organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(Naphthalen-1-yl)-3-(1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 August 2011; accepted 27 August 2011; online 3 September 2011)

In the title mol­ecule, C22H16N2O, the phenyl ring is twisted slightly with respect to the plane of the central pyrazole ring [dihedral angle = 14.8 (2)°]; the central ring is connected to the naphthyl ring through a —CH=CH—C(=O)— fragment, whose C=C double bond has an E configuration. The pyrazole ring and naphthalene ring system are twisted by 46.3 (1)°. Weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming supra­molecular chains running along the a axis. The crystal studied was a non-merohedral twin with a component ratio of 0.544 (2):0.456 (2).

Related literature

For related structures; see: Diánez & López-Castro (1990[Diánez, M. J. & López-Castro, A. (1990). Acta Cryst. C46, 1718-1720.]); Jones et al. (1984[Jones, R. A., Gonzalez, B. A., Arques, J. S., Pardo, J. Q. & King, T. J. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1423-1425.]). For the synthesis, see: Finar (1961[Finar, I. L. (1961). J. Chem. Soc. pp. 674-679.]); Finar & Lord (1959[Finar, I. L. & Lord, G. H. (1959). J. Chem. Soc. pp. 1819-1823.]); Jones et al. (1984[Jones, R. A., Gonzalez, B. A., Arques, J. S., Pardo, J. Q. & King, T. J. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1423-1425.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O

  • Mr = 324.37

  • Monoclinic, P 21 /n

  • a = 5.8457 (6) Å

  • b = 10.322 (2) Å

  • c = 26.626 (2) Å

  • β = 92.322 (9)°

  • V = 1605.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.980, Tmax = 0.992

  • 3824 measured reflections

  • 3825 independent reflections

  • 2494 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.140

  • S = 0.96

  • 3825 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.46 3.397 (4) 167
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The hydrogen of the acetyl group of 1-acetylnaphthalene (as well as that of similar ketones) is relatively acidic, and can be abstracted by a strong base. In the present study, the resulting carbanion is used for carbon-carbon double-bond synthesis to extend the nature of the substitutent at the 4-position of 1-phenylpyrazole-4-carboxaldehyde by using a similar procedure for synthesizing the 1-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one (Finar, 1961; Finar & Lord, 1959). In the C22H16N2O molecule (Scheme I), the phenyl ring is slightly twisted with respect to the central pyrazole; the central ring is connected to the naphthyl ring through the –CH–CH–C(O)– fragment, whose C–C double-bond is of an E-configuration (Fig. 1). The pyrazole and naphthalene rings are twisted by 46.3 (1) °. There are only few crystal structure reports of 4-substituted 1-phenylpyrazoles (Diánez López-Castro, 1990; Jones et al., 1984).

Related literature top

For related structures; see: Diánez & López-Castro (1990); Jones et al. (1984). For the synthesis, see: Finar (1961); Finar & Lord (1959); Jones et al. (1984).

Experimental top

1-Phenylpyrazole-4-carboxaldehyde (0.01 mol) in ethanol (20 ml) was added to a 1-acetylnaphthalene (0.01 mol) in dissolved in 20% ethanolic potassium hydroxide (20 ml). The mixture was stirred for 6 h. The mixture was then poured into water (200 ml). The precipitated product was collected by filtration, washed with water, dried and recrystallized from ethanol; m.p. 389–391 K.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The crystal is a non-merohedral twin; integration of the diffraction spots gave a ratio of 0.539: 0.461 for the 8472 reflections, most of which were overlapped. Of the isolated spots, the Rint of the major component was 0.017 and that of the minor component was 0.021. The ratio refined to 0.544 (2): 0.456.

Omitted were (1 - 5 5), (-4 - 5 -8) and (-4 - 6 -8).

Structure description top

The hydrogen of the acetyl group of 1-acetylnaphthalene (as well as that of similar ketones) is relatively acidic, and can be abstracted by a strong base. In the present study, the resulting carbanion is used for carbon-carbon double-bond synthesis to extend the nature of the substitutent at the 4-position of 1-phenylpyrazole-4-carboxaldehyde by using a similar procedure for synthesizing the 1-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one (Finar, 1961; Finar & Lord, 1959). In the C22H16N2O molecule (Scheme I), the phenyl ring is slightly twisted with respect to the central pyrazole; the central ring is connected to the naphthyl ring through the –CH–CH–C(O)– fragment, whose C–C double-bond is of an E-configuration (Fig. 1). The pyrazole and naphthalene rings are twisted by 46.3 (1) °. There are only few crystal structure reports of 4-substituted 1-phenylpyrazoles (Diánez López-Castro, 1990; Jones et al., 1984).

For related structures; see: Diánez & López-Castro (1990); Jones et al. (1984). For the synthesis, see: Finar (1961); Finar & Lord (1959); Jones et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C22H16N2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(E)-1-(Naphthalen-1-yl)-3-(1-phenyl-1H-pyrazol-4-yl)prop- 2-en-1-one top
Crystal data top
C22H16N2OF(000) = 680
Mr = 324.37Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1183 reflections
a = 5.8457 (6) Åθ = 2.5–27.5°
b = 10.322 (2) ŵ = 0.08 mm1
c = 26.626 (2) ÅT = 100 K
β = 92.322 (9)°Prism, colorless
V = 1605.3 (4) Å30.25 × 0.10 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3825 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2494 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.105
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 57
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.980, Tmax = 0.992l = 3433
3824 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
3825 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H16N2OV = 1605.3 (4) Å3
Mr = 324.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8457 (6) ŵ = 0.08 mm1
b = 10.322 (2) ÅT = 100 K
c = 26.626 (2) Å0.25 × 0.10 × 0.10 mm
β = 92.322 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3825 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2494 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.992Rint = 0.105
3824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.96Δρmax = 0.31 e Å3
3825 reflectionsΔρmin = 0.34 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1745 (4)0.6128 (2)0.63013 (9)0.0283 (5)
N10.4987 (4)0.2604 (2)0.49661 (10)0.0202 (6)
N20.3221 (4)0.3061 (2)0.52392 (10)0.0229 (6)
C10.4623 (5)0.1552 (3)0.46241 (11)0.0213 (7)
C20.2589 (5)0.0852 (3)0.46313 (12)0.0243 (7)
H20.14250.10970.48510.029*
C30.2277 (6)0.0202 (3)0.43169 (13)0.0305 (8)
H30.08890.06790.43200.037*
C40.3976 (6)0.0571 (3)0.39953 (13)0.0293 (8)
H40.37670.13050.37830.035*
C50.5974 (6)0.0145 (3)0.39896 (13)0.0303 (8)
H50.71390.00950.37690.036*
C60.6297 (5)0.1211 (3)0.43018 (12)0.0271 (7)
H60.76690.17020.42930.032*
C70.7000 (5)0.3184 (3)0.51010 (12)0.0225 (7)
H70.84460.30160.49640.027*
C80.6552 (5)0.4065 (3)0.54748 (12)0.0220 (7)
C90.4192 (5)0.3936 (3)0.55371 (12)0.0247 (7)
H90.33750.44320.57710.030*
C100.8217 (5)0.4858 (3)0.57469 (12)0.0257 (7)
H100.97460.48150.56400.031*
C110.7837 (5)0.5642 (3)0.61324 (11)0.0200 (7)
H110.63090.57920.62270.024*
C120.9745 (5)0.6283 (3)0.64149 (12)0.0226 (7)
C130.9159 (5)0.7116 (3)0.68505 (12)0.0220 (7)
C140.7203 (5)0.7865 (3)0.67969 (13)0.0265 (7)
H140.62370.77800.65030.032*
C150.6629 (6)0.8752 (3)0.71719 (14)0.0336 (8)
H150.53190.92900.71240.040*
C160.7945 (6)0.8842 (3)0.76025 (14)0.0325 (8)
H160.75330.94430.78530.039*
C170.9905 (6)0.8066 (3)0.76865 (12)0.0260 (7)
C181.1253 (7)0.8148 (3)0.81331 (14)0.0367 (9)
H181.08380.87480.83840.044*
C191.3144 (6)0.7390 (3)0.82175 (13)0.0358 (9)
H191.40460.74740.85210.043*
C201.3740 (6)0.6488 (3)0.78517 (13)0.0321 (8)
H201.50230.59380.79140.038*
C211.2500 (5)0.6390 (3)0.74068 (13)0.0269 (7)
H211.29410.57740.71640.032*
C221.0581 (5)0.7185 (3)0.73024 (12)0.0232 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (13)0.0340 (13)0.0269 (13)0.0001 (10)0.0011 (10)0.0068 (10)
N10.0224 (13)0.0212 (13)0.0169 (13)0.0039 (11)0.0013 (11)0.0008 (11)
N20.0248 (14)0.0259 (14)0.0180 (13)0.0068 (11)0.0010 (12)0.0021 (11)
C10.0264 (17)0.0190 (15)0.0182 (15)0.0081 (13)0.0043 (14)0.0012 (13)
C20.0281 (17)0.0203 (15)0.0243 (17)0.0061 (13)0.0003 (15)0.0022 (14)
C30.0350 (19)0.0213 (17)0.034 (2)0.0003 (15)0.0087 (17)0.0008 (15)
C40.040 (2)0.0213 (16)0.0260 (18)0.0082 (15)0.0087 (17)0.0038 (14)
C50.0303 (19)0.0343 (18)0.0262 (18)0.0151 (15)0.0015 (16)0.0036 (15)
C60.0308 (18)0.0257 (16)0.0243 (17)0.0051 (14)0.0051 (15)0.0047 (14)
C70.0186 (15)0.0247 (17)0.0240 (18)0.0050 (13)0.0031 (14)0.0012 (14)
C80.0243 (16)0.0208 (15)0.0209 (17)0.0049 (13)0.0018 (14)0.0026 (13)
C90.0295 (18)0.0253 (17)0.0190 (17)0.0091 (14)0.0010 (15)0.0015 (14)
C100.0234 (17)0.0271 (17)0.0263 (17)0.0053 (14)0.0013 (14)0.0013 (15)
C110.0207 (17)0.0202 (15)0.0189 (16)0.0027 (12)0.0004 (14)0.0022 (13)
C120.0293 (18)0.0156 (15)0.0227 (17)0.0010 (13)0.0017 (15)0.0066 (13)
C130.0279 (17)0.0151 (14)0.0231 (17)0.0014 (13)0.0036 (15)0.0019 (13)
C140.0313 (19)0.0242 (16)0.0240 (17)0.0035 (14)0.0009 (15)0.0048 (14)
C150.038 (2)0.0252 (17)0.039 (2)0.0107 (15)0.0073 (18)0.0052 (15)
C160.045 (2)0.0214 (17)0.032 (2)0.0010 (15)0.0120 (18)0.0088 (15)
C170.0391 (19)0.0186 (16)0.0206 (17)0.0092 (14)0.0054 (16)0.0031 (13)
C180.059 (2)0.0261 (18)0.0253 (18)0.0112 (17)0.0028 (19)0.0022 (15)
C190.054 (2)0.0307 (19)0.0216 (18)0.0105 (17)0.0101 (18)0.0035 (16)
C200.037 (2)0.0273 (18)0.0319 (19)0.0010 (15)0.0035 (17)0.0036 (15)
C210.0312 (18)0.0214 (16)0.0281 (18)0.0047 (13)0.0027 (16)0.0014 (14)
C220.0295 (18)0.0165 (15)0.0238 (16)0.0066 (13)0.0036 (15)0.0034 (13)
Geometric parameters (Å, º) top
O1—C121.230 (4)C10—H100.9500
N1—C71.355 (4)C11—C121.477 (4)
N1—N21.370 (3)C11—H110.9500
N1—C11.428 (4)C12—C131.494 (4)
N2—C91.316 (4)C13—C141.383 (4)
C1—C61.373 (4)C13—C221.436 (4)
C1—C21.392 (4)C14—C151.405 (4)
C2—C31.380 (4)C14—H140.9500
C2—H20.9500C15—C161.358 (5)
C3—C41.391 (5)C15—H150.9500
C3—H30.9500C16—C171.408 (5)
C4—C51.383 (5)C16—H160.9500
C4—H40.9500C17—C181.402 (5)
C5—C61.387 (4)C17—C221.436 (4)
C5—H50.9500C18—C191.366 (5)
C6—H60.9500C18—H180.9500
C7—C81.381 (4)C19—C201.402 (4)
C7—H70.9500C19—H190.9500
C8—C91.402 (4)C20—C211.367 (5)
C8—C101.444 (4)C20—H200.9500
C9—H90.9500C21—C221.409 (4)
C10—C111.334 (4)C21—H210.9500
C7—N1—N2111.8 (2)C10—C11—H11119.4
C7—N1—C1127.6 (3)C12—C11—H11119.4
N2—N1—C1120.3 (2)O1—C12—C11121.5 (3)
C9—N2—N1103.9 (2)O1—C12—C13121.1 (3)
C6—C1—C2120.4 (3)C11—C12—C13117.4 (3)
C6—C1—N1120.1 (3)C14—C13—C22120.4 (3)
C2—C1—N1119.4 (3)C14—C13—C12117.1 (3)
C3—C2—C1119.5 (3)C22—C13—C12122.4 (3)
C3—C2—H2120.2C13—C14—C15120.7 (3)
C1—C2—H2120.2C13—C14—H14119.6
C2—C3—C4120.6 (3)C15—C14—H14119.6
C2—C3—H3119.7C16—C15—C14120.0 (3)
C4—C3—H3119.7C16—C15—H15120.0
C5—C4—C3119.0 (3)C14—C15—H15120.0
C5—C4—H4120.5C15—C16—C17121.7 (3)
C3—C4—H4120.5C15—C16—H16119.2
C4—C5—C6120.8 (3)C17—C16—H16119.2
C4—C5—H5119.6C18—C17—C16121.7 (3)
C6—C5—H5119.6C18—C17—C22118.8 (3)
C1—C6—C5119.6 (3)C16—C17—C22119.5 (3)
C1—C6—H6120.2C19—C18—C17121.9 (3)
C5—C6—H6120.2C19—C18—H18119.1
N1—C7—C8107.1 (3)C17—C18—H18119.1
N1—C7—H7126.5C18—C19—C20119.2 (3)
C8—C7—H7126.5C18—C19—H19120.4
C7—C8—C9103.8 (3)C20—C19—H19120.4
C7—C8—C10126.2 (3)C21—C20—C19120.9 (3)
C9—C8—C10129.9 (3)C21—C20—H20119.6
N2—C9—C8113.3 (3)C19—C20—H20119.6
N2—C9—H9123.3C20—C21—C22121.2 (3)
C8—C9—H9123.3C20—C21—H21119.4
C11—C10—C8126.9 (3)C22—C21—H21119.4
C11—C10—H10116.6C21—C22—C17117.9 (3)
C8—C10—H10116.6C21—C22—C13124.4 (3)
C10—C11—C12121.2 (3)C17—C22—C13117.5 (3)
C7—N1—N2—C90.7 (3)O1—C12—C13—C14142.2 (3)
C1—N1—N2—C9175.1 (2)C11—C12—C13—C1438.7 (4)
C7—N1—C1—C615.4 (4)O1—C12—C13—C2235.7 (4)
N2—N1—C1—C6171.1 (3)C11—C12—C13—C22143.4 (3)
C7—N1—C1—C2162.6 (3)C22—C13—C14—C153.1 (5)
N2—N1—C1—C210.9 (4)C12—C13—C14—C15174.8 (3)
C6—C1—C2—C30.9 (5)C13—C14—C15—C162.9 (5)
N1—C1—C2—C3177.1 (3)C14—C15—C16—C170.3 (5)
C1—C2—C3—C40.2 (5)C15—C16—C17—C18179.4 (3)
C2—C3—C4—C51.0 (5)C15—C16—C17—C222.0 (5)
C3—C4—C5—C60.5 (5)C16—C17—C18—C19179.5 (3)
C2—C1—C6—C51.3 (4)C22—C17—C18—C191.9 (5)
N1—C1—C6—C5176.6 (3)C17—C18—C19—C201.1 (5)
C4—C5—C6—C10.6 (5)C18—C19—C20—C212.2 (5)
N2—N1—C7—C80.4 (3)C19—C20—C21—C220.3 (5)
C1—N1—C7—C8174.4 (3)C20—C21—C22—C172.6 (5)
N1—C7—C8—C90.0 (3)C20—C21—C22—C13178.3 (3)
N1—C7—C8—C10176.8 (3)C18—C17—C22—C213.7 (4)
N1—N2—C9—C80.7 (3)C16—C17—C22—C21177.7 (3)
C7—C8—C9—N20.4 (4)C18—C17—C22—C13179.6 (3)
C10—C8—C9—N2176.2 (3)C16—C17—C22—C131.7 (4)
C7—C8—C10—C11174.8 (3)C14—C13—C22—C21174.9 (3)
C9—C8—C10—C111.1 (6)C12—C13—C22—C217.3 (5)
C8—C10—C11—C12172.8 (3)C14—C13—C22—C170.8 (4)
C10—C11—C12—O10.8 (5)C12—C13—C22—C17177.0 (3)
C10—C11—C12—C13178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.463.397 (4)167
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H16N2O
Mr324.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.8457 (6), 10.322 (2), 26.626 (2)
β (°) 92.322 (9)
V3)1605.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.980, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3824, 3825, 2494
Rint0.105
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.140, 0.96
No. of reflections3825
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.463.397 (4)167
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDiánez, M. J. & López-Castro, A. (1990). Acta Cryst. C46, 1718–1720.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFinar, I. L. (1961). J. Chem. Soc. pp. 674–679.  CrossRef Web of Science Google Scholar
First citationFinar, I. L. & Lord, G. H. (1959). J. Chem. Soc. pp. 1819–1823.  CrossRef Web of Science Google Scholar
First citationJones, R. A., Gonzalez, B. A., Arques, J. S., Pardo, J. Q. & King, T. J. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1423–1425.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds