metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­tris­­(μ4-benzene-1,2-di­carboxyl­ato)dilanthanum(III)] hemihydrate]

aDepartment of General Education Center, Yuanpei University, HsinChu, 30015 Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 29 August 2011; accepted 6 September 2011; online 14 September 2011)

The asymmetric unit of the title coordination polymer, {[La2(C8H4O4)3(H2O)]·0.5H2O}n, contains two independent LaIII atoms, one of which is surrounded by eight carboxyl­ate-O atoms from six benzene-1,2-dicarboxyl­ate (BDC) anions in a bicapped trigonal–prismatic geometry. The other LaIII atom is nine-coordinated in a tricapped trigonal–prismatic geometry, formed by eight carboxyl­ate-O atoms from six BDC anions and a coordinated water mol­ecule. The BDC anions bridge the LaIII atoms, forming a two-dimensional polymeric complex parallel to (001). The crystal structure contains weak O—H⋯O and non-classical C—H⋯O hydrogen bonds. A C—H⋯π inter­action is also present in the crystal structure. The uncoordinated water molecule shows half-occupation.

Related literature

For a related structure, see: Wang et al. (2009[Wang, G.-M., Xue, S.-Y., Li, H. & Liu, H.-L. (2009). Acta Cryst. C65, m469-m471.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C8H4O4)3(H2O)]·0.5H2O

  • Mr = 1594.36

  • Triclinic, [P \overline 1]

  • a = 8.6269 (19) Å

  • b = 10.5832 (17) Å

  • c = 14.323 (2) Å

  • α = 97.271 (18)°

  • β = 102.199 (6)°

  • γ = 104.489 (8)°

  • V = 1215.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 150 K

  • 0.47 × 0.24 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.287, Tmax = 0.871

  • 8765 measured reflections

  • 4145 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.087

  • S = 1.11

  • 4145 reflections

  • 356 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

La1—O1 2.599 (4)
La1—O2 2.645 (5)
La1—O3 2.695 (6)
La1—O4 2.613 (4)
La1—O5i 2.617 (4)
La1—O7ii 2.439 (5)
La1—O17iii 2.543 (4)
La1—O20 2.478 (5)
La1—O22 2.611 (4)
La2—O1 2.535 (4)
La2—O4iv 2.482 (4)
La2—O5iv 2.625 (4)
La2—O6iii 2.466 (4)
La2—O8v 2.549 (5)
La2—O17 2.608 (4)
La2—O18iii 2.495 (4)
La2—O19 2.417 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) x-1, y, z; (v) -x-1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22A⋯O1ii 0.90 2.20 3.001 (6) 148
O22—H22B⋯O20ii 0.88 2.15 3.009 (8) 164
O27—H27A⋯O2vi 0.91 2.38 3.17 (2) 146
O27—H27B⋯O3i 0.88 1.86 2.69 (2) 158
C3—H3⋯O27vii 0.93 2.15 2.96 (2) 145
C16—H16⋯O2i 0.93 2.58 3.331 (10) 138
C19—H19⋯Cgv 0.93 2.98 3.902 (9) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (v) -x-1, -y, -z+1; (vi) x+1, y+1, z; (vii) x-1, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Benzene-1,2-dicarboxylic acid (H2BDC) are widely used in the construction of coordination polymers due to their capability of acting as bridging ligands in various coordination modes. But to the best of our knowledge, H2BDC is seldom involved in lanthanide complexes (Wang et al., 2009). In this paper, we describe the hydrothermal synthesis and structure properties of a lanthanide phthalate coordination complex {[La2(C8H4O4)3(H2O)].0.5 H2O}n.

The molecular structure of the title compound is shown in Fig. 1.There are two independent lanthanum ions in the asymmetric unit. The La(1) ion is nine-coordinated with O9 donors sets to form tricapped trigonal prismatic geometries by eight carboxylate O atoms and one water molecule, where La(2) ion is eight-coordinated with O8 donors sets to form distorted bicapped trigonal-prismatic geometries by eight carboxylate O atoms, from six benzene-1,2-dicarboxylate anions. The selected bond lengths (Å) of title compound are listed in Table 1. The two LaIII cations are separated by a non-bonding distance of 4.453 (9) and 4.419 (10) Å. The benzene-1,2-dicarboxylate anions bridge the LaIII cations, forming a two-dimensional polymeric complex.

There are extensive intermolecular O—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 2, Table 2). There are no π-π stacking interactions in the title compound. Furthermore, there is C—H···π interaction between C—H group of the BDC ligand, with an C—H···centroid distance of 3.902 (9) Å [C19—H19···Cg1v(C2—C7)] (Symmetry code:-1-X, –Y, 1-Z).

Related literature top

For a related structure, see: Wang et al. (2009).

Experimental top

LaCl3.6H2O (0.0868 g, 0.20 mmol), benzene-1,2-dicarboxylic acid (0.0348 g, 0.20 mmol) and 1,2-bis(4-pyridyl)ethane were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor, heated at 453 K for 48 h, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 36.76% yield (based on La).

Refinement top

The site occupancy factor of the lattice water O27 was refined to 0.46 (3), and was set as 0.5 at the final cycles of refinement. Water H atoms were placed in calculated positions and refined in riding mode with Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzene-1,2-dicarboxylic acid (H2BDC) are widely used in the construction of coordination polymers due to their capability of acting as bridging ligands in various coordination modes. But to the best of our knowledge, H2BDC is seldom involved in lanthanide complexes (Wang et al., 2009). In this paper, we describe the hydrothermal synthesis and structure properties of a lanthanide phthalate coordination complex {[La2(C8H4O4)3(H2O)].0.5 H2O}n.

The molecular structure of the title compound is shown in Fig. 1.There are two independent lanthanum ions in the asymmetric unit. The La(1) ion is nine-coordinated with O9 donors sets to form tricapped trigonal prismatic geometries by eight carboxylate O atoms and one water molecule, where La(2) ion is eight-coordinated with O8 donors sets to form distorted bicapped trigonal-prismatic geometries by eight carboxylate O atoms, from six benzene-1,2-dicarboxylate anions. The selected bond lengths (Å) of title compound are listed in Table 1. The two LaIII cations are separated by a non-bonding distance of 4.453 (9) and 4.419 (10) Å. The benzene-1,2-dicarboxylate anions bridge the LaIII cations, forming a two-dimensional polymeric complex.

There are extensive intermolecular O—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 2, Table 2). There are no π-π stacking interactions in the title compound. Furthermore, there is C—H···π interaction between C—H group of the BDC ligand, with an C—H···centroid distance of 3.902 (9) Å [C19—H19···Cg1v(C2—C7)] (Symmetry code:-1-X, –Y, 1-Z).

For a related structure, see: Wang et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry codes:(i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) -x - 1, -y, -z + 1.
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Poly[[aquatris(µ4-benzene-1,2-dicarboxylato)dilanthanum(III)] hemihydrate] top
Crystal data top
[La2(C8H4O4)3(H2O)]·0.5H2OZ = 1
Mr = 1594.36F(000) = 762
Triclinic, P1Dx = 2.179 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6269 (19) ÅCell parameters from 4145 reflections
b = 10.5832 (17) Åθ = 2.0–25.0°
c = 14.323 (2) ŵ = 3.54 mm1
α = 97.271 (18)°T = 150 K
β = 102.199 (6)°Prism, colorless
γ = 104.489 (8)°0.47 × 0.24 × 0.04 mm
V = 1215.1 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
4145 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.287, Tmax = 0.871l = 1716
8765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0369P)2 + 2.5018P]
where P = (Fo2 + 2Fc2)/3
4145 reflections(Δ/σ)max = 0.002
356 parametersΔρmax = 1.25 e Å3
12 restraintsΔρmin = 0.91 e Å3
Crystal data top
[La2(C8H4O4)3(H2O)]·0.5H2Oγ = 104.489 (8)°
Mr = 1594.36V = 1215.1 (4) Å3
Triclinic, P1Z = 1
a = 8.6269 (19) ÅMo Kα radiation
b = 10.5832 (17) ŵ = 3.54 mm1
c = 14.323 (2) ÅT = 150 K
α = 97.271 (18)°0.47 × 0.24 × 0.04 mm
β = 102.199 (6)°
Data collection top
Nonius KappaCCD
diffractometer
4145 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3430 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.871Rint = 0.032
8765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.11Δρmax = 1.25 e Å3
4145 reflectionsΔρmin = 0.91 e Å3
356 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.16724 (4)0.22260 (3)0.50902 (3)0.0255 (1)
La20.30351 (4)0.34775 (3)0.49673 (3)0.0181 (1)
O10.0850 (4)0.2911 (4)0.4193 (3)0.0186 (13)
O20.0101 (5)0.1690 (4)0.3225 (4)0.0377 (16)
O30.3563 (6)0.2580 (6)0.6913 (4)0.048 (2)
O40.4799 (5)0.3465 (4)0.5867 (3)0.0239 (14)
O50.7181 (5)0.5887 (4)0.5813 (3)0.0214 (14)
O60.5239 (5)0.6448 (4)0.6419 (3)0.0233 (14)
O70.3449 (6)0.1149 (4)0.5627 (4)0.0351 (18)
O80.5707 (5)0.1219 (4)0.6165 (4)0.0312 (16)
O170.1888 (5)0.5423 (4)0.4122 (3)0.0208 (14)
O180.0471 (5)0.5575 (4)0.3684 (3)0.0217 (14)
O190.2597 (5)0.1804 (4)0.5913 (4)0.0313 (16)
O200.0031 (5)0.1774 (4)0.6299 (4)0.0369 (16)
O220.1603 (6)0.0025 (4)0.5669 (4)0.0436 (18)
C10.0786 (7)0.2446 (6)0.3327 (6)0.029 (2)
C20.1747 (7)0.2850 (7)0.2501 (5)0.032 (2)
C30.2494 (9)0.1966 (9)0.1623 (6)0.050 (3)
C40.3483 (10)0.2326 (13)0.0877 (6)0.071 (4)
C50.3728 (10)0.3569 (13)0.1003 (6)0.067 (4)
C60.2982 (8)0.4457 (9)0.1859 (5)0.040 (3)
C70.1968 (7)0.4135 (7)0.2618 (5)0.028 (2)
C80.1036 (7)0.5116 (6)0.3539 (5)0.0192 (19)
C90.4775 (8)0.3355 (7)0.6748 (6)0.033 (2)
C100.6412 (7)0.5955 (6)0.6477 (5)0.0205 (19)
C110.6971 (8)0.5475 (8)0.7397 (5)0.032 (2)
C120.6165 (8)0.4227 (8)0.7530 (5)0.037 (3)
C130.6653 (10)0.3832 (12)0.8412 (7)0.069 (4)
C140.7926 (11)0.4676 (16)0.9153 (7)0.091 (6)
C150.8710 (11)0.5890 (14)0.9012 (7)0.079 (5)
C160.8232 (9)0.6330 (9)0.8153 (6)0.046 (3)
C170.4155 (8)0.0836 (6)0.6270 (5)0.0254 (19)
C180.3075 (7)0.0081 (6)0.7229 (5)0.027 (2)
C190.3358 (9)0.0561 (7)0.8052 (6)0.040 (3)
C200.2256 (10)0.0039 (9)0.8933 (7)0.059 (3)
C210.0847 (11)0.1003 (10)0.9026 (7)0.070 (4)
C220.0567 (9)0.1496 (8)0.8216 (7)0.055 (3)
C230.1669 (7)0.0972 (6)0.7317 (6)0.033 (2)
C240.1373 (7)0.1562 (6)0.6441 (6)0.028 (2)
O270.717 (3)0.922 (2)0.1959 (16)0.163 (9)*0.500
H30.232600.112900.154000.0600*
H40.398400.173300.028900.0860*
H50.440800.380600.050100.0810*
H60.316200.529100.193000.0480*
H130.611800.299400.850100.0830*
H140.824300.441300.974200.1090*
H150.959100.644400.950500.0940*
H160.874900.718400.808300.0550*
H190.430700.124500.800300.0480*
H200.244700.038300.947800.0710*
H210.010400.136200.963000.0840*
H220.037600.219000.827300.0660*
H22A0.175600.074900.589800.0650*
H22B0.103200.040700.507100.0650*
H27A0.820200.963200.234300.2440*0.500
H27B0.670000.870100.231300.2440*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0128 (2)0.0071 (2)0.0613 (3)0.0054 (1)0.0149 (2)0.0089 (2)
La20.0126 (2)0.0076 (2)0.0386 (3)0.0058 (1)0.0113 (2)0.0063 (2)
O10.0111 (19)0.0089 (19)0.036 (3)0.0011 (16)0.0098 (18)0.0016 (19)
O20.021 (2)0.024 (2)0.062 (4)0.009 (2)0.008 (2)0.015 (2)
O30.022 (3)0.069 (4)0.069 (4)0.013 (3)0.020 (3)0.053 (3)
O40.017 (2)0.022 (2)0.042 (3)0.0137 (18)0.012 (2)0.015 (2)
O50.017 (2)0.018 (2)0.029 (3)0.0066 (17)0.0060 (19)0.0004 (19)
O60.017 (2)0.014 (2)0.042 (3)0.0082 (18)0.010 (2)0.005 (2)
O70.034 (3)0.017 (2)0.069 (4)0.016 (2)0.030 (3)0.015 (2)
O80.017 (2)0.010 (2)0.070 (4)0.0035 (18)0.020 (2)0.005 (2)
O170.017 (2)0.015 (2)0.037 (3)0.0098 (17)0.0123 (19)0.0093 (19)
O180.017 (2)0.017 (2)0.036 (3)0.0084 (18)0.0109 (19)0.0081 (19)
O190.014 (2)0.016 (2)0.066 (4)0.0068 (18)0.006 (2)0.017 (2)
O200.019 (2)0.022 (2)0.080 (4)0.0089 (19)0.020 (2)0.028 (3)
O220.039 (3)0.017 (2)0.092 (4)0.018 (2)0.033 (3)0.024 (3)
C10.015 (3)0.016 (3)0.051 (5)0.000 (3)0.012 (3)0.010 (3)
C20.010 (3)0.041 (4)0.037 (5)0.001 (3)0.007 (3)0.012 (3)
C30.023 (4)0.071 (6)0.044 (5)0.003 (4)0.015 (4)0.023 (4)
C40.028 (5)0.129 (10)0.031 (6)0.007 (6)0.013 (4)0.029 (6)
C50.026 (4)0.151 (11)0.020 (5)0.013 (6)0.010 (4)0.015 (6)
C60.022 (4)0.076 (6)0.028 (5)0.017 (4)0.011 (3)0.020 (4)
C70.015 (3)0.046 (4)0.025 (4)0.012 (3)0.009 (3)0.002 (3)
C80.019 (3)0.016 (3)0.031 (4)0.009 (3)0.012 (3)0.017 (3)
C90.018 (3)0.040 (4)0.056 (5)0.020 (3)0.015 (3)0.031 (4)
C100.008 (3)0.017 (3)0.030 (4)0.003 (2)0.003 (3)0.003 (3)
C110.017 (3)0.063 (5)0.026 (4)0.023 (3)0.011 (3)0.008 (4)
C120.017 (3)0.068 (5)0.037 (5)0.017 (4)0.011 (3)0.029 (4)
C130.031 (5)0.133 (9)0.067 (7)0.033 (6)0.025 (5)0.060 (7)
C140.027 (5)0.216 (15)0.044 (6)0.039 (7)0.014 (5)0.059 (8)
C150.024 (5)0.178 (13)0.033 (6)0.041 (7)0.002 (4)0.003 (7)
C160.023 (4)0.083 (6)0.036 (5)0.026 (4)0.007 (3)0.002 (4)
C170.024 (3)0.011 (3)0.048 (4)0.008 (2)0.014 (3)0.016 (3)
C180.017 (3)0.019 (3)0.052 (5)0.008 (3)0.015 (3)0.014 (3)
C190.027 (4)0.033 (4)0.060 (6)0.002 (3)0.015 (4)0.016 (4)
C200.047 (5)0.061 (6)0.069 (7)0.005 (4)0.012 (5)0.036 (5)
C210.045 (5)0.080 (7)0.061 (7)0.016 (5)0.008 (5)0.031 (6)
C220.025 (4)0.053 (5)0.076 (7)0.006 (4)0.002 (4)0.030 (5)
C230.016 (3)0.027 (3)0.060 (5)0.010 (3)0.008 (3)0.022 (4)
C240.016 (3)0.013 (3)0.063 (5)0.008 (3)0.016 (3)0.015 (3)
Geometric parameters (Å, º) top
La1—O12.599 (4)C2—C71.414 (10)
La1—O22.645 (5)C3—C41.377 (13)
La1—O32.695 (6)C4—C51.380 (18)
La1—O42.613 (4)C5—C61.369 (12)
La1—O5i2.617 (4)C6—C71.380 (10)
La1—O7ii2.439 (5)C7—C81.501 (10)
La1—O17iii2.543 (4)C9—C121.470 (11)
La1—O202.478 (5)C10—C111.500 (10)
La1—O222.611 (4)C11—C161.392 (11)
La2—O12.535 (4)C11—C121.387 (12)
La2—O4iv2.482 (4)C12—C131.395 (13)
La2—O5iv2.625 (4)C13—C141.381 (16)
La2—O6iii2.466 (4)C14—C151.36 (2)
La2—O8v2.549 (5)C15—C161.388 (14)
La2—O172.608 (4)C17—C181.484 (10)
La2—O18iii2.495 (4)C18—C191.385 (10)
La2—O192.417 (5)C18—C231.397 (9)
O1—C11.293 (9)C19—C201.362 (13)
O2—C11.253 (8)C20—C211.391 (14)
O3—C91.244 (9)C21—C221.373 (14)
O4—C91.286 (9)C22—C231.381 (12)
O5—C101.274 (8)C23—C241.511 (11)
O6—C101.242 (8)C3—H30.9300
O7—C171.261 (9)C4—H40.9300
O8—C171.268 (9)C5—H50.9300
O17—C81.286 (8)C6—H60.9300
O18—C81.230 (8)C13—H130.9300
O19—C241.265 (9)C14—H140.9300
O20—C241.240 (8)C15—H150.9300
O22—H22B0.8800C16—H160.9300
O22—H22A0.9000C19—H190.9300
O27—H27B0.8800C20—H200.9300
O27—H27A0.9100C21—H210.9300
C1—C21.470 (10)C22—H220.9300
C2—C31.389 (11)
O1—La1—O249.50 (14)La1iii—O17—C8125.3 (4)
O1—La1—O3138.66 (15)La2iii—O18—C8141.3 (4)
O1—La1—O4134.61 (13)La2—O19—C24136.6 (4)
O1—La1—O2083.93 (14)La1—O20—C24145.0 (5)
O1—La1—O22126.61 (15)La1—O22—H22B86.00
O1—La1—O7ii127.83 (16)H22A—O22—H22B99.00
O1—La1—O17iii71.11 (14)La1—O22—H22A171.00
O1—La1—O5i73.05 (13)H27A—O27—H27B104.00
O2—La1—O3171.83 (16)O1—C1—O2119.2 (7)
O2—La1—O4127.22 (14)O1—C1—C2118.0 (6)
O2—La1—O20118.61 (16)O2—C1—C2122.8 (7)
O2—La1—O22108.06 (15)C3—C2—C7119.8 (7)
O2—La1—O7ii78.77 (16)C1—C2—C3120.7 (7)
O2—La1—O17iii111.42 (13)C1—C2—C7119.4 (6)
O2—La1—O5i68.20 (13)C2—C3—C4120.2 (9)
O3—La1—O448.67 (15)C3—C4—C5119.8 (9)
O3—La1—O2066.90 (17)C4—C5—C6120.7 (9)
O3—La1—O2267.90 (18)C5—C6—C7121.0 (9)
O3—La1—O7ii93.09 (18)C2—C7—C6118.4 (7)
O3—La1—O17iii74.93 (16)C2—C7—C8119.1 (6)
O3—La1—O5i111.83 (16)C6—C7—C8122.4 (7)
O4—La1—O20113.75 (15)O17—C8—C7116.9 (6)
O4—La1—O2298.40 (15)O18—C8—C7118.5 (6)
O4—La1—O7ii68.65 (15)O17—C8—O18124.6 (6)
O4—La1—O17iii71.98 (14)O4—C9—C12117.6 (6)
O4—La1—O5i67.52 (13)O3—C9—O4119.8 (7)
O20—La1—O2265.81 (16)O3—C9—C12122.5 (7)
O7ii—La1—O20135.44 (15)O6—C10—C11117.4 (6)
O17iii—La1—O2079.05 (14)O5—C10—C11119.5 (6)
O5i—La1—O20140.95 (14)O5—C10—O6123.1 (6)
O7ii—La1—O2269.81 (16)C10—C11—C16119.5 (7)
O17iii—La1—O22136.23 (15)C12—C11—C16119.6 (7)
O5i—La1—O22152.50 (16)C10—C11—C12120.8 (6)
O7ii—La1—O17iii135.85 (15)C9—C12—C11119.4 (7)
O5i—La1—O7ii82.87 (15)C9—C12—C13120.9 (8)
O5i—La1—O17iii63.96 (13)C11—C12—C13119.6 (8)
O1—La2—O1771.82 (14)C12—C13—C14120.5 (11)
O1—La2—O1984.69 (15)C13—C14—C15119.3 (10)
O1—La2—O4iv164.86 (14)C14—C15—C16121.8 (10)
O1—La2—O5iv123.63 (14)C11—C16—C15119.1 (9)
O1—La2—O8v71.19 (14)O7—C17—O8123.7 (6)
O1—La2—O6iii104.32 (14)O8—C17—C18119.0 (6)
O1—La2—O18iii77.94 (14)O7—C17—C18117.1 (6)
O17—La2—O19150.39 (15)C17—C18—C23122.3 (6)
O4iv—La2—O17123.32 (14)C17—C18—C19117.9 (6)
O5iv—La2—O1762.98 (13)C19—C18—C23119.2 (7)
O8v—La2—O17114.56 (15)C18—C19—C20120.5 (7)
O6iii—La2—O1770.92 (14)C19—C20—C21120.7 (9)
O17—La2—O18iii87.01 (14)C20—C21—C22119.3 (9)
O4iv—La2—O1980.80 (15)C21—C22—C23120.7 (8)
O5iv—La2—O19121.13 (15)C18—C23—C22119.6 (7)
O8v—La2—O1972.45 (17)C18—C23—C24120.4 (7)
O6iii—La2—O19134.18 (15)C22—C23—C24119.9 (6)
O18iii—La2—O1970.27 (15)O19—C24—C23116.4 (6)
O4iv—La2—O5iv68.53 (14)O20—C24—C23118.2 (6)
O4iv—La2—O8v100.10 (15)O19—C24—O20125.5 (7)
O4iv—La2—O6iii83.05 (14)C2—C3—H3120.00
O4iv—La2—O18iii100.99 (14)C4—C3—H3120.00
O5iv—La2—O8v158.53 (14)C5—C4—H4120.00
O5iv—La2—O6iii91.38 (14)C3—C4—H4120.00
O5iv—La2—O18iii68.20 (14)C4—C5—H5120.00
O6iii—La2—O8v68.66 (15)C6—C5—H5120.00
O8v—La2—O18iii133.08 (15)C7—C6—H6120.00
O6iii—La2—O18iii155.34 (14)C5—C6—H6119.00
La1—O1—La2124.95 (16)C12—C13—H13120.00
La1—O1—C195.4 (4)C14—C13—H13120.00
La2—O1—C1136.0 (4)C15—C14—H14120.00
La1—O2—C194.3 (5)C13—C14—H14120.00
La1—O3—C993.6 (5)C14—C15—H15119.00
La1—O4—C996.4 (4)C16—C15—H15119.00
La1—O4—La2vi122.76 (16)C15—C16—H16120.00
La2vi—O4—C9132.0 (4)C11—C16—H16120.00
La2vi—O5—C10115.6 (4)C18—C19—H19120.00
La1i—O5—C10127.7 (4)C20—C19—H19120.00
La1i—O5—La2vi114.93 (16)C21—C20—H20120.00
La2iii—O6—C10132.6 (4)C19—C20—H20120.00
La1ii—O7—C17156.2 (5)C20—C21—H21120.00
La2v—O8—C17110.5 (4)C22—C21—H21120.00
La2—O17—C8112.8 (4)C21—C22—H22120.00
La1iii—O17—La2118.14 (16)C23—C22—H22120.00
O2—La1—O1—La2154.4 (3)O5iv—La2—O19—C2474.0 (7)
O2—La1—O1—C17.1 (3)O8v—La2—O19—C24124.4 (7)
O3—La1—O1—La226.0 (3)O6iii—La2—O19—C24157.3 (6)
O3—La1—O1—C1172.4 (4)O18iii—La2—O19—C2426.6 (7)
O4—La1—O1—La299.6 (2)O17—La2—O4iv—La1iv97.8 (2)
O4—La1—O1—C198.9 (4)O17—La2—O4iv—C9iv122.9 (6)
O20—La1—O1—La218.1 (2)O19—La2—O4iv—La1iv100.8 (2)
O20—La1—O1—C1143.5 (4)O19—La2—O4iv—C9iv38.4 (6)
O22—La1—O1—La271.7 (3)O1—La2—O5iv—C10iv153.0 (4)
O22—La1—O1—C189.8 (4)O1—La2—O5iv—La1iii40.9 (2)
O7ii—La1—O1—La2163.59 (18)O17—La2—O5iv—C10iv166.4 (5)
O7ii—La1—O1—C12.1 (4)O17—La2—O5iv—La1iii0.34 (15)
O17iii—La1—O1—La262.4 (2)O19—La2—O5iv—C10iv47.3 (5)
O17iii—La1—O1—C1136.0 (4)O19—La2—O5iv—La1iii146.65 (17)
O5i—La1—O1—La2130.1 (2)O1—La2—O8v—C17v170.5 (5)
O5i—La1—O1—C168.4 (4)O17—La2—O8v—C17v111.7 (4)
O1—La1—O2—C17.3 (3)O19—La2—O8v—C17v99.3 (5)
O4—La1—O2—C1113.4 (4)O1—La2—O6iii—C10iii162.0 (5)
O20—La1—O2—C158.7 (4)O17—La2—O6iii—C10iii97.4 (5)
O22—La1—O2—C1130.4 (4)O19—La2—O6iii—C10iii101.4 (6)
O7ii—La1—O2—C1165.4 (4)O1—La2—O18iii—C8iii27.4 (6)
O17iii—La1—O2—C130.3 (4)O17—La2—O18iii—C8iii44.7 (6)
O5i—La1—O2—C178.6 (4)O19—La2—O18iii—C8iii116.0 (7)
O1—La1—O3—C9107.5 (5)La1—O1—C1—O213.1 (6)
O4—La1—O3—C97.1 (4)La1—O1—C1—C2166.0 (5)
O20—La1—O3—C9156.2 (5)La2—O1—C1—O2144.9 (5)
O22—La1—O3—C9131.7 (5)La2—O1—C1—C236.0 (9)
O7ii—La1—O3—C964.9 (5)La1—O2—C1—O112.9 (6)
O17iii—La1—O3—C971.9 (5)La1—O2—C1—C2166.2 (6)
O5i—La1—O3—C918.6 (5)La1—O3—C9—O412.6 (7)
O1—La1—O4—C9115.6 (4)La1—O3—C9—C12163.6 (6)
O1—La1—O4—La2vi93.6 (2)La1—O4—C9—O313.1 (7)
O2—La1—O4—C9177.8 (4)La1—O4—C9—C12163.3 (6)
O2—La1—O4—La2vi27.0 (3)La2vi—O4—C9—O3133.4 (6)
O3—La1—O4—C96.9 (4)La2vi—O4—C9—C1250.2 (9)
O3—La1—O4—La2vi143.9 (3)La2vi—O5—C10—O6116.6 (6)
O20—La1—O4—C99.8 (4)La2vi—O5—C10—C1166.1 (7)
O20—La1—O4—La2vi160.59 (18)La1i—O5—C10—O647.4 (8)
O22—La1—O4—C957.4 (4)La1i—O5—C10—C11129.9 (5)
O22—La1—O4—La2vi93.4 (2)La2iii—O6—C10—O533.2 (9)
O7ii—La1—O4—C9121.8 (4)La2iii—O6—C10—C11149.4 (5)
O7ii—La1—O4—La2vi29.00 (19)La1ii—O7—C17—O8113.2 (11)
O17iii—La1—O4—C978.6 (4)La1ii—O7—C17—C1861.0 (13)
O17iii—La1—O4—La2vi130.6 (2)La2v—O8—C17—O729.7 (8)
O5i—La1—O4—C9147.2 (4)La2v—O8—C17—C18144.4 (5)
O5i—La1—O4—La2vi62.00 (19)La2—O17—C8—O18110.4 (6)
O1—La1—O20—C2419.1 (7)La2—O17—C8—C770.1 (6)
O2—La1—O20—C2417.6 (8)La1iii—O17—C8—O1847.3 (8)
O3—La1—O20—C24169.2 (8)La1iii—O17—C8—C7132.3 (5)
O4—La1—O20—C24155.6 (7)La2iii—O18—C8—O1727.6 (11)
O22—La1—O20—C24115.7 (8)La2iii—O18—C8—C7152.9 (5)
O7ii—La1—O20—C24121.3 (7)La2—O19—C24—O2034.9 (11)
O17iii—La1—O20—C2491.0 (7)La2—O19—C24—C23144.8 (5)
O5i—La1—O20—C2472.5 (8)La1—O20—C24—O1917.0 (12)
O1—La1—O7ii—C17ii26.2 (12)La1—O20—C24—C23163.3 (5)
O2—La1—O7ii—C17ii33.3 (11)O1—C1—C2—C3144.4 (7)
O3—La1—O7ii—C17ii147.4 (11)O1—C1—C2—C733.0 (9)
O4—La1—O7ii—C17ii104.4 (11)O2—C1—C2—C336.6 (10)
O20—La1—O7ii—C17ii152.9 (10)O2—C1—C2—C7146.1 (7)
O22—La1—O7ii—C17ii147.5 (11)C1—C2—C3—C4175.6 (8)
O1—La1—O17iii—La2iii80.23 (19)C7—C2—C3—C41.7 (12)
O1—La1—O17iii—C8iii76.4 (5)C1—C2—C7—C6174.9 (6)
O2—La1—O17iii—La2iii50.9 (2)C1—C2—C7—C87.9 (9)
O2—La1—O17iii—C8iii105.7 (5)C3—C2—C7—C62.4 (10)
O3—La1—O17iii—La2iii123.7 (2)C3—C2—C7—C8174.8 (7)
O3—La1—O17iii—C8iii79.7 (5)C2—C3—C4—C50.1 (14)
O4—La1—O17iii—La2iii72.88 (19)C3—C4—C5—C60.8 (15)
O4—La1—O17iii—C8iii130.5 (5)C4—C5—C6—C70.1 (14)
O20—La1—O17iii—La2iii167.5 (2)C5—C6—C7—C21.5 (11)
O20—La1—O17iii—C8iii10.9 (5)C5—C6—C7—C8175.6 (8)
O22—La1—O17iii—La2iii156.13 (19)C2—C7—C8—O17110.5 (7)
O22—La1—O17iii—C8iii47.3 (6)C2—C7—C8—O1869.9 (8)
O1—La1—O5i—La2iii77.17 (18)C6—C7—C8—O1772.4 (9)
O1—La1—O5i—C10i118.7 (5)C6—C7—C8—O18107.2 (8)
O2—La1—O5i—La2iii129.6 (2)O3—C9—C12—C11145.8 (8)
O2—La1—O5i—C10i66.3 (5)O3—C9—C12—C1332.4 (12)
O3—La1—O5i—La2iii59.2 (2)O4—C9—C12—C1130.5 (10)
O3—La1—O5i—C10i104.9 (5)O4—C9—C12—C13151.3 (8)
O4—La1—O5i—La2iii79.85 (18)O5—C10—C11—C1299.6 (8)
O4—La1—O5i—C10i84.3 (5)O5—C10—C11—C1685.3 (9)
O20—La1—O5i—La2iii20.6 (3)O6—C10—C11—C1282.9 (9)
O20—La1—O5i—C10i175.3 (5)O6—C10—C11—C1692.3 (8)
O22—La1—O5i—La2iii143.0 (3)C10—C11—C12—C91.6 (11)
O22—La1—O5i—C10i21.1 (7)C10—C11—C12—C13176.6 (7)
O17—La2—O1—La1127.4 (2)C16—C11—C12—C9176.8 (7)
O17—La2—O1—C179.6 (6)C16—C11—C12—C131.5 (12)
O19—La2—O1—La134.3 (2)C10—C11—C16—C15178.2 (8)
O19—La2—O1—C1118.7 (6)C12—C11—C16—C153.0 (12)
O5iv—La2—O1—La189.9 (2)C9—C12—C13—C14177.9 (9)
O5iv—La2—O1—C1117.2 (5)C11—C12—C13—C140.3 (13)
O8v—La2—O1—La1107.6 (2)C12—C13—C14—C150.6 (16)
O8v—La2—O1—C145.4 (5)C13—C14—C15—C162.3 (16)
O6iii—La2—O1—La1168.64 (18)C14—C15—C16—C113.4 (15)
O6iii—La2—O1—C115.7 (6)O7—C17—C18—C19128.0 (7)
O18iii—La2—O1—La136.59 (19)O7—C17—C18—C2343.1 (9)
O18iii—La2—O1—C1170.4 (6)O8—C17—C18—C1946.5 (9)
O1—La2—O17—C813.8 (4)O8—C17—C18—C23142.4 (6)
O1—La2—O17—La1iii145.6 (2)C17—C18—C19—C20169.6 (7)
O19—La2—O17—C853.0 (5)C23—C18—C19—C201.8 (11)
O19—La2—O17—La1iii106.4 (3)C17—C18—C23—C22169.5 (7)
O4iv—La2—O17—C8166.7 (4)C17—C18—C23—C2412.1 (10)
O4iv—La2—O17—La1iii33.9 (2)C19—C18—C23—C221.5 (10)
O5iv—La2—O17—C8159.1 (5)C19—C18—C23—C24176.9 (6)
O5iv—La2—O17—La1iii0.36 (16)C18—C19—C20—C211.4 (13)
O8v—La2—O17—C844.7 (4)C19—C20—C21—C220.6 (14)
O8v—La2—O17—La1iii155.92 (17)C20—C21—C22—C230.2 (14)
O6iii—La2—O17—C899.1 (4)C21—C22—C23—C180.7 (12)
O6iii—La2—O17—La1iii101.5 (2)C21—C22—C23—C24177.7 (8)
O18iii—La2—O17—C892.1 (4)C18—C23—C24—O1946.1 (9)
O18iii—La2—O17—La1iii67.35 (19)C18—C23—C24—O20134.2 (7)
O1—La2—O19—C2452.5 (7)C22—C23—C24—O19132.3 (7)
O17—La2—O19—C2415.4 (9)C22—C23—C24—O2047.4 (10)
O4iv—La2—O19—C24131.9 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x1, y, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O22—H22A···O1ii0.902.203.001 (6)148
O22—H22B···O20ii0.882.153.009 (8)164
O27—H27A···O2vii0.912.383.17 (2)146.00
O27—H27B···O3i0.881.862.69 (2)158.00
C3—H3···O27viii0.932.152.96 (2)145
C16—H16···O2i0.932.583.331 (10)138
C19—H19···Cgv0.932.983.902 (9)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (v) x1, y, z+1; (vii) x+1, y+1, z; (viii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[La2(C8H4O4)3(H2O)]·0.5H2O
Mr1594.36
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6269 (19), 10.5832 (17), 14.323 (2)
α, β, γ (°)97.271 (18), 102.199 (6), 104.489 (8)
V3)1215.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.47 × 0.24 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.287, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
8765, 4145, 3430
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.11
No. of reflections4145
No. of parameters356
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.91

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
La1—O12.599 (4)La2—O12.535 (4)
La1—O22.645 (5)La2—O4iv2.482 (4)
La1—O32.695 (6)La2—O5iv2.625 (4)
La1—O42.613 (4)La2—O6iii2.466 (4)
La1—O5i2.617 (4)La2—O8v2.549 (5)
La1—O7ii2.439 (5)La2—O172.608 (4)
La1—O17iii2.543 (4)La2—O18iii2.495 (4)
La1—O202.478 (5)La2—O192.417 (5)
La1—O222.611 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O22—H22A···O1ii0.902.203.001 (6)148.00
O22—H22B···O20ii0.882.153.009 (8)164.00
O27—H27A···O2vi0.912.383.17 (2)146.00
O27—H27B···O3i0.881.862.69 (2)158.00
C3—H3···O27vii0.932.152.96 (2)145.00
C16—H16···O2i0.932.583.331 (10)138.00
C19—H19···Cgv0.932.983.902 (9)169.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (v) x1, y, z+1; (vi) x+1, y+1, z; (vii) x1, y1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-M., Xue, S.-Y., Li, H. & Liu, H.-L. (2009). Acta Cryst. C65, m469–m471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds