Hf1—N399.3 (2)
C49—C44—C45—C461.4 (4)C49—N4—Hf1—N379.83 (19)
C43—C44—C45—C0452.5 (4)C41—N4—Hf1—N1115.8 (2)
C49—C44—C45—C045178.5 (2)C49—N4—Hf1—N165.0 (2)
C44—C45—C46—C470.1 (4)C31—N3—Hf1—O1138.2 (2)
C045—C45—C46—C47179.8 (3)C39—N3—Hf1—O136.8 (2)
C45—C46—C47—C481.5 (4)C31—N3—Hf1—O430.8 (2)
C45—C46—C47—C047179.0 (3)C39—N3—Hf1—O4144.20 (18)
C46—C47—C48—O4178.9 (2)C31—N3—Hf1—O255.9 (2)
C047—C47—C48—O41.6 (4)C39—N3—Hf1—O2129.03 (18)
C46—C47—C48—C491.6 (4)C31—N3—Hf1—O3173.0 (2)
C047—C47—C48—C49178.9 (2)C39—N3—Hf1—O312.00 (17)
C43—C44—C49—N40.3 (4)C31—N3—Hf1—N2114.7 (2)
C45—C44—C49—N4178.8 (2)C39—N3—Hf1—N270.24 (19)
C43—C44—C49—C48177.8 (2)C31—N3—Hf1—N4103.2 (2)
C45—C44—C49—C481.3 (4)C39—N3—Hf1—N471.81 (18)
O4—C48—C49—N40.1 (4)C31—N3—Hf1—N111.5 (3)
C47—C48—C49—N4177.4 (2)C39—N3—Hf1—N1173.43 (16)
O4—C48—C49—C44177.8 (2)C11—N1—Hf1—O1175.0 (2)
C47—C48—C49—C440.2 (4)C19—N1—Hf1—O14.19 (17)
C12—C11—N1—C191.2 (4)C11—N1—Hf1—O458.2 (2)
C12—C11—N1—Hf1178.0 (2)C19—N1—Hf1—O4120.94 (19)
C18—C19—N1—C11177.9 (2)C11—N1—Hf1—O228.9 (2)
C14—C19—N1—C111.5 (4)C19—N1—Hf1—O2151.94 (19)
C18—C19—N1—Hf11.4 (3)C11—N1—Hf1—O3136.5 (2)
C14—C19—N1—Hf1179.3 (2)C19—N1—Hf1—O344.3 (2)
C22—C21—N2—C290.4 (4)C11—N1—Hf1—N2101.8 (2)
C22—C21—N2—Hf1175.1 (2)C19—N1—Hf1—N279.04 (18)
C24—C29—N2—C211.5 (4)C11—N1—Hf1—N4115.2 (2)
C28—C29—N2—C21176.0 (2)C19—N1—Hf1—N463.9 (2)
C24—C29—N2—Hf1177.6 (2)C11—N1—Hf1—N314.6 (3)
C28—C29—N2—Hf10.1 (3)C19—N1—Hf1—N3164.50 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42···O50.932.553.348 (4)144

Experimental details

Crystal data
Chemical formula[Hf(C11H10NO)4]·2C3H7NO
Mr1013.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.978 (2), 16.059 (3), 28.509 (5)
β (°) 101.582 (1)
V3)4475.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.576, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
76225, 11107, 8976
Rint0.058
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.04
No. of reflections11107
No. of parameters581
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42···O50.932.553.348 (4)143.8
 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa and the Advanced Metals Initiative (AMI) as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGraham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. & Leipoldt, J. G. (1991). Transition Met. Chem. 16, 193–195.  CSD CrossRef CAS Web of Science Google Scholar
First citationMtshali, T. N., Purcell, W., Visser, H. G. & Basson, S. S. (2006). Polyhedron, 25, 2415–2425.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev.. doi:10.1080/0889311X.2011.593032  Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536, 197–205.  CrossRef Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteyn, M., Visser, H. G., Roodt, A. & Muller, T. J. (2011). Acta Cryst. E67, m1240–m1241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVan Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Lamprecht, G. J., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369–371.  CrossRef CAS Google Scholar
First citationVan der Westhuizen, H. J., Meijboom, R., Schutte, M. & Roodt, A. (2010). Inorg. Chem. 49, 9599–9608.  CrossRef CAS PubMed Google Scholar
First citationViljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, m603–m604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, m1053–m1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1367–m1368.  Web of Science CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1514–m1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds