metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)(μ3-5-hy­dr­oxy­isophthalato-κ4O1:O3,O3′:O3′)cadmium]

aNorth China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsyhxy@163.com

(Received 27 August 2011; accepted 3 September 2011; online 14 September 2011)

In the title compound, [Cd(C8H4O5)(C12H12N2)], the CdII cation is coordinated by three 5-hy­droxy­isophthalate anions and one 5,5′-bimethyl-2,2′-bipyridine ligand in a distorted CdO4N2 octa­hedral geometry. The 5-hy­droxy­isophthalate anions bridge the Cd cations, forming a two-dimensional polymeric complex parallel to (100). In the complex, the hy­droxy group is linked to the uncoordinated carb­oxy-O atom via an O—H⋯O hydrogen bond. Weak C—H⋯O hydrogen bonds are also present in the crystal structure. One of the methyl groups is disordered over two positions in a 0.536 (11):0.464 (11) ratio.

Related literature

For background to network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2011[Zang, S.-Q., Fan, Y.-J., Li, J.-B., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395-3405.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O5)(C12H12N2)]

  • Mr = 476.75

  • Monoclinic, P 21 /c

  • a = 10.7650 (2) Å

  • b = 13.0111 (3) Å

  • c = 16.5272 (4) Å

  • β = 125.235 (2)°

  • V = 1890.77 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.806

  • 7327 measured reflections

  • 3315 independent reflections

  • 2963 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.03

  • 3315 reflections

  • 261 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.1884 (19)
Cd1—O3i 2.4015 (19)
Cd1—O4i 2.3209 (18)
Cd1—O4ii 2.3922 (19)
Cd1—N1 2.329 (2)
Cd1—N2 2.340 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2iii 0.82 1.86 2.680 (3) 174
C6—H6⋯O1iv 0.93 2.31 3.229 (3) 169
C17—H17⋯O3v 0.93 2.53 3.355 (5) 147
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, supramolecular coordination assemblies have received much attention due to their variety of architectures and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of isophthalic acid and its derivatives have been successfully employed in the generation of many novel structures (Zang et al., 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on one novel Cd(II) complex based on 5-hydroxyisophthalic acid (H2hip) and 5,5'-bimethyl-2,2'-bipyridine(bmbpy): Cd(hip)(bmbpy) (1).

As shown in Fig. 1, the asymmetric unit consists of one CdII atom, one hip2- anion and one dmbpy ligand. The CdII atom is six-coordinated by four O atoms from three 5-hydroxyisophthalate ligands and two N atoms from a chelating 5,5'-bimethyl-2,2'-bipyridine ligand. Each hip2- ligand acts as a µ3-bridge linking three CdII atoms with one carboxylate groups in monodentate fashion and the other one in chelating/bridging mode. As depicted in Fig. 2, pair of metal atoms are linked together through two carboxylate oxygen atoms to form a tetratomic ring Cd2O2. Adjacent rings are further connected by hip2- ligands to result in a layer structure in bc plane with the N-donor ligands hanging from it. A better understanding of this structure can be achieved via topological considerations. If the hip2- ligand are considered as connecters, and the Cd2O2 Units are considered as four-connected nodes (connecting to four other such units via hip2- ligands), the layer structure of 1 can be described as a (4,4)-net.

Related literature top

For background to network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2011).

Experimental top

Compound 1 was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of 5-hydroxyisophthalic acid (H2hip) (0.0091 g, 0.05 mmol), 5,5'-bimethyl-2,2'-bipyridine(bmbpy) (0.0092 g, 0.05 mmol), Cd(NO3)2.4H2O (0.0154 g, 0.05 mmol) and NaOH (0.0040 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 days, and then cooled to room temperature. Colorless block crystals of 1 were obtained in 69% yield based on cadmium.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C,O) for methyl and hydroxy H atoms.

Structure description top

In recent years, supramolecular coordination assemblies have received much attention due to their variety of architectures and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of isophthalic acid and its derivatives have been successfully employed in the generation of many novel structures (Zang et al., 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on one novel Cd(II) complex based on 5-hydroxyisophthalic acid (H2hip) and 5,5'-bimethyl-2,2'-bipyridine(bmbpy): Cd(hip)(bmbpy) (1).

As shown in Fig. 1, the asymmetric unit consists of one CdII atom, one hip2- anion and one dmbpy ligand. The CdII atom is six-coordinated by four O atoms from three 5-hydroxyisophthalate ligands and two N atoms from a chelating 5,5'-bimethyl-2,2'-bipyridine ligand. Each hip2- ligand acts as a µ3-bridge linking three CdII atoms with one carboxylate groups in monodentate fashion and the other one in chelating/bridging mode. As depicted in Fig. 2, pair of metal atoms are linked together through two carboxylate oxygen atoms to form a tetratomic ring Cd2O2. Adjacent rings are further connected by hip2- ligands to result in a layer structure in bc plane with the N-donor ligands hanging from it. A better understanding of this structure can be achieved via topological considerations. If the hip2- ligand are considered as connecters, and the Cd2O2 Units are considered as four-connected nodes (connecting to four other such units via hip2- ligands), the layer structure of 1 can be described as a (4,4)-net.

For background to network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Metal coordination and atom labeling in title compound (thermal ellipsoids at 50% probability level). Irrespective hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the layer in compound 1. Dotted lines represent the topological view of the layer structure. The bmbpy ligands are omitted for clarity.
Poly[(5,5'-dimethyl-2,2'-bipyridine-κ2N,N')(µ3-5- hydroxyisophthalato- κ4O1:O3,O3':O3')cadmium] top
Crystal data top
[Cd(C8H4O5)(C12H12N2)]F(000) = 952
Mr = 476.75Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4955 reflections
a = 10.7650 (2) Åθ = 3.0–29.2°
b = 13.0111 (3) ŵ = 1.19 mm1
c = 16.5272 (4) ÅT = 296 K
β = 125.235 (2)°Block, colourless
V = 1890.77 (7) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
3315 independent reflections
Radiation source: fine-focus sealed tube2963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.788, Tmax = 0.806k = 1315
7327 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.440P]
where P = (Fo2 + 2Fc2)/3
3315 reflections(Δ/σ)max = 0.002
261 parametersΔρmax = 0.44 e Å3
19 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cd(C8H4O5)(C12H12N2)]V = 1890.77 (7) Å3
Mr = 476.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7650 (2) ŵ = 1.19 mm1
b = 13.0111 (3) ÅT = 296 K
c = 16.5272 (4) Å0.21 × 0.20 × 0.19 mm
β = 125.235 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
3315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2963 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.806Rint = 0.022
7327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02419 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
3315 reflectionsΔρmin = 0.49 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.33624 (2)0.908899 (14)0.465227 (14)0.02455 (9)
O10.4236 (3)0.79166 (15)0.58085 (15)0.0445 (5)
O20.4437 (3)0.68188 (19)0.48809 (18)0.0605 (7)
O30.3021 (2)0.63401 (16)0.81224 (15)0.0398 (5)
O40.4714 (2)0.51992 (16)0.90921 (14)0.0380 (5)
O50.5449 (3)0.34087 (16)0.66869 (17)0.0482 (6)
H50.55320.33680.62250.072*
N10.0946 (3)0.8445 (2)0.4020 (2)0.0447 (7)
N20.1680 (3)1.0450 (2)0.42515 (19)0.0387 (6)
C10.4423 (3)0.7026 (2)0.5600 (2)0.0311 (6)
C20.4028 (3)0.5714 (2)0.83066 (19)0.0234 (6)
C30.4561 (3)0.6172 (2)0.62673 (19)0.0268 (6)
C40.4971 (3)0.5188 (2)0.6169 (2)0.0331 (7)
H40.51660.50670.56970.040*
C50.5091 (3)0.4393 (2)0.6761 (2)0.0310 (6)
C60.4842 (3)0.4582 (2)0.74822 (19)0.0269 (6)
H60.49750.40590.79090.032*
C70.4394 (3)0.5551 (2)0.75669 (18)0.0224 (5)
C80.4245 (3)0.6349 (2)0.69598 (19)0.0251 (6)
H80.39360.69970.70160.030*
C90.0650 (4)0.7438 (3)0.3945 (3)0.0666 (12)
H90.14110.69880.40640.080*
C100.0689 (4)0.7022 (3)0.3704 (4)0.0818 (15)
C110.0818 (12)0.5869 (7)0.3935 (10)0.0662 (17)0.464 (11)
H11A0.07170.54260.35110.099*0.464 (11)
H11B0.17890.57580.38200.099*0.464 (11)
H11C0.00240.57200.46140.099*0.464 (11)
C11'0.0983 (10)0.5886 (6)0.3397 (9)0.0662 (17)0.536 (11)
H11D0.14670.58320.26970.099*0.536 (11)
H11E0.16320.55940.35600.099*0.536 (11)
H11F0.00340.55210.37440.099*0.536 (11)
C120.1789 (4)0.7708 (3)0.3531 (3)0.0741 (13)
H120.27180.74650.33720.089*
C130.1532 (4)0.8742 (3)0.3590 (3)0.0603 (11)
H130.22830.92020.34700.072*
C140.0139 (3)0.9107 (2)0.3832 (2)0.0395 (8)
C150.0231 (3)1.0213 (3)0.3885 (2)0.0399 (7)
C160.0843 (4)1.0982 (3)0.3547 (3)0.0659 (12)
H160.18401.08170.33080.079*
C170.0446 (4)1.1988 (3)0.3560 (3)0.0726 (13)
H170.11811.25000.33160.087*
C180.1026 (4)1.2240 (3)0.3932 (3)0.0629 (11)
C190.1526 (5)1.3337 (3)0.3959 (4)0.0828 (13)
H19A0.07111.37080.33990.124*
H19B0.23961.33340.39350.124*
H19C0.17871.36630.45590.124*
C200.2049 (4)1.1434 (3)0.4275 (3)0.0523 (9)
H200.30591.15870.45390.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03011 (13)0.02303 (13)0.02889 (13)0.00030 (8)0.02186 (10)0.00374 (8)
O10.0808 (15)0.0212 (11)0.0346 (12)0.0003 (10)0.0351 (11)0.0044 (9)
O20.115 (2)0.0487 (15)0.0543 (15)0.0187 (14)0.0701 (16)0.0163 (12)
O30.0564 (13)0.0369 (12)0.0468 (13)0.0183 (10)0.0417 (11)0.0115 (10)
O40.0502 (12)0.0473 (13)0.0265 (10)0.0206 (10)0.0279 (9)0.0125 (10)
O50.0970 (17)0.0237 (11)0.0525 (14)0.0176 (11)0.0596 (14)0.0079 (10)
N10.0337 (13)0.0348 (15)0.0647 (18)0.0030 (12)0.0279 (13)0.0001 (14)
N20.0351 (13)0.0308 (14)0.0513 (16)0.0056 (11)0.0256 (12)0.0057 (13)
C10.0402 (15)0.0273 (16)0.0303 (15)0.0009 (12)0.0228 (13)0.0032 (13)
C20.0282 (13)0.0213 (14)0.0248 (14)0.0052 (11)0.0177 (12)0.0029 (12)
C30.0359 (14)0.0242 (14)0.0236 (14)0.0002 (12)0.0190 (12)0.0036 (12)
C40.0559 (18)0.0275 (15)0.0313 (15)0.0052 (13)0.0340 (14)0.0012 (13)
C50.0469 (17)0.0227 (14)0.0334 (16)0.0050 (12)0.0290 (14)0.0008 (13)
C60.0375 (15)0.0238 (15)0.0251 (14)0.0015 (12)0.0214 (12)0.0055 (12)
C70.0256 (13)0.0228 (13)0.0214 (13)0.0001 (11)0.0150 (11)0.0001 (11)
C80.0328 (14)0.0183 (13)0.0268 (14)0.0019 (11)0.0187 (12)0.0003 (12)
C90.0417 (19)0.041 (2)0.107 (3)0.0020 (16)0.037 (2)0.005 (2)
C100.042 (2)0.044 (2)0.130 (4)0.0106 (18)0.033 (2)0.003 (3)
C110.0641 (19)0.061 (2)0.069 (2)0.0056 (12)0.0358 (15)0.0007 (15)
C11'0.0641 (19)0.061 (2)0.069 (2)0.0056 (12)0.0358 (15)0.0007 (15)
C120.0377 (19)0.059 (3)0.113 (4)0.0105 (18)0.037 (2)0.007 (3)
C130.0345 (18)0.060 (2)0.083 (3)0.0047 (17)0.0316 (19)0.006 (2)
C140.0296 (15)0.0428 (19)0.0448 (19)0.0010 (13)0.0208 (14)0.0018 (15)
C150.0307 (15)0.0424 (19)0.0438 (18)0.0052 (14)0.0199 (14)0.0050 (15)
C160.0374 (19)0.050 (2)0.093 (3)0.0121 (16)0.028 (2)0.009 (2)
C170.050 (2)0.052 (3)0.097 (3)0.0230 (19)0.032 (2)0.013 (2)
C180.053 (2)0.0414 (18)0.081 (3)0.0153 (16)0.031 (2)0.011 (2)
C190.0794 (19)0.0575 (17)0.096 (2)0.0031 (14)0.0418 (15)0.0074 (16)
C200.0410 (18)0.0338 (19)0.076 (3)0.0032 (15)0.0304 (18)0.0059 (19)
Geometric parameters (Å, º) top
Cd1—O12.1884 (19)C7—C81.387 (4)
Cd1—O3i2.4015 (19)C8—H80.9300
Cd1—O4i2.3209 (18)C9—C101.367 (5)
Cd1—O4ii2.3922 (19)C9—H90.9300
Cd1—N12.329 (2)C10—C121.374 (6)
Cd1—N22.340 (2)C10—C11'1.536 (9)
O1—C11.257 (3)C10—C111.574 (10)
O2—C11.229 (3)C11—H11A0.9600
O3—C21.246 (3)C11—H11B0.9600
O3—Cd1iii2.4015 (19)C11—H11C0.9600
O4—C21.254 (3)C11'—H11D0.9600
O4—Cd1iii2.3209 (18)C11'—H11E0.9600
O4—Cd1iv2.3922 (18)C11'—H11F0.9600
O5—C51.363 (3)C12—C131.367 (6)
O5—H50.8200C12—H120.9300
N1—C91.337 (4)C13—C141.394 (5)
N1—C141.335 (4)C13—H130.9300
N2—C201.333 (4)C14—C151.482 (4)
N2—C151.343 (4)C15—C161.380 (5)
C1—C31.511 (4)C16—C171.373 (5)
C2—C71.500 (3)C16—H160.9300
C2—Cd1iii2.714 (3)C17—C181.368 (5)
C3—C81.389 (4)C17—H170.9300
C3—C41.394 (4)C18—C201.384 (5)
C4—C51.379 (4)C18—C191.517 (6)
C4—H40.9300C19—H19A0.9600
C5—C61.386 (4)C19—H19B0.9600
C6—C71.386 (4)C19—H19C0.9600
C6—H60.9300C20—H200.9300
O1—Cd1—O4i125.02 (8)C6—C7—C8120.6 (2)
O1—Cd1—N186.97 (9)C6—C7—C2118.8 (2)
O4i—Cd1—N1139.44 (9)C8—C7—C2120.6 (2)
O1—Cd1—N2130.36 (9)C7—C8—C3119.4 (2)
O4i—Cd1—N298.40 (8)C7—C8—H8120.3
N1—Cd1—N270.33 (9)C3—C8—H8120.3
O1—Cd1—O4ii86.70 (7)N1—C9—C10124.7 (3)
O4i—Cd1—O4ii71.16 (7)N1—C9—H9117.7
N1—Cd1—O4ii142.19 (8)C10—C9—H9117.7
N2—Cd1—O4ii85.97 (8)C9—C10—C12116.2 (4)
O1—Cd1—O3i119.01 (8)C9—C10—C11'117.3 (5)
O4i—Cd1—O3i54.77 (6)C12—C10—C11'124.6 (4)
N1—Cd1—O3i89.50 (8)C9—C10—C11122.1 (5)
N2—Cd1—O3i104.75 (8)C12—C10—C11118.9 (5)
O4ii—Cd1—O3i125.72 (6)C10—C11—H11A109.5
O1—Cd1—C2i126.71 (8)C10—C11—H11B109.5
O4i—Cd1—C2i27.45 (7)C10—C11—H11C109.5
N1—Cd1—C2i114.91 (9)C10—C11'—H11D109.5
N2—Cd1—C2i102.94 (8)C10—C11'—H11E109.5
O4ii—Cd1—C2i98.53 (7)H11D—C11'—H11E109.5
O3i—Cd1—C2i27.32 (7)C10—C11'—H11F109.5
C1—O1—Cd1117.35 (18)H11D—C11'—H11F109.5
C2—O3—Cd1iii90.45 (16)H11E—C11'—H11F109.5
C2—O4—Cd1iii93.99 (15)C13—C12—C10120.6 (3)
C2—O4—Cd1iv156.69 (17)C13—C12—H12119.7
Cd1iii—O4—Cd1iv108.84 (7)C10—C12—H12119.7
C5—O5—H5109.5C12—C13—C14119.7 (3)
C9—N1—C14118.8 (3)C12—C13—H13120.1
C9—N1—Cd1122.6 (2)C14—C13—H13120.1
C14—N1—Cd1118.2 (2)N1—C14—C13119.9 (3)
C20—N2—C15118.9 (3)N1—C14—C15116.3 (3)
C20—N2—Cd1123.3 (2)C13—C14—C15123.7 (3)
C15—N2—Cd1117.5 (2)N2—C15—C16120.0 (3)
O2—C1—O1124.1 (3)N2—C15—C14116.9 (3)
O2—C1—C3119.6 (3)C16—C15—C14123.1 (3)
O1—C1—C3116.3 (2)C17—C16—C15120.3 (3)
O3—C2—O4120.8 (2)C17—C16—H16119.9
O3—C2—C7119.6 (2)C15—C16—H16119.9
O4—C2—C7119.6 (2)C18—C17—C16120.3 (3)
O3—C2—Cd1iii62.23 (14)C18—C17—H17119.8
O4—C2—Cd1iii58.55 (13)C16—C17—H17119.8
C7—C2—Cd1iii177.30 (18)C17—C18—C20116.4 (4)
C8—C3—C4119.5 (2)C17—C18—C19122.6 (3)
C8—C3—C1120.8 (2)C20—C18—C19121.1 (3)
C4—C3—C1119.7 (2)C18—C19—H19A109.5
C5—C4—C3120.8 (2)C18—C19—H19B109.5
C5—C4—H4119.6H19A—C19—H19B109.5
C3—C4—H4119.6C18—C19—H19C109.5
O5—C5—C4123.8 (2)H19A—C19—H19C109.5
O5—C5—C6116.7 (2)H19B—C19—H19C109.5
C4—C5—C6119.5 (3)N2—C20—C18124.2 (3)
C5—C6—C7120.0 (2)N2—C20—H20117.9
C5—C6—H6120.0C18—C20—H20117.9
C7—C6—H6120.0
O4i—Cd1—O1—C170.7 (2)C3—C4—C5—C61.8 (4)
N1—Cd1—O1—C182.4 (2)O5—C5—C6—C7176.5 (3)
N2—Cd1—O1—C1143.3 (2)C4—C5—C6—C73.6 (4)
O4ii—Cd1—O1—C1134.8 (2)C5—C6—C7—C82.4 (4)
O3i—Cd1—O1—C15.3 (2)C5—C6—C7—C2175.8 (2)
C2i—Cd1—O1—C136.7 (2)O3—C2—C7—C6146.8 (3)
O1—Cd1—N1—C943.2 (3)O4—C2—C7—C631.5 (4)
O4i—Cd1—N1—C9102.1 (3)O3—C2—C7—C831.5 (4)
N2—Cd1—N1—C9178.2 (3)O4—C2—C7—C8150.3 (3)
O4ii—Cd1—N1—C9123.8 (3)C6—C7—C8—C30.5 (4)
O3i—Cd1—N1—C975.9 (3)C2—C7—C8—C3178.7 (2)
C2i—Cd1—N1—C986.3 (3)C4—C3—C8—C72.2 (4)
O1—Cd1—N1—C14129.2 (3)C1—C3—C8—C7179.5 (2)
O4i—Cd1—N1—C1485.5 (3)C14—N1—C9—C101.4 (7)
N2—Cd1—N1—C145.9 (2)Cd1—N1—C9—C10170.9 (4)
O4ii—Cd1—N1—C1448.5 (3)N1—C9—C10—C120.0 (8)
O3i—Cd1—N1—C14111.7 (2)N1—C9—C10—C11'165.1 (6)
C2i—Cd1—N1—C14101.4 (2)N1—C9—C10—C11161.0 (7)
O1—Cd1—N2—C20119.8 (3)C9—C10—C12—C130.7 (8)
O4i—Cd1—N2—C2032.6 (3)C11'—C10—C12—C13163.1 (7)
N1—Cd1—N2—C20172.3 (3)C11—C10—C12—C13162.4 (7)
O4ii—Cd1—N2—C2037.6 (3)C10—C12—C13—C140.2 (7)
O3i—Cd1—N2—C2088.3 (3)C9—N1—C14—C131.9 (5)
C2i—Cd1—N2—C2060.2 (3)Cd1—N1—C14—C13170.8 (3)
O1—Cd1—N2—C1567.1 (3)C9—N1—C14—C15177.4 (3)
O4i—Cd1—N2—C15140.4 (2)Cd1—N1—C14—C159.9 (4)
N1—Cd1—N2—C150.7 (2)C12—C13—C14—N11.1 (6)
O4ii—Cd1—N2—C15149.3 (2)C12—C13—C14—C15178.1 (4)
O3i—Cd1—N2—C1584.8 (2)C20—N2—C15—C160.4 (5)
C2i—Cd1—N2—C15112.8 (2)Cd1—N2—C15—C16173.7 (3)
Cd1—O1—C1—O214.9 (4)C20—N2—C15—C14177.3 (3)
Cd1—O1—C1—C3162.18 (18)Cd1—N2—C15—C143.9 (4)
Cd1iii—O3—C2—O40.4 (3)N1—C14—C15—N29.2 (5)
Cd1iii—O3—C2—C7177.8 (2)C13—C14—C15—N2171.6 (3)
Cd1iii—O4—C2—O30.5 (3)N1—C14—C15—C16168.4 (4)
Cd1iv—O4—C2—O3168.2 (3)C13—C14—C15—C1610.9 (6)
Cd1iii—O4—C2—C7177.7 (2)N2—C15—C16—C171.6 (7)
Cd1iv—O4—C2—C713.6 (6)C14—C15—C16—C17175.9 (4)
Cd1iv—O4—C2—Cd1iii168.7 (5)C15—C16—C17—C181.6 (8)
O2—C1—C3—C8167.0 (3)C16—C17—C18—C200.5 (7)
O1—C1—C3—C810.3 (4)C16—C17—C18—C19179.5 (5)
O2—C1—C3—C411.3 (4)C15—N2—C20—C180.8 (6)
O1—C1—C3—C4171.5 (3)Cd1—N2—C20—C18172.2 (3)
C8—C3—C4—C51.1 (4)C17—C18—C20—N20.7 (6)
C1—C3—C4—C5179.3 (3)C19—C18—C20—N2178.3 (4)
C3—C4—C5—O5178.3 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2v0.821.862.680 (3)174
C6—H6···O1iv0.932.313.229 (3)169
C17—H17···O3vi0.932.533.355 (5)147
Symmetry codes: (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O5)(C12H12N2)]
Mr476.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7650 (2), 13.0111 (3), 16.5272 (4)
β (°) 125.235 (2)
V3)1890.77 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.788, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
7327, 3315, 2963
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.03
No. of reflections3315
No. of parameters261
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.1884 (19)Cd1—O4ii2.3922 (19)
Cd1—O3i2.4015 (19)Cd1—N12.329 (2)
Cd1—O4i2.3209 (18)Cd1—N22.340 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2iii0.821.862.680 (3)174
C6—H6···O1iv0.932.313.229 (3)169
C17—H17···O3v0.932.533.355 (5)147
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x, y+2, z+1.
 

Acknowledgements

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Fan, Y.-J., Li, J.-B., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395–3405.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds