organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­ethyl 4-methyl 5-(4-nitro­phen­yl)-4-phenyl­pyrrolidine-2,2,4-tri­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 2 September 2011; accepted 4 September 2011; online 14 September 2011)

The title compound, C24H26N2O8, was synthesized by the cyclo­addition reaction of methyl 2-phenyl­acrylate, diethyl 2-amino­malonate and 4-nitro­benzaldehyde. The pyrrolidine ring exhibits an envelope conformation. The two benzene rings are located on opposite sides of the pyrrolidine ring and subtend a dihedral angle of 59.16 (14)°. The crystal packing is stabilized by N—H⋯O and weak C—H⋯O hydrogen bonding.

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Pandey et al. (2006[Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.]); Sardina & Rapoport (1996[Sardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825-1872.]). For a related structure, see: Yu et al. (2007[Yu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17-o18.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N2O8

  • Mr = 470.47

  • Orthorhombic, P 21 21 21

  • a = 9.7948 (1) Å

  • b = 10.9356 (2) Å

  • c = 22.3240 (3) Å

  • V = 2391.17 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 120 K

  • 0.44 × 0.40 × 0.36 mm

Data collection
  • Gemini S Ultra, Oxford Diffraction diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.712, Tmax = 0.755

  • 21308 measured reflections

  • 4686 independent reflections

  • 4613 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.02

  • 4686 reflections

  • 314 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1995 Friedel pairs

  • Flack parameter: 0.05 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O7i 0.88 (1) 2.59 (1) 3.360 (4) 148 (1)
C12—H12C⋯O1ii 0.96 2.58 3.360 (2) 139 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham & Hufton, 2005; Nair & Suja, 2007; Pandey et al., 2006; Sardina & Rapoport, 1996). Its crystal structure is reported here.

The molecular structure of (I) is shown in (Table 2). Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C13—C18 benzene planes is 59.16 (14)°. The crystal packing is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996). For a related structure, see: Yu et al. (2007).

Experimental top

Diethyl 2-aminomalonate (0.0175 g, 0.1 mmol) were added to a solution of 4-nitrobenzaldehyde (0.018 g, 0.12 mmol) and methyl 2-phenylacrylate (0.08 g, 0.5 mmol) in dichloromethane (1 ml). To the stirred mixture, acetic acid (0.003 g, 0.05 mmol) was added. After the mixture had been stirred at 298 K for 24 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with diethyl ether, evaporated and separated by flash chromatograghy. A colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

Imino H atom was placed in chemical sensible position and refined isotropically. The remaining carbon-bound H atoms were placed in calculated positions, with C—H = 0.93–0.99 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham & Hufton, 2005; Nair & Suja, 2007; Pandey et al., 2006; Sardina & Rapoport, 1996). Its crystal structure is reported here.

The molecular structure of (I) is shown in (Table 2). Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C13—C18 benzene planes is 59.16 (14)°. The crystal packing is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1).

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996). For a related structure, see: Yu et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
2,2-Diethyl 4-methyl 5-(4-nitrophenyl)-4-phenylpyrrolidine-2,2,4-tricarboxylate top
Crystal data top
C24H26N2O8Dx = 1.307 Mg m3
Mr = 470.47Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 18450 reflections
a = 9.7948 (1) Åθ = 2.0–72.2°
b = 10.9356 (2) ŵ = 0.83 mm1
c = 22.3240 (3) ÅT = 120 K
V = 2391.17 (6) Å3Block, colorless
Z = 40.44 × 0.40 × 0.36 mm
F(000) = 992
Data collection top
Gemini S Ultra, Oxford Diffraction
diffractometer
4686 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4613 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 15.9149 pixels mm-1θmax = 72.3°, θmin = 4.5°
ω scansh = 912
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.712, Tmax = 0.755l = 2527
21308 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3419P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4686 reflectionsΔρmax = 0.18 e Å3
314 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1995 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (10)
Crystal data top
C24H26N2O8V = 2391.17 (6) Å3
Mr = 470.47Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.7948 (1) ŵ = 0.83 mm1
b = 10.9356 (2) ÅT = 120 K
c = 22.3240 (3) Å0.44 × 0.40 × 0.36 mm
Data collection top
Gemini S Ultra, Oxford Diffraction
diffractometer
4686 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4613 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.755Rint = 0.018
21308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.19 e Å3
4686 reflectionsAbsolute structure: Flack (1983), 1995 Friedel pairs
314 parametersAbsolute structure parameter: 0.05 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.85432 (8)0.19604 (7)0.82698 (3)0.02452 (17)
O80.54703 (9)0.22728 (8)0.84562 (4)0.02882 (18)
O60.78904 (8)0.37692 (7)0.78836 (4)0.02724 (18)
O40.84169 (9)0.10400 (8)0.56346 (4)0.03091 (19)
O30.78250 (9)0.05809 (7)0.61949 (4)0.03171 (19)
O70.48509 (10)0.06449 (9)0.79096 (4)0.0385 (2)
N20.60890 (10)0.26899 (9)0.70963 (4)0.02279 (19)
O20.24732 (10)0.03877 (8)0.44941 (4)0.0337 (2)
O10.17733 (13)0.06248 (12)0.52573 (5)0.0574 (3)
C90.73152 (11)0.08472 (10)0.72218 (5)0.0220 (2)
H9A0.66210.02390.71370.026*
H9B0.80530.04670.74440.026*
N10.25329 (10)0.01249 (9)0.50266 (4)0.0269 (2)
C70.66436 (11)0.23550 (10)0.65042 (5)0.0215 (2)
H70.70060.30860.63060.026*
C10.35612 (11)0.07188 (10)0.54019 (5)0.0231 (2)
C60.45396 (13)0.14517 (11)0.51335 (5)0.0273 (2)
H60.45330.15890.47220.033*
C190.77782 (11)0.26768 (10)0.79176 (5)0.0221 (2)
C130.92478 (11)0.20396 (10)0.67511 (5)0.0215 (2)
C230.43853 (15)0.20090 (13)0.88861 (6)0.0373 (3)
H23B0.44010.11510.89970.045*
H23A0.35010.21940.87130.045*
C100.67169 (11)0.19350 (10)0.75643 (5)0.0217 (2)
C80.78413 (11)0.14446 (9)0.66437 (5)0.0212 (2)
C181.02741 (12)0.13124 (10)0.70024 (5)0.0263 (2)
H181.00870.05000.70940.032*
C20.35244 (12)0.05137 (11)0.60140 (5)0.0252 (2)
H20.28520.00220.61830.030*
C240.46374 (15)0.27937 (13)0.94241 (6)0.0378 (3)
H24A0.46160.36390.93090.057*
H24C0.55160.26030.95900.057*
H24B0.39430.26430.97180.057*
C200.96208 (13)0.25973 (11)0.85989 (6)0.0296 (3)
H20B0.92250.31790.88770.036*
H20A1.02080.30370.83230.036*
C30.45103 (12)0.10576 (11)0.63675 (5)0.0243 (2)
H30.44920.09390.67800.029*
C40.55327 (11)0.17816 (10)0.61151 (5)0.0223 (2)
C140.95634 (12)0.32441 (10)0.66059 (5)0.0254 (2)
H140.89010.37440.64360.030*
C171.15604 (12)0.17777 (11)0.71167 (6)0.0288 (2)
H171.22220.12840.72920.035*
C161.18663 (12)0.29794 (11)0.69709 (6)0.0303 (3)
H161.27320.32940.70450.036*
C110.80173 (11)0.05013 (10)0.61454 (5)0.0240 (2)
C151.08674 (13)0.37060 (11)0.67138 (6)0.0302 (3)
H151.10680.45110.66120.036*
C220.55725 (12)0.15160 (10)0.79941 (5)0.0248 (2)
C50.55285 (12)0.19731 (11)0.54968 (5)0.0271 (2)
H50.62020.24600.53250.033*
C120.84991 (17)0.02457 (14)0.51173 (6)0.0415 (3)
H12B0.87720.07130.47740.062*
H12A0.76220.01160.50440.062*
H12C0.91580.03870.51910.062*
C211.04251 (14)0.16528 (12)0.89319 (6)0.0354 (3)
H21A1.08600.11130.86510.053*
H21B0.98240.11910.91850.053*
H21C1.11070.20480.91730.053*
H10.6194 (16)0.3476 (12)0.7157 (7)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0248 (4)0.0227 (4)0.0261 (4)0.0011 (3)0.0056 (3)0.0024 (3)
O80.0301 (4)0.0284 (4)0.0279 (4)0.0067 (3)0.0083 (3)0.0035 (3)
O60.0313 (4)0.0217 (4)0.0287 (4)0.0023 (3)0.0017 (3)0.0022 (3)
O40.0376 (4)0.0301 (4)0.0250 (4)0.0048 (4)0.0040 (3)0.0057 (3)
O30.0395 (5)0.0214 (4)0.0342 (4)0.0001 (3)0.0028 (4)0.0042 (3)
O70.0411 (5)0.0389 (5)0.0354 (5)0.0188 (4)0.0072 (4)0.0086 (4)
N20.0255 (5)0.0190 (4)0.0238 (5)0.0015 (4)0.0022 (4)0.0018 (4)
O20.0407 (5)0.0350 (4)0.0254 (4)0.0050 (4)0.0103 (4)0.0014 (3)
O10.0617 (7)0.0747 (8)0.0358 (5)0.0457 (6)0.0091 (5)0.0069 (5)
C90.0243 (5)0.0181 (5)0.0236 (5)0.0012 (4)0.0021 (4)0.0000 (4)
N10.0276 (5)0.0263 (5)0.0269 (5)0.0025 (4)0.0035 (4)0.0019 (4)
C70.0221 (5)0.0196 (5)0.0227 (5)0.0004 (4)0.0016 (4)0.0014 (4)
C10.0234 (5)0.0212 (5)0.0246 (5)0.0003 (4)0.0044 (4)0.0022 (4)
C60.0311 (6)0.0268 (6)0.0240 (5)0.0031 (5)0.0043 (4)0.0040 (4)
C190.0216 (5)0.0235 (5)0.0212 (5)0.0008 (4)0.0017 (4)0.0019 (4)
C130.0227 (5)0.0218 (5)0.0200 (5)0.0005 (4)0.0004 (4)0.0036 (4)
C230.0384 (7)0.0380 (7)0.0356 (7)0.0109 (6)0.0165 (6)0.0030 (6)
C100.0225 (5)0.0203 (5)0.0224 (5)0.0013 (4)0.0007 (4)0.0004 (4)
C80.0230 (5)0.0178 (5)0.0229 (5)0.0004 (4)0.0016 (4)0.0003 (4)
C180.0254 (5)0.0221 (5)0.0315 (6)0.0022 (4)0.0013 (5)0.0016 (5)
C20.0236 (5)0.0263 (5)0.0256 (5)0.0035 (4)0.0014 (4)0.0005 (4)
C240.0470 (8)0.0350 (7)0.0315 (6)0.0039 (6)0.0122 (6)0.0009 (5)
C200.0278 (6)0.0284 (6)0.0326 (6)0.0018 (5)0.0076 (5)0.0083 (5)
C30.0255 (5)0.0266 (5)0.0209 (5)0.0004 (5)0.0009 (4)0.0003 (4)
C40.0223 (5)0.0194 (5)0.0252 (5)0.0010 (4)0.0026 (4)0.0000 (4)
C140.0257 (5)0.0236 (5)0.0269 (5)0.0006 (4)0.0038 (4)0.0003 (4)
C170.0230 (5)0.0302 (6)0.0332 (6)0.0059 (5)0.0023 (5)0.0040 (5)
C160.0224 (5)0.0311 (6)0.0373 (6)0.0015 (5)0.0019 (5)0.0079 (5)
C110.0214 (5)0.0243 (5)0.0262 (5)0.0002 (4)0.0034 (4)0.0029 (5)
C150.0306 (6)0.0235 (5)0.0366 (7)0.0052 (5)0.0019 (5)0.0002 (5)
C220.0255 (5)0.0240 (5)0.0247 (5)0.0023 (4)0.0009 (4)0.0003 (4)
C50.0288 (5)0.0264 (6)0.0263 (5)0.0056 (5)0.0026 (5)0.0051 (5)
C120.0518 (8)0.0441 (8)0.0286 (6)0.0079 (6)0.0080 (6)0.0128 (6)
C210.0335 (6)0.0354 (6)0.0374 (7)0.0006 (5)0.0115 (5)0.0020 (5)
Geometric parameters (Å, º) top
O5—C191.3392 (14)C23—H23B0.9700
O5—C201.4626 (13)C23—H23A0.9700
O8—C221.3263 (14)C10—C221.5450 (15)
O8—C231.4608 (14)C8—C111.5269 (15)
O6—C191.2021 (14)C18—C171.3825 (17)
O4—C111.3417 (14)C18—H180.9300
O4—C121.4473 (15)C2—C31.3816 (16)
O3—C111.2034 (14)C2—H20.9300
O7—C221.2010 (14)C24—H24A0.9600
N2—C101.4666 (14)C24—H24C0.9600
N2—C71.4754 (14)C24—H24B0.9600
N2—H10.877 (13)C20—C211.4967 (17)
O2—N11.2244 (13)C20—H20B0.9700
O1—N11.2211 (15)C20—H20A0.9700
C9—C101.5307 (15)C3—C41.3954 (16)
C9—C81.5356 (15)C3—H30.9300
C9—H9A0.9700C4—C51.3961 (16)
C9—H9B0.9700C14—C151.3945 (17)
N1—C11.4622 (14)C14—H140.9300
C7—C41.5270 (14)C17—C161.3866 (18)
C7—C81.5698 (14)C17—H170.9300
C7—H70.9800C16—C151.3849 (18)
C1—C21.3852 (16)C16—H160.9300
C1—C61.3856 (16)C15—H150.9300
C6—C51.3861 (16)C5—H50.9300
C6—H60.9300C12—H12B0.9600
C19—C101.5365 (15)C12—H12A0.9600
C13—C141.3912 (16)C12—H12C0.9600
C13—C181.3991 (16)C21—H21A0.9600
C13—C81.5424 (15)C21—H21B0.9600
C23—C241.4966 (18)C21—H21C0.9600
C19—O5—C20114.85 (9)C3—C2—C1118.39 (10)
C22—O8—C23116.28 (9)C3—C2—H2120.8
C11—O4—C12115.52 (10)C1—C2—H2120.8
C10—N2—C7110.13 (8)C23—C24—H24A109.5
C10—N2—H1113.2 (10)C23—C24—H24C109.5
C7—N2—H1109.8 (10)H24A—C24—H24C109.5
C10—C9—C8102.57 (8)C23—C24—H24B109.5
C10—C9—H9A111.3H24A—C24—H24B109.5
C8—C9—H9A111.3H24C—C24—H24B109.5
C10—C9—H9B111.3O5—C20—C21107.50 (10)
C8—C9—H9B111.3O5—C20—H20B110.2
H9A—C9—H9B109.2C21—C20—H20B110.2
O1—N1—O2122.54 (10)O5—C20—H20A110.2
O1—N1—C1118.44 (10)C21—C20—H20A110.2
O2—N1—C1119.01 (10)H20B—C20—H20A108.5
N2—C7—C4110.44 (9)C2—C3—C4121.01 (10)
N2—C7—C8104.76 (8)C2—C3—H3119.5
C4—C7—C8112.64 (9)C4—C3—H3119.5
N2—C7—H7109.6C3—C4—C5118.83 (10)
C4—C7—H7109.6C3—C4—C7120.98 (10)
C8—C7—H7109.6C5—C4—C7120.19 (10)
C2—C1—C6122.57 (10)C13—C14—C15120.41 (11)
C2—C1—N1118.39 (10)C13—C14—H14119.8
C6—C1—N1119.05 (10)C15—C14—H14119.8
C1—C6—C5117.92 (10)C18—C17—C16120.16 (11)
C1—C6—H6121.0C18—C17—H17119.9
C5—C6—H6121.0C16—C17—H17119.9
O6—C19—O5124.56 (10)C15—C16—C17119.23 (11)
O6—C19—C10123.65 (10)C15—C16—H16120.4
O5—C19—C10111.79 (9)C17—C16—H16120.4
C14—C13—C18118.16 (10)O3—C11—O4123.75 (10)
C14—C13—C8124.17 (10)O3—C11—C8125.43 (10)
C18—C13—C8117.67 (10)O4—C11—C8110.82 (9)
O8—C23—C24107.10 (10)C16—C15—C14120.72 (11)
O8—C23—H23B110.3C16—C15—H15119.6
C24—C23—H23B110.3C14—C15—H15119.6
O8—C23—H23A110.3O7—C22—O8124.94 (11)
C24—C23—H23A110.3O7—C22—C10124.38 (10)
H23B—C23—H23A108.5O8—C22—C10110.65 (9)
N2—C10—C9104.02 (8)C6—C5—C4121.25 (11)
N2—C10—C19110.62 (9)C6—C5—H5119.4
C9—C10—C19114.06 (9)C4—C5—H5119.4
N2—C10—C22107.76 (9)O4—C12—H12B109.5
C9—C10—C22110.94 (9)O4—C12—H12A109.5
C19—C10—C22109.18 (9)H12B—C12—H12A109.5
C11—C8—C9111.27 (9)O4—C12—H12C109.5
C11—C8—C13107.31 (8)H12B—C12—H12C109.5
C9—C8—C13110.39 (9)H12A—C12—H12C109.5
C11—C8—C7111.61 (9)C20—C21—H21A109.5
C9—C8—C7100.70 (8)C20—C21—H21B109.5
C13—C8—C7115.52 (9)H21A—C21—H21B109.5
C17—C18—C13121.30 (11)C20—C21—H21C109.5
C17—C18—H18119.3H21A—C21—H21C109.5
C13—C18—H18119.3H21B—C21—H21C109.5
C10—N2—C7—C4113.63 (10)C14—C13—C18—C171.38 (17)
C10—N2—C7—C87.91 (11)C8—C13—C18—C17179.57 (10)
O1—N1—C1—C27.48 (17)C6—C1—C2—C30.44 (17)
O2—N1—C1—C2173.19 (11)N1—C1—C2—C3178.89 (10)
O1—N1—C1—C6171.88 (12)C19—O5—C20—C21176.15 (10)
O2—N1—C1—C67.46 (16)C1—C2—C3—C40.96 (17)
C2—C1—C6—C51.32 (17)C2—C3—C4—C51.43 (17)
N1—C1—C6—C5178.01 (11)C2—C3—C4—C7178.38 (10)
C20—O5—C19—O63.51 (16)N2—C7—C4—C334.13 (14)
C20—O5—C19—C10177.22 (9)C8—C7—C4—C382.62 (13)
C22—O8—C23—C24168.33 (11)N2—C7—C4—C5146.06 (10)
C7—N2—C10—C918.33 (11)C8—C7—C4—C597.19 (12)
C7—N2—C10—C19104.55 (10)C18—C13—C14—C150.44 (16)
C7—N2—C10—C22136.16 (9)C8—C13—C14—C15179.43 (10)
C8—C9—C10—N237.62 (10)C13—C18—C17—C161.38 (18)
C8—C9—C10—C1982.98 (10)C18—C17—C16—C150.42 (18)
C8—C9—C10—C22153.23 (9)C12—O4—C11—O35.05 (17)
O6—C19—C10—N212.31 (15)C12—O4—C11—C8174.76 (10)
O5—C19—C10—N2168.42 (9)C9—C8—C11—O32.64 (16)
O6—C19—C10—C9129.15 (11)C13—C8—C11—O3118.22 (12)
O5—C19—C10—C951.58 (12)C7—C8—C11—O3114.27 (12)
O6—C19—C10—C22106.11 (12)C9—C8—C11—O4177.16 (9)
O5—C19—C10—C2273.16 (11)C13—C8—C11—O461.97 (11)
C10—C9—C8—C11159.73 (9)C7—C8—C11—O465.53 (12)
C10—C9—C8—C1381.23 (10)C17—C16—C15—C140.51 (19)
C10—C9—C8—C741.32 (10)C13—C14—C15—C160.49 (18)
C14—C13—C8—C11110.59 (11)C23—O8—C22—O70.31 (18)
C18—C13—C8—C1168.40 (12)C23—O8—C22—C10177.58 (10)
C14—C13—C8—C9128.00 (11)N2—C10—C22—O783.83 (14)
C18—C13—C8—C953.01 (12)C9—C10—C22—O729.43 (16)
C14—C13—C8—C714.60 (15)C19—C10—C22—O7155.97 (11)
C18—C13—C8—C7166.41 (10)N2—C10—C22—O894.08 (11)
N2—C7—C8—C11148.71 (9)C9—C10—C22—O8152.66 (9)
C4—C7—C8—C1128.62 (12)C19—C10—C22—O826.12 (12)
N2—C7—C8—C930.54 (10)C1—C6—C5—C40.82 (18)
C4—C7—C8—C989.54 (10)C3—C4—C5—C60.51 (17)
N2—C7—C8—C1388.36 (10)C7—C4—C5—C6179.30 (10)
C4—C7—C8—C13151.56 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O7i0.88 (1)2.59 (1)3.360 (4)148 (1)
C12—H12C···O1ii0.962.583.360 (2)139 (1)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H26N2O8
Mr470.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)9.7948 (1), 10.9356 (2), 22.3240 (3)
V3)2391.17 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.44 × 0.40 × 0.36
Data collection
DiffractometerGemini S Ultra, Oxford Diffraction
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.712, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
21308, 4686, 4613
Rint0.018
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.02
No. of reflections4686
No. of parameters314
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19
Absolute structureFlack (1983), 1995 Friedel pairs
Absolute structure parameter0.05 (10)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O7i0.876 (13)2.587 (14)3.360 (4)147.6 (13)
C12—H12C···O1ii0.962.5793.360 (2)138.5 (9)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

The diffraction data were collected at the Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. The author acknowledges financial support from China West Normal University.

References

First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484–4517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825–1872.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17–o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds