organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Amino­heptyl­aza­nium iodide

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de

(Received 5 September 2011; accepted 13 September 2011; online 17 September 2011)

The absolute structure of the title compound, [H3N-(CH2)7-NH2]I, has been determined from the diffraction experiment, the Flack parameter refining to −0.02 (2). In the crystal, adjacent symmetry-related cations are connected by head-to-tail R′H2N+—H⋯NH2R hydrogen bonds, forming chains along [010]. The remaining four H atoms attached to the amino and the aza­nium group form weak hydrogen bonds to neighbouring iodide anions, producing a three-dimensional hydrogen-bonded network. The amino group and the aliphatic chain of the 7-amino­heptyl­aza­nium cation show an exact all-trans conformation, within experimental uncertainties. The aza­nium group, to fulfill the needs of hydrogen bonding, is twisted out of the plane defined by the C atoms of the aliphatic chain, the C—C—C—N torsion angle being −65.4 (4)°.

Related literature

For the crystal structures of α-aza­niumyl-ω-amino­alkanes, see: Luciawati et al. (2011[Luciawati, F., Higham, L. T., Strauss, C. R. & Scott, J. L. (2011). CrystEngComm, 13, 167-176.]); Pienack et al. (2007[Pienack, N., Möller, K., Näther, C. & Bensch, W. (2007). Solid State Sci. 9, 1110-1114.]); Natarajan et al. (1996[Natarajan, S., Gabriel, J.-C. P. & Cheetham, A. K. (1996). Chem. Commun. pp. 1415-1416.]); Qian et al. (2007[Qian, H.-F., Wang, L., Huang, W. & Yao, C. (2007). Acta Cryst. E63, o817-o818.]). For α,ω-diaza­niumylalkane-containing compounds, see: Frank & Graf (2004[Frank, W. & Graf, J. (2004). Z. Anorg. Allg. Chem. 630, 1894-1902.]); Jiang et al. (2010[Jiang, J., Yu, J. & Corma, A. (2010). Angew. Chem. Int. Ed. 49, 1521-3773.]); Reiss (2010[Reiss, G. J. (2010). Private communication (deposition number: CCDC 789354). CCDC, Cambridge, England.]); Reiss & Engel (2002[Reiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155-161.]); Reiss & Engel (2004[Reiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114-1117.]); Seidlhofer et al. (2010[Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. Teil B, 65, 937-975.]); Takeoka et al. (2005[Takeoka, Y., Fukasawa, M., Matsui, T., Kikuchi, K., Rikukawa, M. & Sanui, K. (2005). Chem. Commun. pp. 378-380.]); Vizi et al. (2006[Vizi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I. & Schubert, D. M. (2006). Cryst. Growth Des. 6, 538-545.]). For dye-sensitized solar cells, see: Yang et al. (2011[Yang, Y., Sun, R., Shi, C., Wu, Y. & Xia, M. (2011). Int. J. Photoenergy, Article ID 986869, 5 pages.]); Gorlov & Kloo (2008[Gorlov, M. & Kloo, L. (2008). Dalton Trans. pp. 2655-2666.]); Grätzel (2004[Grätzel, M. (2004). J. Photochem. Photobiol. A Chem. 164, 3-14.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the profile fit on the powder diffraction data, see: Kraus & Nolze (2000[Kraus, W. & Nolze, G. (2000). PowderCell for Windows. Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany.]). For background to hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C7H19N2+·I

  • Mr = 258.14

  • Monoclinic, P 21

  • a = 5.53418 (8) Å

  • b = 18.7308 (3) Å

  • c = 5.51570 (8) Å

  • β = 95.2195 (14)°

  • V = 569.39 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 290 K

  • 0.77 × 0.41 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.227, Tmax = 0.543

  • 31566 measured reflections

  • 2331 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.039

  • S = 1.03

  • 2331 reflections

  • 112 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1130 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯I1 0.88 (2) 2.98 (4) 3.738 (4) 145 (5)
N1—H12⋯I1i 0.90 (2) 2.88 (3) 3.706 (3) 153 (3)
N2—H21⋯N1ii 0.90 (2) 1.87 (3) 2.740 (4) 164 (5)
N2—H22⋯I1iii 0.87 (2) 2.72 (2) 3.579 (3) 170 (3)
N2—H23⋯I1iv 0.90 (2) 2.83 (2) 3.646 (3) 152 (2)
Symmetry codes: (i) x, y, z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is general interest in diazanium iodides because it is well documented that they have a significant influence on the I3-/I- redox system in binary ionic liquids, which are used as electrolytes for dye-sensitized solar cells (Yang et al., 2011; Gorlov & Kloo, 2008; Grätzel, 2004). Most structures reported in the α,ω-diaminoalkane/HX system are composed of α,ω-diazaniumylalkane dications and complex counteranions. Salts of α,ω-diazaniumylalkanes represent an interesting class of organic-inorganic hybride materials, with a number of different structure design examples: hydrogen-bonded frameworks as host systems for unusual species (Frank & Graf); layered materials (Takeoka et al., 2005), large-pore zeolites (Jiang et al., 2010); non-metal frameworks (e.g. Vizi et al., 2006) and metal-frameworks (Seidlhofer et al., 2010).

Our longstanding interest in the structural chemistry of α,ω-diazaniumylalkanes is focused on their versatility as templates for the synthesis of new polyiodides (Reiss & Engel, 2002; Reiss & Engel, 2004; Reiss, 2010). However, only a limited number of high-quality crystal structure determinations on α-azaniumyl-ω-aminoalkane salts have been described (Luciawati et al., 2011; Pienack et al., 2007). Furthermore, the positions of the hydrogen atoms of the hydrogen bond donating groups are not well resolved in all cases (Natarajan et al., 1996, Qian et al., 2007).

This contribution presents a rare example of a crystal structure of an α-azaniumyl-ω-aminoalkane without any disorder. The asymmetric unit of the title compound consists of one 7-aminoheptylazanium cation and one iodide anion. The bond lengths and angles within the organic cation are, with C—C bond lengths between 1.497 (5) Å to 1.517 (4) Å and slightly shorter C—N distances, 1.462 (4) Å and 1.481 (4) Å, as expected. The azanium group, to fulfill the needs of hydrogen bonding, is twisted out of the plane defined by the carbon atoms of the all-trans conformation aliphatic chain, the C5—C6—C7—N2 torsion angle being -65.4 (4)° (Fig.1 and Fig. 3)

Cations are connected to symmetry-related units by head-to-tail R'H2N+—H···NH2R hydrogen bonds. As a result of this primary connection, one-dimensional zigzag chains along [010] are formed (Fig. 1). According to a generally accepted classification (Steiner, 2002), these N+—H···N hydrogen bonds can be described as medium strong. Both hydrogen atoms of the amino group and two of the three hydrogen atoms of the azaniumyl group form hydrogen bonds with neighbouring iodide anions. These weak N—H···I hydrogen bonds (Table 1) connect the above-mentioned chains into a three-dimensional framework (Fig. 2 and 3). This framework can be classified by graph sets (Etter et al. 1990) as built of two smaller ring motifs [R24(8) and R46(12); (Fig. 2)] in the hydrophilic region of the structure and a ring motif R24(24) that includes the alkyl chains (Fig. 3).

Related literature top

For the crystal structures of α-azaniumyl-ω-aminoalkanes, see: Luciawati et al. (2011); Pienack et al. (2007); Natarajan et al. (19961); Qian et al. (2007). For α,ω-diazaniumylalkane-containing compounds, see: Frank & Graf (2004); Jiang et al. (2010); Reiss (2010); Reiss & Engel (2002); Reiss & Engel (2004); Seidlhofer et al. (2010); Takeoka et al. (2005); Vizi et al. (2006). For dye-sensitized solar cells, see: Yang et al. (2011); Gorlov & Kloo (2008); Grätzel (2004). For graph-set analysis, see: Etter et al. (1990). For the profile fit on the powder diffraction data, see: Kraus & Nolze (2000). For background to hydrogen bonds, see: Steiner (2002).

Experimental top

7-Aminoheptylazanium iodide, (H3N-(CH2)7-NH2)I was prepared by dissolving 1.77 mmol (0.23 mL) 1,7-diaminoheptane in 1 ml concentrated (57%) hydroiodic acid at room temperature. From this solution crystalline raw material was obtained by evaporation within a few days at room temperature. Recrystallization from fresh hydroiodic acid (57%) yielded block-shaped, almost colourless crystals.

Depending on the reaction conditions, the title compound is sometimes contaminated with a small amount of the dark-coloured α,ω-diazaniumylheptane tetraiodide, (H3N-(CH2)7-NH3)I4 (Reiss, 2010). To verify the purity of the synthesized material, powder diffraction data of a representive part of the bulk phase were collected on a Huber G600 diffractometer (transmission, Cu Kα1, step width: 0.03°, 20 sec./step). A profile fit (Kraus & Nolze, 2000) on the powder diffraction data based on the structure model obtained from the single-crystal experiment proved the identity of the bulk phase with the investigated single-crystal (Fig. 4). This finding is supported by the Raman spectrum collected which does not show the I42--specific absorption band at 175 cm-1.

Refinement top

All hydrogen atoms were located from a difference Fourier synthesis. The positional parameters of hydrogen atoms of the NH2 and the NH3 group were refined with soft N—H distance restraints; the final range of N—H distances is 0.87 (2) - 0.90 (2) Å. All hydrogen atoms of the CH2 groups were refined using a riding model; C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). Anisotropic displacement parameters of all non-hydrogen atoms and individual isotropic displacement parameters for all hydrogen atoms involved in the hydrogen bonds were refined unrestrictedly. The Flack parameter refined to -0.02 (2).

Structure description top

There is general interest in diazanium iodides because it is well documented that they have a significant influence on the I3-/I- redox system in binary ionic liquids, which are used as electrolytes for dye-sensitized solar cells (Yang et al., 2011; Gorlov & Kloo, 2008; Grätzel, 2004). Most structures reported in the α,ω-diaminoalkane/HX system are composed of α,ω-diazaniumylalkane dications and complex counteranions. Salts of α,ω-diazaniumylalkanes represent an interesting class of organic-inorganic hybride materials, with a number of different structure design examples: hydrogen-bonded frameworks as host systems for unusual species (Frank & Graf); layered materials (Takeoka et al., 2005), large-pore zeolites (Jiang et al., 2010); non-metal frameworks (e.g. Vizi et al., 2006) and metal-frameworks (Seidlhofer et al., 2010).

Our longstanding interest in the structural chemistry of α,ω-diazaniumylalkanes is focused on their versatility as templates for the synthesis of new polyiodides (Reiss & Engel, 2002; Reiss & Engel, 2004; Reiss, 2010). However, only a limited number of high-quality crystal structure determinations on α-azaniumyl-ω-aminoalkane salts have been described (Luciawati et al., 2011; Pienack et al., 2007). Furthermore, the positions of the hydrogen atoms of the hydrogen bond donating groups are not well resolved in all cases (Natarajan et al., 1996, Qian et al., 2007).

This contribution presents a rare example of a crystal structure of an α-azaniumyl-ω-aminoalkane without any disorder. The asymmetric unit of the title compound consists of one 7-aminoheptylazanium cation and one iodide anion. The bond lengths and angles within the organic cation are, with C—C bond lengths between 1.497 (5) Å to 1.517 (4) Å and slightly shorter C—N distances, 1.462 (4) Å and 1.481 (4) Å, as expected. The azanium group, to fulfill the needs of hydrogen bonding, is twisted out of the plane defined by the carbon atoms of the all-trans conformation aliphatic chain, the C5—C6—C7—N2 torsion angle being -65.4 (4)° (Fig.1 and Fig. 3)

Cations are connected to symmetry-related units by head-to-tail R'H2N+—H···NH2R hydrogen bonds. As a result of this primary connection, one-dimensional zigzag chains along [010] are formed (Fig. 1). According to a generally accepted classification (Steiner, 2002), these N+—H···N hydrogen bonds can be described as medium strong. Both hydrogen atoms of the amino group and two of the three hydrogen atoms of the azaniumyl group form hydrogen bonds with neighbouring iodide anions. These weak N—H···I hydrogen bonds (Table 1) connect the above-mentioned chains into a three-dimensional framework (Fig. 2 and 3). This framework can be classified by graph sets (Etter et al. 1990) as built of two smaller ring motifs [R24(8) and R46(12); (Fig. 2)] in the hydrophilic region of the structure and a ring motif R24(24) that includes the alkyl chains (Fig. 3).

For the crystal structures of α-azaniumyl-ω-aminoalkanes, see: Luciawati et al. (2011); Pienack et al. (2007); Natarajan et al. (19961); Qian et al. (2007). For α,ω-diazaniumylalkane-containing compounds, see: Frank & Graf (2004); Jiang et al. (2010); Reiss (2010); Reiss & Engel (2002); Reiss & Engel (2004); Seidlhofer et al. (2010); Takeoka et al. (2005); Vizi et al. (2006). For dye-sensitized solar cells, see: Yang et al. (2011); Gorlov & Kloo (2008); Grätzel (2004). For graph-set analysis, see: Etter et al. (1990). For the profile fit on the powder diffraction data, see: Kraus & Nolze (2000). For background to hydrogen bonds, see: Steiner (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry-related neighbouring atoms are drawn with arbitrary radius and dashed lines indicate hydrogen bonds. Symmetry codes : ' = 2 - x, 1/2 + y, 1 - z, '' = 2 - x, 1/2 + y, 1 - z.
[Figure 2] Fig. 2. Hydrogen bonding ring motifs. Graph-sets: R24(8) and R46(12)) of the hydrophilic part of the structure are shown. Symmetry codes: ' = 1 - x, 1/2 + y, -z, '' = 1 - x, 1/2 + y, 1 - z.
[Figure 3] Fig. 3. Hydrogen bonding motif of neighboring 7-aminoheptylazanium connected by iodide anions, graph set R24(24). Symmetry codes: ' = 1 - x, 1/2 + y, 2 - z, '' = x, 1 + y, 1 + z.
[Figure 4] Fig. 4. Powder diffraction diagram of the title compound (black line: experimental; red line: profile fit).
7-Aminoheptylazanium iodide top
Crystal data top
C7H19N2+·IF(000) = 256
Mr = 258.14Dx = 1.506 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 29947 reflections
a = 5.53418 (8) Åθ = 3.3–32.6°
b = 18.7308 (3) ŵ = 2.76 mm1
c = 5.51570 (8) ÅT = 290 K
β = 95.2195 (14)°Block, colourless
V = 569.39 (2) Å30.77 × 0.41 × 0.24 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2331 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Equatorial mounted graphite monochromatorRint = 0.028
Detector resolution: 16.2711 pixels mm-1θmax = 26.5°, θmin = 4.9°
ω scansh = 66
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 2323
Tmin = 0.227, Tmax = 0.543l = 66
31566 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.010P)2 + 0.450P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.33 e Å3
2331 reflectionsΔρmin = 0.48 e Å3
112 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0965 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1130 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (2)
Crystal data top
C7H19N2+·IV = 569.39 (2) Å3
Mr = 258.14Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.53418 (8) ŵ = 2.76 mm1
b = 18.7308 (3) ÅT = 290 K
c = 5.51570 (8) Å0.77 × 0.41 × 0.24 mm
β = 95.2195 (14)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2331 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
2325 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.543Rint = 0.028
31566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.039Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.48 e Å3
2331 reflectionsAbsolute structure: Flack (1983), 1130 Friedel pairs
112 parametersAbsolute structure parameter: 0.02 (2)
6 restraints
Special details top

Experimental. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector); 4000–70 cm-1: 3326(w), 3259(w), 2958(m), 2896(s), 2882(s), 2850(s), 2761(w), 1590(w), 1542(w), 1479(m), 1466(m), 1445(s), 1347(w), 1304(m), 1067(m), 1039(m), 961(w), 913(w), 858(w), 838(w), 340(w), 286(w), 253(w), 109(s). IR spectroscopic data were collected on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3321(m), 3258(m), 3021(m, br), 2923(s), 2853(s), 1645(m, sh), 1568(m, br), 1487(m), 1465(m), 1384(m), 1359(w), 1334(m, sh), 1302(m), 1244(w), 1156(w), 929(w, br), 817(w), 723(w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.09785 (3)0.252871 (19)0.24986 (3)0.06035 (9)
N10.4322 (6)0.34300 (16)0.7843 (6)0.0548 (7)
H110.330 (8)0.342 (3)0.653 (6)0.108 (19)*
H120.335 (7)0.337 (2)0.905 (6)0.075 (12)*
C10.5909 (7)0.40516 (19)0.8220 (7)0.0524 (8)
H1A0.71360.39560.95500.063*
H1B0.49620.44580.86730.063*
C20.7123 (7)0.42306 (16)0.5974 (7)0.0486 (7)
H2A0.58850.43400.46670.058*
H2B0.80030.38140.54900.058*
C30.8869 (7)0.48553 (17)0.6285 (7)0.0515 (8)
H3A0.79970.52690.68060.062*
H3B1.01280.47420.75670.062*
C41.0042 (7)0.50457 (18)0.4032 (7)0.0527 (8)
H4A0.87850.51510.27390.063*
H4B1.09450.46360.35280.063*
C51.1744 (6)0.56805 (17)0.4352 (7)0.0488 (7)
H5A1.08620.60830.49390.059*
H5B1.30490.55650.55860.059*
C61.2828 (7)0.58973 (17)0.2052 (7)0.0533 (8)
H6A1.15150.59890.08030.064*
H6B1.37560.54980.15060.064*
C71.4460 (7)0.65486 (18)0.2270 (7)0.0517 (8)
H7A1.57420.64710.35630.062*
H7B1.52100.66120.07630.062*
N21.3108 (5)0.72044 (13)0.2795 (5)0.0463 (6)
H211.416 (6)0.755 (2)0.249 (6)0.087 (12)*
H221.196 (5)0.7290 (18)0.164 (5)0.066 (12)*
H231.253 (5)0.7189 (16)0.427 (4)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06054 (12)0.07533 (14)0.04638 (11)0.01293 (14)0.01147 (7)0.00061 (17)
N10.0556 (17)0.0441 (14)0.067 (2)0.0089 (14)0.0171 (17)0.0002 (13)
C10.061 (2)0.0411 (17)0.0565 (19)0.0083 (15)0.0117 (17)0.0083 (14)
C20.0564 (19)0.0362 (15)0.055 (2)0.0084 (13)0.0130 (16)0.0013 (13)
C30.057 (2)0.0381 (16)0.060 (2)0.0103 (14)0.0082 (17)0.0036 (14)
C40.0567 (19)0.0385 (15)0.064 (2)0.0104 (14)0.0097 (19)0.0037 (16)
C50.0537 (19)0.0380 (16)0.0556 (19)0.0085 (13)0.0102 (16)0.0005 (13)
C60.062 (2)0.0372 (16)0.063 (2)0.0075 (15)0.0138 (18)0.0065 (14)
C70.0499 (18)0.0391 (16)0.068 (2)0.0047 (14)0.0155 (17)0.0021 (14)
N20.0582 (16)0.0370 (11)0.0448 (14)0.0007 (12)0.0106 (12)0.0018 (10)
Geometric parameters (Å, º) top
N1—C11.462 (4)C4—H4B0.9700
N1—H110.877 (19)C5—C61.508 (5)
N1—H120.898 (19)C5—H5A0.9700
C1—C21.500 (5)C5—H5B0.9700
C1—H1A0.9700C6—C71.516 (5)
C1—H1B0.9700C6—H6A0.9700
C2—C31.517 (4)C6—H6B0.9700
C2—H2A0.9700C7—N21.481 (4)
C2—H2B0.9700C7—H7A0.9700
C3—C41.496 (5)C7—H7B0.9700
C3—H3A0.9700N2—H210.90 (2)
C3—H3B0.9700N2—H220.871 (18)
C4—C51.517 (4)N2—H230.901 (18)
C4—H4A0.9700
C1—N1—H11118 (4)H4A—C4—H4B107.7
C1—N1—H12112 (3)C6—C5—C4113.8 (3)
H11—N1—H12103 (4)C6—C5—H5A108.8
N1—C1—C2111.6 (3)C4—C5—H5A108.8
N1—C1—H1A109.3C6—C5—H5B108.8
C2—C1—H1A109.3C4—C5—H5B108.8
N1—C1—H1B109.3H5A—C5—H5B107.7
C2—C1—H1B109.3C5—C6—C7115.4 (3)
H1A—C1—H1B108.0C5—C6—H6A108.4
C1—C2—C3114.1 (3)C7—C6—H6A108.4
C1—C2—H2A108.7C5—C6—H6B108.4
C3—C2—H2A108.7C7—C6—H6B108.4
C1—C2—H2B108.7H6A—C6—H6B107.5
C3—C2—H2B108.7N2—C7—C6112.0 (3)
H2A—C2—H2B107.6N2—C7—H7A109.2
C4—C3—C2114.2 (3)C6—C7—H7A109.2
C4—C3—H3A108.7N2—C7—H7B109.2
C2—C3—H3A108.7C6—C7—H7B109.2
C4—C3—H3B108.7H7A—C7—H7B107.9
C2—C3—H3B108.7C7—N2—H21102 (3)
H3A—C3—H3B107.6C7—N2—H22111 (2)
C3—C4—C5113.7 (3)H21—N2—H22100 (3)
C3—C4—H4A108.8C7—N2—H23112.1 (19)
C5—C4—H4A108.8H21—N2—H23119 (3)
C3—C4—H4B108.8H22—N2—H23112 (3)
C5—C4—H4B108.8
N1—C1—C2—C3177.8 (3)C3—C4—C5—C6177.0 (3)
C1—C2—C3—C4178.7 (3)C4—C5—C6—C7177.6 (3)
C2—C3—C4—C5178.8 (3)C5—C6—C7—N265.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···I10.88 (2)2.98 (4)3.738 (4)145 (5)
N1—H12···I1i0.90 (2)2.88 (3)3.706 (3)153 (3)
N2—H21···N1ii0.90 (2)1.87 (3)2.740 (4)164 (5)
N2—H22···I1iii0.87 (2)2.72 (2)3.579 (3)170 (3)
N2—H23···I1iv0.90 (2)2.83 (2)3.646 (3)152 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H19N2+·I
Mr258.14
Crystal system, space groupMonoclinic, P21
Temperature (K)290
a, b, c (Å)5.53418 (8), 18.7308 (3), 5.51570 (8)
β (°) 95.2195 (14)
V3)569.39 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.77 × 0.41 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.227, 0.543
No. of measured, independent and
observed [I > 2σ(I)] reflections
31566, 2331, 2325
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.039, 1.03
No. of reflections2331
No. of parameters112
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.48
Absolute structureFlack (1983), 1130 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···I10.877 (19)2.98 (4)3.738 (4)145 (5)
N1—H12···I1i0.898 (19)2.88 (3)3.706 (3)153 (3)
N2—H21···N1ii0.90 (2)1.87 (3)2.740 (4)164 (5)
N2—H22···I1iii0.871 (18)2.72 (2)3.579 (3)170 (3)
N2—H23···I1iv0.901 (18)2.83 (2)3.646 (3)152 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

I thank E. Hammes and S. Joergens for technical support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrank, W. & Graf, J. (2004). Z. Anorg. Allg. Chem. 630, 1894–1902.  Google Scholar
First citationGorlov, M. & Kloo, L. (2008). Dalton Trans. pp. 2655–2666.  Web of Science CrossRef Google Scholar
First citationGrätzel, M. (2004). J. Photochem. Photobiol. A Chem. 164, 3–14.  Google Scholar
First citationJiang, J., Yu, J. & Corma, A. (2010). Angew. Chem. Int. Ed. 49, 1521–3773.  Google Scholar
First citationKraus, W. & Nolze, G. (2000). PowderCell for Windows. Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany.  Google Scholar
First citationLuciawati, F., Higham, L. T., Strauss, C. R. & Scott, J. L. (2011). CrystEngComm, 13, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatarajan, S., Gabriel, J.-C. P. & Cheetham, A. K. (1996). Chem. Commun. pp. 1415–1416.  CSD CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationPienack, N., Möller, K., Näther, C. & Bensch, W. (2007). Solid State Sci. 9, 1110–1114.  Web of Science CSD CrossRef CAS Google Scholar
First citationQian, H.-F., Wang, L., Huang, W. & Yao, C. (2007). Acta Cryst. E63, o817–o818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. (2010). Private communication (deposition number: CCDC 789354). CCDC, Cambridge, England.  Google Scholar
First citationReiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155–161.  Google Scholar
First citationReiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114–1117.  CAS Google Scholar
First citationSeidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. Teil B, 65, 937–975.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationTakeoka, Y., Fukasawa, M., Matsui, T., Kikuchi, K., Rikukawa, M. & Sanui, K. (2005). Chem. Commun. pp. 378–380.  Web of Science CrossRef Google Scholar
First citationVizi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I. & Schubert, D. M. (2006). Cryst. Growth Des. 6, 538–545.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Sun, R., Shi, C., Wu, Y. & Xia, M. (2011). Int. J. Photoenergy, Article ID 986869, 5 pages.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds