organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)-3-methyl-5,6-di­phenyl-2,3-di­hydro­pyrazine

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, K.S.R. College of Engineering, Tiruchengode 637 215, Tamilnadu, India, cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and eDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 3 September 2011; accepted 6 September 2011; online 14 September 2011)

In the title mol­ecule, C23H19ClN2, the heterocyclic ring adopts a screw-boat conformation, with all substituents equatorial. The benzene ring at position 2 makes dihedral angles of 77.88 (12) and 76.31 (12)° with the phenyl rings at positions 5 and 6, respectively. The dihedral angle between the phenyl rings at positions 5 and 6 is 70.05 (10)°. The Cl atom is disordered over two positions with occupancy factors of 0.946 (5) and 0.054 (5). In the crystal, C—H⋯π inter­actions are found.

Related literature

For the biological properties of heterocyclic ring systems having a dihydro­pyrazine nucleus, see: Sondhi et al. (2005[Sondhi, S. M., Singh, N., Rajvanshi, S., Johar, M., Shukla, R., Raghubir, R. & Dastidar, S. G. (2005). Indian J. Chem. Sect. B, 44, 387-399.]). For the use of dihydro­pyrazines, with reference to DNA breakage activity, see: Takechi et al. (2011[Takechi, S., Kashige, N., Ishida, T. & Yamaguchi, T. (2011). J. Basic Appl. Chem. 1, 1-7.]). For the inhibition of the growth of Escherichia coli, see: Takeda et al. (2005[Takeda, O., Takechi, S., Katoh, T. & Yamaguchi, T. (2005). Biol. Pharm. Bull. 28, 1161-1164.]). For a closely related crystal structure, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o546.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19ClN2

  • Mr = 358.85

  • Monoclinic, P 21 /c

  • a = 10.5675 (8) Å

  • b = 19.7014 (9) Å

  • c = 10.4207 (7) Å

  • β = 118.479 (9)°

  • V = 1907.0 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.82 mm−1

  • T = 298 K

  • 0.25 × 0.14 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.659, Tmax = 1.000

  • 22812 measured reflections

  • 3831 independent reflections

  • 3092 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.04

  • 3831 reflections

  • 240 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C21–C26, C51–C56 and C61–C66 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cg4i 0.93 2.80 3.643 (3) 152
C53—H53⋯Cg2ii 0.93 2.99 3.873 (4) 159
C64—H64⋯Cg3iii 0.93 2.88 3.729 (2) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic ring systems having the dihydropyrazine nucleus have aroused great interest in the past and recent years due to their wide variety of biological properties (Sondhi et al., 2005). Dihydropyrazines are used to break DNA strands and inhibit bacterial growth (Takechi et al., 2011). In addition, these compounds have inhibited the growth of Escherichia coli (Takeda et al., 2005). Anuradha et al. (2009) have reported the crystal structure of 2-methyl-3,5,6-triphenyl-2,3-dihydropyrazine, in which the heterocyclic ring adopts a screw-boat conformation.

In the title molecule, C23H19ClN2, the heterocyclic ring adopts a screw-boat conformation, with all substituents equatorial. The benzene ring at position 2 makes dihedral angles of 77.88 (12)° and 76.31 (12)° with the phenyl rings at position 5 and 6, respectively. The dihedral angle between the phenyl rings at positions 5 and 6 is 70.05 (10)° (Fig. 1). A C24—H24···π interaction involving the phenyl (C61—C66) ring, a C53—H53···π interaction involving the benzene (C21—C26) ring and a C64—H64···π interaction involving the phenyl (C51—C56) ring are also found in the crystal structure (Table 1). The Cl atom is disordered over two positions. Its occupancy ratio refined to 0.946 (5):0.054 (5).

Related literature top

For the biological properties of heterocyclic ring systems having a dihydropyrazine nucleus, see: Sondhi et al. (2005). For the use of dihydropyrazines, with reference to DNA breakage activity, see: Takechi et al. (2011). For the inhibition of the growth of Escherichia coli, see: Takeda et al. (2005). For a closely related crystal structure, see: Anuradha et al. (2009).

Experimental top

To a homogeneous solution of benzil (1.05 g, 0.005 mol) and 1-methyl-2-(2'-chlorophenyl)-ethanediamine dihydrochloride (1.29 g, 0.005 mol) in ethanol (20 ml), sodium acetate trihydrate (2.04 g, 0.015 mol) was added. The precipitated sodium chloride was filtered off and the filtrate was refluxed for 2 h. On completion of the reaction, as indicated by TLC, the reaction mixture was poured into crushed ice and the resulting solid was filtered and purified by column chromatography on silica gel. Elution with benzene-petroleum ether (3:2 v/v) at 333–353 K gave the pure product (1.68 g) in 76% yield. Crystals suitable for X-ray diffraction studies were obtained by recrystallization of the pure product from ethyl acetate.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp2—H = 0.93 Å, C(methine)—H = 0.98 Å and C(methyl)—H = 0.96 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. The Cl atom is disordered over two positions. Its occupancy ratio refined to 0.946 (5):0.054 (5).

Structure description top

Heterocyclic ring systems having the dihydropyrazine nucleus have aroused great interest in the past and recent years due to their wide variety of biological properties (Sondhi et al., 2005). Dihydropyrazines are used to break DNA strands and inhibit bacterial growth (Takechi et al., 2011). In addition, these compounds have inhibited the growth of Escherichia coli (Takeda et al., 2005). Anuradha et al. (2009) have reported the crystal structure of 2-methyl-3,5,6-triphenyl-2,3-dihydropyrazine, in which the heterocyclic ring adopts a screw-boat conformation.

In the title molecule, C23H19ClN2, the heterocyclic ring adopts a screw-boat conformation, with all substituents equatorial. The benzene ring at position 2 makes dihedral angles of 77.88 (12)° and 76.31 (12)° with the phenyl rings at position 5 and 6, respectively. The dihedral angle between the phenyl rings at positions 5 and 6 is 70.05 (10)° (Fig. 1). A C24—H24···π interaction involving the phenyl (C61—C66) ring, a C53—H53···π interaction involving the benzene (C21—C26) ring and a C64—H64···π interaction involving the phenyl (C51—C56) ring are also found in the crystal structure (Table 1). The Cl atom is disordered over two positions. Its occupancy ratio refined to 0.946 (5):0.054 (5).

For the biological properties of heterocyclic ring systems having a dihydropyrazine nucleus, see: Sondhi et al. (2005). For the use of dihydropyrazines, with reference to DNA breakage activity, see: Takechi et al. (2011). For the inhibition of the growth of Escherichia coli, see: Takeda et al. (2005). For a closely related crystal structure, see: Anuradha et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 25% probability level. H atoms are shown as small spheres of arbitrary radius.
2-(2-Chlorophenyl)-3-methyl-5,6-diphenyl-2,3-dihydropyrazine top
Crystal data top
C23H19ClN2F(000) = 752
Mr = 358.85Dx = 1.250 Mg m3
Monoclinic, P21/cMelting point: 417 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 10.5675 (8) ÅCell parameters from 5083 reflections
b = 19.7014 (9) Åθ = 4.5–73.5°
c = 10.4207 (7) ŵ = 1.82 mm1
β = 118.479 (9)°T = 298 K
V = 1907.0 (3) Å3Block, pale-yellow
Z = 40.25 × 0.14 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3831 independent reflections
Radiation source: Enhance (Cu) X-ray Source3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.1500 pixels mm-1θmax = 73.7°, θmin = 4.5°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2124
Tmin = 0.659, Tmax = 1.000l = 1212
22812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4958P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C23H19ClN2V = 1907.0 (3) Å3
Mr = 358.85Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5675 (8) ŵ = 1.82 mm1
b = 19.7014 (9) ÅT = 298 K
c = 10.4207 (7) Å0.25 × 0.14 × 0.10 mm
β = 118.479 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3092 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 1.000Rint = 0.052
22812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3831 reflectionsΔρmin = 0.28 e Å3
240 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

To allow for a stable and meaningful refinement of the Cl atoms, the C—Cl bonding distances were restrained to be the same (DFIX 1.76 0.02 C22 Cl1 C22 Cl2 and EADP Cl1 Cl2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.25340 (11)0.21842 (8)0.16414 (14)0.1246 (4)0.946 (5)
N10.24840 (17)0.00156 (8)0.13885 (16)0.0488 (5)
N40.2879 (2)0.02095 (9)0.10830 (18)0.0627 (6)
C20.3045 (2)0.06586 (10)0.1173 (2)0.0556 (6)
C30.3806 (3)0.05552 (12)0.0291 (3)0.0657 (8)
C50.2014 (2)0.02435 (9)0.10666 (19)0.0479 (5)
C60.20118 (18)0.04090 (9)0.03284 (18)0.0439 (5)
C210.3972 (2)0.09884 (10)0.2638 (2)0.0527 (6)
C220.3840 (3)0.16562 (12)0.2953 (3)0.0698 (7)
C230.4712 (3)0.19357 (14)0.4313 (3)0.0861 (9)
C240.5737 (3)0.15478 (14)0.5392 (3)0.0767 (8)
C250.5914 (3)0.08844 (13)0.5117 (2)0.0664 (7)
C260.5037 (2)0.06128 (10)0.3758 (2)0.0571 (6)
C310.4413 (3)0.11844 (14)0.0028 (3)0.0828 (10)
C510.1010 (2)0.05635 (9)0.24852 (19)0.0474 (5)
C520.0386 (2)0.07317 (11)0.2826 (2)0.0562 (6)
C530.1342 (3)0.09626 (12)0.4219 (2)0.0664 (7)
C540.0896 (3)0.10359 (11)0.5258 (2)0.0682 (8)
C550.0493 (3)0.08806 (11)0.4913 (2)0.0650 (8)
C560.1443 (2)0.06438 (10)0.3546 (2)0.0552 (6)
C610.15526 (19)0.10853 (9)0.05924 (18)0.0441 (5)
C620.0827 (2)0.11347 (9)0.14084 (19)0.0478 (5)
C630.0489 (2)0.17630 (11)0.1757 (2)0.0568 (6)
C640.0894 (3)0.23491 (10)0.1328 (2)0.0619 (7)
C650.1610 (3)0.23089 (10)0.0524 (2)0.0638 (7)
C660.1926 (2)0.16820 (10)0.0139 (2)0.0563 (6)
Cl20.249 (2)0.1906 (15)0.131 (2)0.1246 (4)0.054 (5)
H20.222210.095850.061660.0668*
H30.461990.025200.085540.0789*
H230.459900.238830.449090.1033*
H240.631290.173280.631140.0921*
H250.662090.061900.584230.0797*
H260.516450.016130.358540.0686*
H31A0.365070.150350.054900.1243*
H31B0.511480.138400.087240.1243*
H31C0.486070.106730.061190.1243*
H520.068640.069040.212300.0674*
H530.228460.106790.445000.0797*
H540.153600.119020.618850.0818*
H550.079760.093570.561000.0780*
H560.238100.053650.332810.0662*
H620.056800.074200.172130.0574*
H630.001470.178970.228400.0682*
H640.068320.277040.158260.0743*
H650.188480.270430.023480.0765*
H660.239010.166010.042630.0676*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1170 (7)0.0679 (8)0.1060 (7)0.0285 (5)0.0141 (5)0.0118 (5)
N10.0561 (9)0.0475 (8)0.0414 (7)0.0091 (7)0.0221 (7)0.0047 (6)
N40.0780 (12)0.0660 (11)0.0473 (9)0.0211 (9)0.0324 (9)0.0053 (8)
C20.0608 (11)0.0550 (11)0.0456 (10)0.0144 (9)0.0209 (9)0.0056 (8)
C30.0808 (14)0.0633 (13)0.0593 (12)0.0228 (11)0.0384 (11)0.0090 (9)
C50.0557 (10)0.0474 (9)0.0414 (9)0.0020 (8)0.0239 (8)0.0012 (7)
C60.0445 (8)0.0467 (9)0.0393 (8)0.0013 (7)0.0189 (7)0.0023 (7)
C210.0556 (10)0.0504 (10)0.0464 (10)0.0127 (8)0.0198 (8)0.0053 (8)
C220.0627 (12)0.0561 (12)0.0651 (13)0.0016 (10)0.0098 (10)0.0082 (10)
C230.0831 (17)0.0629 (14)0.0829 (17)0.0048 (12)0.0158 (14)0.0281 (13)
C240.0715 (14)0.0817 (16)0.0546 (12)0.0177 (12)0.0120 (11)0.0200 (11)
C250.0633 (12)0.0718 (14)0.0496 (11)0.0085 (10)0.0151 (10)0.0023 (9)
C260.0647 (12)0.0514 (10)0.0512 (10)0.0083 (9)0.0243 (9)0.0015 (8)
C310.0993 (19)0.0769 (16)0.0746 (16)0.0360 (14)0.0434 (15)0.0067 (12)
C510.0601 (10)0.0442 (9)0.0375 (8)0.0005 (8)0.0229 (8)0.0002 (7)
C520.0614 (11)0.0619 (12)0.0456 (10)0.0028 (9)0.0258 (9)0.0055 (8)
C530.0621 (12)0.0698 (14)0.0523 (11)0.0071 (10)0.0151 (10)0.0049 (10)
C540.0925 (17)0.0563 (12)0.0389 (10)0.0054 (11)0.0177 (10)0.0057 (8)
C550.1014 (18)0.0541 (11)0.0450 (10)0.0006 (11)0.0394 (11)0.0034 (8)
C560.0717 (12)0.0527 (10)0.0476 (10)0.0014 (9)0.0336 (10)0.0007 (8)
C610.0484 (9)0.0446 (9)0.0340 (8)0.0047 (7)0.0153 (7)0.0027 (6)
C620.0521 (10)0.0500 (10)0.0378 (8)0.0048 (8)0.0185 (7)0.0044 (7)
C630.0652 (12)0.0610 (12)0.0418 (9)0.0151 (9)0.0235 (9)0.0022 (8)
C640.0768 (14)0.0473 (10)0.0496 (10)0.0156 (9)0.0204 (10)0.0003 (8)
C650.0806 (14)0.0430 (10)0.0615 (12)0.0031 (9)0.0288 (11)0.0079 (9)
C660.0666 (12)0.0526 (10)0.0526 (10)0.0043 (9)0.0307 (9)0.0085 (8)
Cl20.1170 (7)0.0679 (8)0.1060 (7)0.0285 (5)0.0141 (5)0.0118 (5)
Geometric parameters (Å, º) top
Cl1—C221.748 (3)C61—C621.394 (3)
Cl2—C221.70 (2)C62—C631.384 (3)
N1—C61.282 (2)C63—C641.378 (3)
N1—C21.461 (3)C64—C651.373 (4)
N4—C31.462 (3)C65—C661.388 (3)
N4—C51.284 (3)C2—H20.9800
C2—C31.496 (4)C3—H30.9800
C2—C211.512 (3)C23—H230.9300
C3—C311.504 (4)C24—H240.9300
C5—C511.488 (3)C25—H250.9300
C5—C61.491 (3)C26—H260.9300
C6—C611.488 (3)C31—H31A0.9600
C21—C261.387 (3)C31—H31B0.9600
C21—C221.379 (3)C31—H31C0.9600
C22—C231.384 (4)C52—H520.9300
C23—C241.364 (4)C53—H530.9300
C24—C251.370 (4)C54—H540.9300
C25—C261.378 (3)C55—H550.9300
C51—C521.383 (3)C56—H560.9300
C51—C561.392 (3)C62—H620.9300
C52—C531.392 (3)C63—H630.9300
C53—C541.379 (4)C64—H640.9300
C54—C551.369 (5)C65—H650.9300
C55—C561.375 (3)C66—H660.9300
C61—C661.392 (3)
C2—N1—C6116.95 (16)C61—C66—C65120.5 (2)
C3—N4—C5117.38 (19)N1—C2—H2108.00
N1—C2—C3110.66 (17)C3—C2—H2108.00
N1—C2—C21109.42 (15)C21—C2—H2108.00
C3—C2—C21113.6 (2)N4—C3—H3107.00
N4—C3—C2111.1 (2)C2—C3—H3107.00
N4—C3—C31109.0 (2)C31—C3—H3107.00
C2—C3—C31115.8 (2)C22—C23—H23120.00
N4—C5—C6119.82 (16)C24—C23—H23120.00
N4—C5—C51117.16 (17)C23—C24—H24120.00
C6—C5—C51122.98 (18)C25—C24—H24120.00
N1—C6—C5121.10 (17)C24—C25—H25120.00
N1—C6—C61116.89 (16)C26—C25—H25120.00
C5—C6—C61121.90 (15)C21—C26—H26119.00
C2—C21—C22124.1 (2)C25—C26—H26119.00
C2—C21—C26119.70 (18)C3—C31—H31A109.00
C22—C21—C26116.25 (19)C3—C31—H31B109.00
Cl1—C22—C21120.9 (2)C3—C31—H31C109.00
Cl1—C22—C23117.1 (2)H31A—C31—H31B109.00
C21—C22—C23122.0 (2)H31A—C31—H31C109.00
Cl2—C22—C2199.7 (10)H31B—C31—H31C109.00
Cl2—C22—C23138.3 (10)C51—C52—H52120.00
C22—C23—C24120.0 (3)C53—C52—H52120.00
C23—C24—C25119.8 (2)C52—C53—H53120.00
C24—C25—C26119.6 (2)C54—C53—H53120.00
C21—C26—C25122.4 (2)C53—C54—H54120.00
C5—C51—C52121.65 (19)C55—C54—H54120.00
C5—C51—C56119.2 (2)C54—C55—H55120.00
C52—C51—C56118.88 (17)C56—C55—H55120.00
C51—C52—C53120.1 (2)C51—C56—H56120.00
C52—C53—C54120.2 (3)C55—C56—H56120.00
C53—C54—C55119.7 (2)C61—C62—H62120.00
C54—C55—C56120.6 (2)C63—C62—H62120.00
C51—C56—C55120.5 (2)C62—C63—H63120.00
C6—C61—C62119.88 (16)C64—C63—H63120.00
C6—C61—C66121.54 (19)C63—C64—H64120.00
C62—C61—C66118.39 (17)C65—C64—H64120.00
C61—C62—C63120.57 (18)C64—C65—H65120.00
C62—C63—C64120.4 (2)C66—C65—H65120.00
C63—C64—C65119.8 (2)C61—C66—H66120.00
C64—C65—C66120.4 (2)C65—C66—H66120.00
C6—N1—C2—C335.9 (3)C2—C21—C22—Cl10.7 (4)
C6—N1—C2—C21161.74 (19)C2—C21—C22—C23179.8 (3)
C2—N1—C6—C51.1 (3)C26—C21—C22—Cl1179.7 (2)
C2—N1—C6—C61175.12 (18)C26—C21—C22—C230.5 (4)
C5—N4—C3—C235.6 (3)C2—C21—C26—C25179.9 (2)
C5—N4—C3—C31164.2 (2)C22—C21—C26—C250.5 (4)
C3—N4—C5—C61.5 (3)Cl1—C22—C23—C24179.0 (3)
C3—N4—C5—C51176.3 (2)C21—C22—C23—C240.2 (5)
N1—C2—C3—N454.1 (2)C22—C23—C24—C251.0 (5)
N1—C2—C3—C31179.0 (2)C23—C24—C25—C261.1 (5)
C21—C2—C3—N4177.59 (17)C24—C25—C26—C210.3 (4)
C21—C2—C3—C3157.5 (3)C5—C51—C52—C53173.11 (19)
N1—C2—C21—C22130.8 (3)C56—C51—C52—C531.4 (3)
N1—C2—C21—C2649.6 (3)C5—C51—C56—C55174.06 (18)
C3—C2—C21—C22105.1 (3)C52—C51—C56—C550.6 (3)
C3—C2—C21—C2674.6 (3)C51—C52—C53—C541.1 (3)
N4—C5—C6—N122.5 (3)C52—C53—C54—C550.0 (3)
N4—C5—C6—C61153.6 (2)C53—C54—C55—C560.9 (3)
C51—C5—C6—N1155.2 (2)C54—C55—C56—C510.6 (3)
C51—C5—C6—C6128.8 (3)C6—C61—C62—C63175.09 (18)
N4—C5—C51—C52142.8 (2)C66—C61—C62—C630.0 (3)
N4—C5—C51—C5631.7 (3)C6—C61—C66—C65173.53 (19)
C6—C5—C51—C5235.0 (3)C62—C61—C66—C651.5 (3)
C6—C5—C51—C56150.53 (19)C61—C62—C63—C641.4 (3)
N1—C6—C61—C6238.6 (3)C62—C63—C64—C651.4 (3)
N1—C6—C61—C66136.3 (2)C63—C64—C65—C660.1 (3)
C5—C6—C61—C62145.14 (19)C64—C65—C66—C611.6 (3)
C5—C6—C61—C6639.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C21–C26, C51–C56 and C61–C66 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg4i0.932.803.643 (3)152
C53—H53···Cg2ii0.932.993.873 (4)159
C64—H64···Cg3iii0.932.883.729 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H19ClN2
Mr358.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.5675 (8), 19.7014 (9), 10.4207 (7)
β (°) 118.479 (9)
V3)1907.0 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.82
Crystal size (mm)0.25 × 0.14 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.659, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22812, 3831, 3092
Rint0.052
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.04
No. of reflections3831
No. of parameters240
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C21–C26, C51–C56 and C61–C66 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg4i0.932.803.643 (3)152
C53—H53···Cg2ii0.932.993.873 (4)159
C64—H64···Cg3iii0.932.883.729 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Rajvanshi, S., Johar, M., Shukla, R., Raghubir, R. & Dastidar, S. G. (2005). Indian J. Chem. Sect. B, 44, 387–399.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakechi, S., Kashige, N., Ishida, T. & Yamaguchi, T. (2011). J. Basic Appl. Chem. 1, 1–7.  Google Scholar
First citationTakeda, O., Takechi, S., Katoh, T. & Yamaguchi, T. (2005). Biol. Pharm. Bull. 28, 1161–1164.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds