organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-8-methyl-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile

bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, aCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 September 2011; accepted 5 September 2011; online 14 September 2011)

The six-membered N-heterocyclic ring of the title compound, C17H15ClN2O, is fused with a methyl-substituted cyclo­hexene ring. The approximately planar nitro­gen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows a trigonal–planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, inversion-related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, generating dimers.

Related literature

For a related compound, see: Asiri et al. (2011[Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2468.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2O

  • Mr = 298.76

  • Monoclinic, C 2/c

  • a = 18.6304 (4) Å

  • b = 18.7399 (4) Å

  • c = 8.5209 (2) Å

  • β = 90.229 (2)°

  • V = 2974.89 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.550, Tmax = 0.935

  • 10387 measured reflections

  • 3014 independent reflections

  • 2682 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.187

  • S = 1.03

  • 3014 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (4) 1.84 (4) 2.744 (3) 174 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported the synthesis of 2-oxo-4-phenyl-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile by using the reaction of benzaldehyde, 1-tetralone and ethyl cyanoacetate. The last reactant is incorporated into the product to form a part of the six-membered nitrogen-bearing ring, which is now endowed with an exocyclic cyanide group (Asiri et al., 2011). In the present study, the use of 2-methylcyclohexane leads to the formation of the analogous compound with a cyclohexene ring fused with the six-membered nitrogen-bearing ring (Scheme I). The planar nitrogen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows trigonal planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclohexene ring adopts a half-chair conformation (Fig. 1). Two molecules are linked about a center-of-inversion by an N–H···O hydrogen bond to generate a dimer (Table 1).

Related literature top

For a related compound, see: Asiri et al. (2011).

Experimental top

4-Chlorobenzaldehyde (1.4 g, 10 mmol), 2-methylcyclohexanone (1.2 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) were heated in ethanol (50 ml) for 6 h. The solid product was collected, washed with water and then recrystallized from ethanol.

Refinement top

Carbon–bound H-atoms were placed in calculated positions [C–H 0.95–0.99 Å; Uiso(H) 1.2–1.5 Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map and was freely refined.

Structure description top

We have reported the synthesis of 2-oxo-4-phenyl-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile by using the reaction of benzaldehyde, 1-tetralone and ethyl cyanoacetate. The last reactant is incorporated into the product to form a part of the six-membered nitrogen-bearing ring, which is now endowed with an exocyclic cyanide group (Asiri et al., 2011). In the present study, the use of 2-methylcyclohexane leads to the formation of the analogous compound with a cyclohexene ring fused with the six-membered nitrogen-bearing ring (Scheme I). The planar nitrogen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows trigonal planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclohexene ring adopts a half-chair conformation (Fig. 1). Two molecules are linked about a center-of-inversion by an N–H···O hydrogen bond to generate a dimer (Table 1).

For a related compound, see: Asiri et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C17H15ClN2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(4-Chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile top
Crystal data top
C17H15ClN2OF(000) = 1248
Mr = 298.76Dx = 1.334 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 4602 reflections
a = 18.6304 (4) Åθ = 3.3–74.1°
b = 18.7399 (4) ŵ = 2.27 mm1
c = 8.5209 (2) ÅT = 100 K
β = 90.229 (2)°Prism, colorless
V = 2974.89 (11) Å30.30 × 0.03 × 0.03 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3014 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2682 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.4°
ω scanh = 2223
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1223
Tmin = 0.550, Tmax = 0.935l = 1010
10387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0973P)2 + 6.1309P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H15ClN2OV = 2974.89 (11) Å3
Mr = 298.76Z = 8
Monoclinic, C2/cCu Kα radiation
a = 18.6304 (4) ŵ = 2.27 mm1
b = 18.7399 (4) ÅT = 100 K
c = 8.5209 (2) Å0.30 × 0.03 × 0.03 mm
β = 90.229 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3014 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2682 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.935Rint = 0.025
10387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.79 e Å3
3014 reflectionsΔρmin = 0.40 e Å3
194 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03066 (4)0.40727 (4)1.04897 (10)0.0561 (3)
O10.43887 (13)0.55097 (12)0.6145 (3)0.0732 (8)
N10.43862 (13)0.43226 (13)0.5593 (3)0.0513 (6)
N20.28356 (14)0.58993 (14)0.8353 (3)0.0520 (6)
C10.41066 (14)0.36551 (15)0.5654 (4)0.0448 (6)
C20.44737 (15)0.31216 (15)0.4544 (4)0.0458 (6)
H20.45360.33600.35030.055*
C30.52222 (16)0.29166 (17)0.5165 (4)0.0531 (7)
H3A0.55140.33480.52910.080*
H3B0.54550.25940.44180.080*
H3C0.51750.26770.61820.080*
C40.39803 (15)0.24814 (15)0.4311 (3)0.0461 (6)
H4A0.42540.20880.38180.055*
H4B0.35840.26150.35900.055*
C50.36656 (18)0.22215 (15)0.5866 (3)0.0498 (7)
H5A0.40620.21020.65980.060*
H5B0.33820.17830.56790.060*
C60.31816 (16)0.27916 (15)0.6619 (4)0.0480 (7)
H6A0.27110.27950.60740.058*
H6B0.30970.26640.77310.058*
C70.35036 (15)0.35264 (14)0.6542 (3)0.0425 (6)
C80.31531 (15)0.41183 (14)0.7254 (3)0.0402 (6)
C90.34494 (15)0.47924 (15)0.7151 (3)0.0453 (6)
C100.41041 (17)0.49152 (16)0.6296 (4)0.0532 (7)
C110.31115 (15)0.54044 (16)0.7834 (3)0.0451 (6)
C120.24447 (15)0.40529 (14)0.8035 (3)0.0396 (6)
C130.23840 (17)0.38018 (16)0.9559 (3)0.0480 (7)
H130.27970.36281.00930.058*
C140.17279 (18)0.38018 (16)1.0307 (3)0.0512 (7)
H140.16880.36301.13520.061*
C150.11297 (16)0.40541 (14)0.9520 (3)0.0436 (6)
C160.11705 (16)0.43002 (17)0.8006 (4)0.0504 (7)
H160.07530.44650.74740.060*
C170.18293 (16)0.43036 (18)0.7268 (3)0.0502 (7)
H170.18650.44790.62250.060*
H10.481 (2)0.439 (2)0.508 (5)0.078 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0605 (5)0.0437 (4)0.0642 (5)0.0013 (3)0.0181 (4)0.0010 (3)
O10.0666 (14)0.0474 (13)0.106 (2)0.0271 (11)0.0384 (14)0.0337 (13)
N10.0412 (13)0.0416 (13)0.0711 (17)0.0104 (10)0.0060 (12)0.0181 (12)
N20.0544 (14)0.0540 (15)0.0478 (13)0.0066 (11)0.0023 (11)0.0180 (11)
C10.0362 (13)0.0401 (14)0.0580 (16)0.0042 (11)0.0058 (11)0.0078 (12)
C20.0416 (14)0.0358 (13)0.0599 (17)0.0031 (11)0.0022 (12)0.0042 (12)
C30.0464 (16)0.0499 (17)0.0631 (18)0.0040 (13)0.0025 (13)0.0048 (14)
C40.0467 (14)0.0404 (14)0.0510 (16)0.0046 (12)0.0032 (12)0.0013 (12)
C50.0692 (19)0.0329 (13)0.0472 (15)0.0062 (12)0.0010 (13)0.0046 (11)
C60.0484 (15)0.0383 (14)0.0573 (16)0.0057 (11)0.0037 (12)0.0050 (12)
C70.0445 (14)0.0358 (13)0.0472 (14)0.0024 (11)0.0113 (11)0.0001 (11)
C80.0444 (14)0.0418 (14)0.0342 (12)0.0054 (11)0.0083 (10)0.0001 (10)
C90.0460 (14)0.0415 (14)0.0484 (15)0.0097 (11)0.0036 (11)0.0107 (11)
C100.0494 (15)0.0440 (16)0.0662 (19)0.0134 (12)0.0103 (14)0.0193 (14)
C110.0469 (14)0.0465 (15)0.0420 (13)0.0132 (12)0.0047 (11)0.0088 (12)
C120.0454 (14)0.0373 (13)0.0361 (12)0.0066 (10)0.0032 (10)0.0020 (10)
C130.0568 (16)0.0489 (16)0.0383 (14)0.0081 (13)0.0004 (12)0.0069 (12)
C140.0665 (18)0.0461 (16)0.0411 (14)0.0045 (14)0.0054 (13)0.0093 (12)
C150.0534 (16)0.0318 (13)0.0457 (14)0.0067 (11)0.0066 (12)0.0018 (10)
C160.0467 (15)0.0563 (17)0.0480 (15)0.0107 (13)0.0080 (12)0.0046 (13)
C170.0463 (15)0.0670 (19)0.0374 (13)0.0133 (14)0.0068 (11)0.0082 (13)
Geometric parameters (Å, º) top
Cl1—C151.745 (3)C5—H5B0.9900
O1—C101.241 (4)C6—C71.503 (4)
N1—C11.356 (4)C6—H6A0.9900
N1—C101.368 (4)C6—H6B0.9900
N1—H10.91 (4)C7—C81.424 (4)
N2—C111.150 (4)C8—C91.382 (4)
C1—C71.378 (4)C8—C121.486 (4)
C1—C21.539 (4)C9—C111.433 (4)
C2—C41.524 (4)C9—C101.442 (4)
C2—C31.538 (4)C12—C131.386 (4)
C2—H21.0000C12—C171.399 (4)
C3—H3A0.9800C13—C141.381 (4)
C3—H3B0.9800C13—H130.9500
C3—H3C0.9800C14—C151.382 (4)
C4—C51.531 (4)C14—H140.9500
C4—H4A0.9900C15—C161.373 (4)
C4—H4B0.9900C16—C171.381 (4)
C5—C61.540 (4)C16—H160.9500
C5—H5A0.9900C17—H170.9500
C1—N1—C10125.7 (3)C5—C6—H6B109.1
C1—N1—H1118 (3)H6A—C6—H6B107.8
C10—N1—H1116 (3)C1—C7—C8118.3 (2)
N1—C1—C7119.8 (3)C1—C7—C6120.7 (3)
N1—C1—C2113.8 (2)C8—C7—C6120.7 (3)
C7—C1—C2126.1 (2)C9—C8—C7120.1 (3)
C4—C2—C1108.8 (2)C9—C8—C12117.4 (2)
C4—C2—C3113.2 (2)C7—C8—C12122.4 (2)
C1—C2—C3110.8 (2)C8—C9—C11122.0 (3)
C4—C2—H2108.0C8—C9—C10121.1 (3)
C1—C2—H2108.0C11—C9—C10116.8 (2)
C3—C2—H2108.0O1—C10—N1121.2 (3)
C2—C3—H3A109.5O1—C10—C9124.0 (3)
C2—C3—H3B109.5N1—C10—C9114.8 (2)
H3A—C3—H3B109.5N2—C11—C9178.6 (3)
C2—C3—H3C109.5C13—C12—C17118.8 (3)
H3A—C3—H3C109.5C13—C12—C8121.6 (2)
H3B—C3—H3C109.5C17—C12—C8119.4 (2)
C2—C4—C5111.7 (2)C14—C13—C12120.5 (3)
C2—C4—H4A109.3C14—C13—H13119.7
C5—C4—H4A109.3C12—C13—H13119.7
C2—C4—H4B109.3C13—C14—C15119.3 (3)
C5—C4—H4B109.3C13—C14—H14120.3
H4A—C4—H4B107.9C15—C14—H14120.3
C4—C5—C6111.5 (2)C16—C15—C14121.6 (3)
C4—C5—H5A109.3C16—C15—Cl1119.4 (2)
C6—C5—H5A109.3C14—C15—Cl1119.0 (2)
C4—C5—H5B109.3C15—C16—C17118.8 (3)
C6—C5—H5B109.3C15—C16—H16120.6
H5A—C5—H5B108.0C17—C16—H16120.6
C7—C6—C5112.5 (2)C16—C17—C12120.9 (3)
C7—C6—H6A109.1C16—C17—H17119.5
C5—C6—H6A109.1C12—C17—H17119.5
C7—C6—H6B109.1
C10—N1—C1—C73.1 (5)C7—C8—C9—C101.6 (4)
C10—N1—C1—C2171.0 (3)C12—C8—C9—C10174.6 (3)
N1—C1—C2—C4161.8 (3)C1—N1—C10—O1178.3 (3)
C7—C1—C2—C411.8 (4)C1—N1—C10—C90.6 (5)
N1—C1—C2—C373.2 (3)C8—C9—C10—O1178.9 (3)
C7—C1—C2—C3113.2 (3)C11—C9—C10—O11.0 (5)
C1—C2—C4—C545.4 (3)C8—C9—C10—N11.3 (4)
C3—C2—C4—C578.3 (3)C11—C9—C10—N1176.6 (3)
C2—C4—C5—C663.7 (3)C9—C8—C12—C13102.5 (3)
C4—C5—C6—C743.5 (3)C7—C8—C12—C1381.5 (3)
N1—C1—C7—C85.8 (4)C9—C8—C12—C1772.3 (3)
C2—C1—C7—C8167.5 (3)C7—C8—C12—C17103.8 (3)
N1—C1—C7—C6179.6 (3)C17—C12—C13—C140.2 (4)
C2—C1—C7—C66.3 (4)C8—C12—C13—C14174.5 (3)
C5—C6—C7—C19.8 (4)C12—C13—C14—C150.1 (5)
C5—C6—C7—C8176.5 (2)C13—C14—C15—C160.5 (4)
C1—C7—C8—C95.1 (4)C13—C14—C15—Cl1178.4 (2)
C6—C7—C8—C9178.9 (3)C14—C15—C16—C171.0 (4)
C1—C7—C8—C12170.9 (2)Cl1—C15—C16—C17178.0 (2)
C6—C7—C8—C122.9 (4)C15—C16—C17—C120.8 (5)
C7—C8—C9—C11179.3 (3)C13—C12—C17—C160.2 (4)
C12—C8—C9—C113.1 (4)C8—C12—C17—C16175.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (4)1.84 (4)2.744 (3)174 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O
Mr298.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.6304 (4), 18.7399 (4), 8.5209 (2)
β (°) 90.229 (2)
V3)2974.89 (11)
Z8
Radiation typeCu Kα
µ (mm1)2.27
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.550, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
10387, 3014, 2682
Rint0.025
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.187, 1.03
No. of reflections3014
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.40

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (4)1.84 (4)2.744 (3)174 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds