organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-1-methyl-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 August 2011; accepted 26 August 2011; online 14 September 2011)

The asymmetric unit of the title compound, C17H13N3, contains two independent mol­ecules, which are non-planar as they are buckled owing to the ethyl­ene portion. The dihedral angle between the benzene rings is 26.4 (1)° in one mol­ecule and 32.9 (1)° in the other. In the crystal, the mol­ecules are disposed about a false inversion center, and are linked by two N—H⋯N hydrogen bonds, generating a dimer. The dimers are linked by further N—H⋯N hydrogen bonds, resulting in a chain that runs along the longest axis of the ortho­rhom­bic unit cell.

Related literature

For the synthesis of dihydro­phenanthrenes, see: Dellagreca et al. (2000[Dellagreca, M., Fiorentino, A., Monaco, P., Previtera, L. & Zarrelli, A. (2000). J. Chem. Ecol. 26, 587-600.]); Ram & Goel (1997[Ram, V. J. & Goel, A. (1997). J. Chem. Res. pp. 460-461.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3

  • Mr = 259.30

  • Orthorhombic, P n a 21

  • a = 26.8587 (7) Å

  • b = 8.8158 (2) Å

  • c = 11.2035 (3) Å

  • V = 2652.78 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.836, Tmax = 0.988

  • 10819 measured reflections

  • 2800 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.09

  • 2800 reflections

  • 379 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯N4 0.91 (4) 2.15 (4) 3.007 (3) 156 (3)
N2—H22⋯N6i 0.91 (3) 2.38 (3) 3.265 (3) 164 (2)
N5—H51⋯N1ii 0.91 (4) 2.12 (4) 3.012 (3) 168 (3)
N5—H52⋯N3 0.91 (3) 2.41 (3) 3.283 (3) 161 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As the dihydrophenanthrene skeleton is a principal component of a number of pharmaceutical products, there is a large collection of reserach on the synthesis of dihydrophenanthrene compounds. This skeleton is known to mimic natural products, which is yet another source of bioactive compounds (Dellagreca et al., 2000). In this study, we have used 1-tetralone, acetaldehyde, and malonitrile to synthesize the skeleton; an early study reported the use of 1-tetralone to condense with 2H-pyran-2-ones to furnish this skeleton (Ram & Goel, 1997). The title molecule, C17H13N3 (Scheme I), is non-planar as the molecule it is buckled owing to the ethylene portion; the dihedral angle between the aromatic rings is 26.4 (1) ° in one independent molecule and 32.9 (1) ° in the other. The molecules are disposed about a false inversion center, and are linked by two NH···N hydrogen bonds to generate a dimer (Fig. 1). The dimers are linked by N–H···N hydrogen bonds to result in a linear chain (Table 1).

Related literature top

For the synthesis of dihydrophenanthrenes, see: Dellagreca et al. (2000); Ram & Goel (1997).

Experimental top

Acetaldehyde (0.44 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), malononitrile (0.66 g, 10 mmol) and ammonium acetate(6.20 g, 80 mmol) in absolute ethanol (50 ml) were heated for 6 houyrs. The mixture was allowed to cool, and the solid was collected, washed with water, dried and then recrystallized from ethanol to yield light brown crystals, m.p. 457–459 K.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were freely refined.

The Flack parameter initially refined to 0.1 (4) on 1933 Friedel pairs. As the uncertainty was too large, Friedel pairs were merged.

Structure description top

As the dihydrophenanthrene skeleton is a principal component of a number of pharmaceutical products, there is a large collection of reserach on the synthesis of dihydrophenanthrene compounds. This skeleton is known to mimic natural products, which is yet another source of bioactive compounds (Dellagreca et al., 2000). In this study, we have used 1-tetralone, acetaldehyde, and malonitrile to synthesize the skeleton; an early study reported the use of 1-tetralone to condense with 2H-pyran-2-ones to furnish this skeleton (Ram & Goel, 1997). The title molecule, C17H13N3 (Scheme I), is non-planar as the molecule it is buckled owing to the ethylene portion; the dihedral angle between the aromatic rings is 26.4 (1) ° in one independent molecule and 32.9 (1) ° in the other. The molecules are disposed about a false inversion center, and are linked by two NH···N hydrogen bonds to generate a dimer (Fig. 1). The dimers are linked by N–H···N hydrogen bonds to result in a linear chain (Table 1).

For the synthesis of dihydrophenanthrenes, see: Dellagreca et al. (2000); Ram & Goel (1997).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C17H13N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-Amino-1-methyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C17H13N3F(000) = 1088
Mr = 259.30Dx = 1.299 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 4366 reflections
a = 26.8587 (7) Åθ = 3.3–74.4°
b = 8.8158 (2) ŵ = 0.62 mm1
c = 11.2035 (3) ÅT = 100 K
V = 2652.78 (12) Å3Plate, light brown
Z = 80.30 × 0.20 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2800 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2621 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 74.6°, θmin = 3.3°
ω scansh = 2433
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1010
Tmin = 0.836, Tmax = 0.988l = 1313
10819 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.058P)2 + 0.0761P]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C17H13N3V = 2652.78 (12) Å3
Mr = 259.30Z = 8
Orthorhombic, Pna21Cu Kα radiation
a = 26.8587 (7) ŵ = 0.62 mm1
b = 8.8158 (2) ÅT = 100 K
c = 11.2035 (3) Å0.30 × 0.20 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2800 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2621 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.988Rint = 0.033
10819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.16 e Å3
2800 reflectionsΔρmin = 0.20 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87010 (7)0.4611 (2)0.74979 (18)0.0264 (4)
N20.89781 (7)0.4949 (2)0.45228 (19)0.0211 (4)
H210.9103 (12)0.469 (4)0.379 (3)0.045 (9)*
H220.9152 (11)0.471 (3)0.519 (3)0.031 (8)*
N30.87032 (8)0.5796 (2)0.15228 (18)0.0281 (4)
N40.94098 (7)0.3192 (2)0.24687 (18)0.0256 (4)
N50.94187 (7)0.4150 (2)0.04685 (19)0.0254 (4)
H510.9239 (12)0.424 (4)0.115 (3)0.047 (9)*
H520.9272 (11)0.451 (4)0.020 (3)0.037 (8)*
N60.97783 (8)0.3851 (2)0.34610 (18)0.0289 (4)
C10.76004 (11)0.7688 (4)0.2539 (2)0.0391 (7)
H1A0.75070.87570.26280.059*
H1B0.73010.70780.23990.059*
H1C0.78280.75790.18610.059*
C20.76447 (8)0.7425 (3)0.4785 (2)0.0229 (5)
C30.78542 (8)0.7153 (3)0.3660 (2)0.0248 (5)
C40.71332 (8)0.8142 (3)0.4946 (2)0.0289 (5)
H4A0.69410.80690.41930.035*
H4B0.71690.92280.51550.035*
C50.68597 (8)0.7302 (3)0.5944 (2)0.0290 (5)
H5A0.65270.77580.60640.035*
H5B0.68140.62260.57180.035*
C60.71544 (8)0.7399 (2)0.7083 (2)0.0228 (5)
C70.69360 (8)0.7612 (3)0.8196 (2)0.0269 (5)
H70.65840.76260.82660.032*
C80.72290 (9)0.7805 (3)0.9206 (2)0.0292 (5)
H80.70760.79290.99640.035*
C90.77457 (9)0.7817 (3)0.9110 (2)0.0278 (5)
H90.79460.79900.97960.033*
C100.79671 (8)0.7576 (3)0.8011 (2)0.0229 (5)
H100.83200.75930.79460.028*
C110.76781 (8)0.7309 (2)0.6998 (2)0.0206 (4)
C120.78952 (8)0.6957 (2)0.5817 (2)0.0208 (4)
C130.83376 (7)0.6109 (2)0.57199 (19)0.0181 (4)
C140.85599 (7)0.5797 (2)0.4602 (2)0.0183 (4)
C150.83135 (8)0.6366 (2)0.3579 (2)0.0213 (4)
C160.85397 (7)0.5328 (2)0.67296 (19)0.0202 (4)
C170.85254 (8)0.6055 (3)0.2431 (2)0.0230 (5)
C181.06712 (10)0.1026 (3)0.2549 (2)0.0305 (5)
H18A1.10340.11340.25360.046*
H18B1.05350.15910.32280.046*
H18C1.05840.00490.26260.046*
C191.04565 (8)0.1645 (2)0.1407 (2)0.0223 (4)
C201.06385 (8)0.1173 (2)0.0295 (2)0.0215 (4)
C211.10732 (8)0.0077 (3)0.0178 (2)0.0259 (5)
H21A1.11120.05050.09280.031*
H21B1.13840.06530.00390.031*
C221.09836 (9)0.1007 (3)0.0855 (2)0.0285 (5)
H22A1.06940.16610.06720.034*
H22B1.12780.16690.09590.034*
C231.08876 (7)0.0150 (3)0.1992 (2)0.0235 (5)
C241.10496 (8)0.0667 (3)0.3099 (2)0.0293 (5)
H241.12200.16090.31510.035*
C251.09665 (9)0.0173 (3)0.4127 (2)0.0302 (5)
H251.10640.02170.48820.036*
C261.07405 (8)0.1582 (3)0.4049 (2)0.0273 (5)
H261.07010.21890.47440.033*
C271.05719 (8)0.2104 (3)0.2956 (2)0.0222 (5)
H271.04180.30710.29080.027*
C281.06245 (8)0.1233 (2)0.1924 (2)0.0208 (4)
C291.04170 (8)0.1703 (2)0.0757 (2)0.0189 (4)
C300.99925 (8)0.2638 (2)0.06895 (19)0.0188 (4)
C310.98132 (8)0.3191 (2)0.0416 (2)0.0199 (4)
C321.00643 (8)0.2697 (2)0.1454 (2)0.0213 (4)
C330.99065 (8)0.3313 (3)0.2578 (2)0.0234 (5)
C340.96871 (8)0.2955 (2)0.1702 (2)0.0200 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (9)0.0307 (10)0.0196 (9)0.0063 (8)0.0002 (8)0.0018 (8)
N20.0200 (8)0.0266 (9)0.0167 (8)0.0044 (7)0.0001 (8)0.0012 (8)
N30.0344 (10)0.0287 (10)0.0210 (10)0.0030 (8)0.0028 (9)0.0007 (8)
N40.0239 (9)0.0305 (10)0.0223 (9)0.0050 (7)0.0007 (8)0.0002 (8)
N50.0283 (9)0.0297 (10)0.0180 (9)0.0066 (8)0.0039 (9)0.0016 (8)
N60.0320 (10)0.0326 (11)0.0221 (10)0.0069 (8)0.0006 (9)0.0013 (9)
C10.0415 (14)0.0554 (17)0.0203 (12)0.0196 (13)0.0049 (11)0.0002 (13)
C20.0224 (11)0.0263 (11)0.0200 (11)0.0039 (8)0.0023 (9)0.0020 (9)
C30.0270 (11)0.0280 (11)0.0194 (11)0.0037 (9)0.0048 (9)0.0005 (9)
C40.0249 (11)0.0379 (13)0.0239 (12)0.0110 (9)0.0044 (9)0.0020 (10)
C50.0195 (10)0.0338 (13)0.0337 (13)0.0038 (9)0.0023 (10)0.0070 (11)
C60.0213 (10)0.0196 (10)0.0275 (12)0.0009 (8)0.0009 (9)0.0002 (9)
C70.0219 (10)0.0244 (11)0.0344 (13)0.0030 (8)0.0104 (10)0.0033 (10)
C80.0345 (12)0.0303 (12)0.0226 (12)0.0072 (9)0.0103 (10)0.0036 (10)
C90.0325 (12)0.0313 (12)0.0197 (11)0.0059 (9)0.0007 (10)0.0018 (10)
C100.0224 (10)0.0240 (11)0.0225 (11)0.0017 (8)0.0004 (9)0.0014 (9)
C110.0200 (10)0.0188 (10)0.0229 (11)0.0016 (8)0.0024 (9)0.0014 (9)
C120.0188 (10)0.0211 (11)0.0224 (11)0.0017 (8)0.0019 (9)0.0017 (9)
C130.0178 (9)0.0197 (10)0.0170 (10)0.0005 (8)0.0008 (8)0.0027 (8)
C140.0187 (9)0.0183 (9)0.0178 (9)0.0026 (7)0.0008 (8)0.0007 (8)
C150.0240 (10)0.0231 (10)0.0169 (10)0.0006 (8)0.0003 (9)0.0017 (9)
C160.0173 (9)0.0236 (10)0.0195 (11)0.0005 (8)0.0030 (8)0.0035 (9)
C170.0242 (10)0.0235 (11)0.0214 (11)0.0009 (8)0.0027 (9)0.0018 (9)
C180.0410 (13)0.0276 (12)0.0229 (11)0.0014 (10)0.0092 (11)0.0054 (10)
C190.0277 (10)0.0186 (10)0.0206 (10)0.0034 (8)0.0050 (9)0.0023 (9)
C200.0231 (10)0.0185 (10)0.0229 (11)0.0011 (8)0.0054 (9)0.0007 (9)
C210.0260 (10)0.0216 (10)0.0299 (12)0.0040 (8)0.0078 (9)0.0008 (10)
C220.0298 (11)0.0190 (11)0.0365 (13)0.0040 (8)0.0090 (11)0.0027 (10)
C230.0185 (10)0.0224 (11)0.0295 (12)0.0004 (8)0.0037 (9)0.0052 (10)
C240.0238 (11)0.0274 (12)0.0367 (13)0.0032 (9)0.0024 (10)0.0089 (11)
C250.0265 (11)0.0368 (13)0.0275 (12)0.0015 (9)0.0037 (10)0.0101 (11)
C260.0232 (10)0.0347 (13)0.0242 (11)0.0012 (9)0.0015 (9)0.0027 (10)
C270.0180 (9)0.0252 (11)0.0235 (11)0.0002 (8)0.0002 (8)0.0034 (9)
C280.0196 (9)0.0194 (10)0.0235 (11)0.0002 (8)0.0025 (8)0.0028 (9)
C290.0201 (10)0.0152 (9)0.0215 (10)0.0016 (7)0.0014 (9)0.0004 (8)
C300.0202 (10)0.0181 (10)0.0180 (11)0.0012 (8)0.0000 (8)0.0017 (8)
C310.0202 (9)0.0195 (9)0.0200 (10)0.0028 (7)0.0010 (8)0.0009 (9)
C320.0225 (10)0.0228 (11)0.0185 (10)0.0054 (8)0.0000 (9)0.0007 (9)
C330.0243 (10)0.0244 (11)0.0215 (11)0.0067 (8)0.0017 (9)0.0024 (9)
C340.0198 (9)0.0206 (10)0.0197 (11)0.0007 (8)0.0033 (9)0.0015 (8)
Geometric parameters (Å, º) top
N1—C161.153 (3)C12—C131.408 (3)
N2—C141.352 (3)C13—C141.414 (3)
N2—H210.91 (4)C13—C161.431 (3)
N2—H220.91 (3)C14—C151.415 (3)
N3—C171.147 (3)C15—C171.433 (3)
N4—C341.156 (3)C18—C191.506 (3)
N5—C311.357 (3)C18—H18A0.9800
N5—H510.91 (4)C18—H18B0.9800
N5—H520.91 (3)C18—H18C0.9800
N6—C331.150 (3)C19—C201.401 (3)
C1—C31.505 (3)C19—C321.405 (3)
C1—H1A0.9800C20—C291.400 (3)
C1—H1B0.9800C20—C211.521 (3)
C1—H1C0.9800C21—C221.520 (3)
C2—C121.400 (3)C21—H21A0.9900
C2—C31.400 (3)C21—H21B0.9900
C2—C41.523 (3)C22—C231.504 (3)
C3—C151.419 (3)C22—H22A0.9900
C4—C51.529 (4)C22—H22B0.9900
C4—H4A0.9900C23—C241.391 (3)
C4—H4B0.9900C23—C281.411 (3)
C5—C61.505 (3)C24—C251.388 (4)
C5—H5A0.9900C24—H240.9500
C5—H5B0.9900C25—C261.386 (3)
C6—C71.391 (3)C25—H250.9500
C6—C111.412 (3)C26—C271.385 (3)
C7—C81.388 (4)C26—H260.9500
C7—H70.9500C27—C281.394 (3)
C8—C91.392 (3)C27—H270.9500
C8—H80.9500C28—C291.481 (3)
C9—C101.384 (3)C29—C301.409 (3)
C9—H90.9500C30—C311.416 (3)
C10—C111.395 (3)C30—C341.427 (3)
C10—H100.9500C31—C321.413 (3)
C11—C121.479 (3)C32—C331.435 (3)
C14—N2—H21120 (2)C3—C15—C17119.8 (2)
C14—N2—H22120.1 (18)N1—C16—C13175.4 (2)
H21—N2—H22119 (2)N3—C17—C15178.7 (2)
C31—N5—H51120 (2)C19—C18—H18A109.5
C31—N5—H52121.3 (19)C19—C18—H18B109.5
H51—N5—H52116 (3)H18A—C18—H18B109.5
C3—C1—H1A109.5C19—C18—H18C109.5
C3—C1—H1B109.5H18A—C18—H18C109.5
H1A—C1—H1B109.5H18B—C18—H18C109.5
C3—C1—H1C109.5C20—C19—C32119.4 (2)
H1A—C1—H1C109.5C20—C19—C18121.0 (2)
H1B—C1—H1C109.5C32—C19—C18119.6 (2)
C12—C2—C3119.95 (19)C29—C20—C19120.04 (18)
C12—C2—C4117.3 (2)C29—C20—C21117.8 (2)
C3—C2—C4122.7 (2)C19—C20—C21122.2 (2)
C2—C3—C15119.4 (2)C22—C21—C20110.08 (18)
C2—C3—C1121.0 (2)C22—C21—H21A109.6
C15—C3—C1119.6 (2)C20—C21—H21A109.6
C2—C4—C5108.60 (19)C22—C21—H21B109.6
C2—C4—H4A110.0C20—C21—H21B109.6
C5—C4—H4A110.0H21A—C21—H21B108.2
C2—C4—H4B110.0C23—C22—C21110.84 (19)
C5—C4—H4B110.0C23—C22—H22A109.5
H4A—C4—H4B108.3C21—C22—H22A109.5
C6—C5—C4109.88 (18)C23—C22—H22B109.5
C6—C5—H5A109.7C21—C22—H22B109.5
C4—C5—H5A109.7H22A—C22—H22B108.1
C6—C5—H5B109.7C24—C23—C28119.2 (2)
C4—C5—H5B109.7C24—C23—C22122.5 (2)
H5A—C5—H5B108.2C28—C23—C22118.3 (2)
C7—C6—C11119.2 (2)C25—C24—C23121.0 (2)
C7—C6—C5123.12 (19)C25—C24—H24119.5
C11—C6—C5117.6 (2)C23—C24—H24119.5
C8—C7—C6120.5 (2)C26—C25—C24119.8 (2)
C8—C7—H7119.7C26—C25—H25120.1
C6—C7—H7119.7C24—C25—H25120.1
C7—C8—C9120.2 (2)C25—C26—C27119.8 (2)
C7—C8—H8119.9C25—C26—H26120.1
C9—C8—H8119.9C27—C26—H26120.1
C10—C9—C8119.7 (2)C26—C27—C28121.2 (2)
C10—C9—H9120.1C26—C27—H27119.4
C8—C9—H9120.1C28—C27—H27119.4
C9—C10—C11120.72 (19)C27—C28—C23118.8 (2)
C9—C10—H10119.6C27—C28—C29122.69 (19)
C11—C10—H10119.6C23—C28—C29118.5 (2)
C10—C11—C6119.3 (2)C20—C29—C30119.6 (2)
C10—C11—C12122.96 (18)C20—C29—C28119.34 (18)
C6—C11—C12117.7 (2)C30—C29—C28121.0 (2)
C2—C12—C13119.9 (2)C29—C30—C31121.6 (2)
C2—C12—C11119.17 (18)C29—C30—C34122.5 (2)
C13—C12—C11120.9 (2)C31—C30—C34115.62 (18)
C12—C13—C14121.84 (19)N5—C31—C32122.0 (2)
C12—C13—C16120.98 (19)N5—C31—C30121.2 (2)
C14—C13—C16116.51 (18)C32—C31—C30116.83 (18)
N2—C14—C13121.1 (2)C19—C32—C31122.0 (2)
N2—C14—C15122.1 (2)C19—C32—C33120.3 (2)
C13—C14—C15116.78 (17)C31—C32—C33117.64 (19)
C14—C15—C3121.9 (2)N6—C33—C32177.8 (2)
C14—C15—C17118.24 (18)N4—C34—C30175.0 (2)
C12—C2—C3—C151.7 (3)C32—C19—C20—C292.5 (3)
C4—C2—C3—C15174.7 (2)C18—C19—C20—C29176.8 (2)
C12—C2—C3—C1178.1 (2)C32—C19—C20—C21177.9 (2)
C4—C2—C3—C15.5 (4)C18—C19—C20—C212.8 (3)
C12—C2—C4—C538.2 (3)C29—C20—C21—C2237.7 (3)
C3—C2—C4—C5138.3 (2)C19—C20—C21—C22141.9 (2)
C2—C4—C5—C659.0 (3)C20—C21—C22—C2355.3 (3)
C4—C5—C6—C7140.4 (2)C21—C22—C23—C24144.8 (2)
C4—C5—C6—C1137.8 (3)C21—C22—C23—C2835.0 (3)
C11—C6—C7—C83.0 (3)C28—C23—C24—C251.5 (3)
C5—C6—C7—C8175.2 (2)C22—C23—C24—C25178.2 (2)
C6—C7—C8—C91.3 (3)C23—C24—C25—C263.2 (4)
C7—C8—C9—C102.5 (4)C24—C25—C26—C273.9 (3)
C8—C9—C10—C110.5 (3)C25—C26—C27—C280.1 (3)
C9—C10—C11—C64.7 (3)C26—C27—C28—C234.7 (3)
C9—C10—C11—C12176.3 (2)C26—C27—C28—C29175.5 (2)
C7—C6—C11—C105.9 (3)C24—C23—C28—C275.4 (3)
C5—C6—C11—C10172.4 (2)C22—C23—C28—C27174.4 (2)
C7—C6—C11—C12175.08 (19)C24—C23—C28—C29174.83 (19)
C5—C6—C11—C126.6 (3)C22—C23—C28—C295.4 (3)
C3—C2—C12—C135.0 (3)C19—C20—C29—C303.8 (3)
C4—C2—C12—C13171.6 (2)C21—C20—C29—C30175.78 (19)
C3—C2—C12—C11177.5 (2)C19—C20—C29—C28178.0 (2)
C4—C2—C12—C115.9 (3)C21—C20—C29—C282.4 (3)
C10—C11—C12—C2148.5 (2)C27—C28—C29—C20154.0 (2)
C6—C11—C12—C230.5 (3)C23—C28—C29—C2025.7 (3)
C10—C11—C12—C1334.1 (3)C27—C28—C29—C3027.8 (3)
C6—C11—C12—C13147.0 (2)C23—C28—C29—C30152.4 (2)
C2—C12—C13—C144.5 (3)C20—C29—C30—C316.8 (3)
C11—C12—C13—C14178.06 (19)C28—C29—C30—C31175.05 (19)
C2—C12—C13—C16165.8 (2)C20—C29—C30—C34166.3 (2)
C11—C12—C13—C1611.7 (3)C28—C29—C30—C3411.8 (3)
C12—C13—C14—N2178.4 (2)C29—C30—C31—N5176.8 (2)
C16—C13—C14—N27.7 (3)C34—C30—C31—N59.6 (3)
C12—C13—C14—C150.6 (3)C29—C30—C31—C323.2 (3)
C16—C13—C14—C15170.03 (19)C34—C30—C31—C32170.37 (19)
N2—C14—C15—C3175.0 (2)C20—C19—C32—C316.2 (3)
C13—C14—C15—C32.7 (3)C18—C19—C32—C31173.1 (2)
N2—C14—C15—C171.5 (3)C20—C19—C32—C33173.6 (2)
C13—C14—C15—C17179.2 (2)C18—C19—C32—C337.2 (3)
C2—C3—C15—C142.2 (3)N5—C31—C32—C19176.7 (2)
C1—C3—C15—C14178.0 (2)C30—C31—C32—C193.3 (3)
C2—C3—C15—C17178.7 (2)N5—C31—C32—C333.5 (3)
C1—C3—C15—C171.5 (4)C30—C31—C32—C33176.46 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N40.91 (4)2.15 (4)3.007 (3)156 (3)
N2—H22···N6i0.91 (3)2.38 (3)3.265 (3)164 (2)
N5—H51···N1ii0.91 (4)2.12 (4)3.012 (3)168 (3)
N5—H52···N30.91 (3)2.41 (3)3.283 (3)161 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H13N3
Mr259.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)26.8587 (7), 8.8158 (2), 11.2035 (3)
V3)2652.78 (12)
Z8
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.836, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10819, 2800, 2621
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.09
No. of reflections2800
No. of parameters379
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N40.91 (4)2.15 (4)3.007 (3)156 (3)
N2—H22···N6i0.91 (3)2.38 (3)3.265 (3)164 (2)
N5—H51···N1ii0.91 (4)2.12 (4)3.012 (3)168 (3)
N5—H52···N30.91 (3)2.41 (3)3.283 (3)161 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDellagreca, M., Fiorentino, A., Monaco, P., Previtera, L. & Zarrelli, A. (2000). J. Chem. Ecol. 26, 587–600.  Web of Science CrossRef CAS Google Scholar
First citationRam, V. J. & Goel, A. (1997). J. Chem. Res. pp. 460–461.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds