organic compounds
Moxifloxacinium chloride monohydrate
aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and cChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn
The title compound {systematic name: 7-[(1S,6S)-8-aza-2-azoniabicyclo[4.3.0]non-8-yl]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid chloride monohydrate}, C21H25FN3O4+·Cl−·H2O, crystallizes with two moxifloxacinium cations, two chloride ions and two uncoordinated water molecules in the The has a pseudo-inversion center except for the chloride ions. In both moxifloxacinium cations, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å. The piperidine rings adopt a chair conformation while the pyrrolidine rings display a half-chair conformation. In the crystal, the carboxyl groups, the protonated piperidyl groups, the uncoordinated water molecule and chloride anions participate in O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonding; weak intermolecular C—H⋯O and C—H⋯Cl hydrogen bonding is also present in the crystal structure.
Related literature
For applications of moxifloxacin hydrochloride in the medicine field, see: Seidel et al. (2000); Talib et al. (2002); Culley et al. (2001); Liu & Sun (2008). For the tolerability, solubility, safety and pharmacodynamics of moxifloxacin hydrochloride, see: Stass et al. (1998); Noel et al. (2005); Varanda et al. (2006). For a related structure of moxifloxacin hydrochloride methanol solvate, see: Ravikumar & Sridhar (2006).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053681103707X/xu5322sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681103707X/xu5322Isup2.hkl
The crude product is supplied by Zhejiang Jingxin Pharmaceutical Co., LTD. It was recrystallized from ethanol solution, giving yellow crystals suitable for X-ray diffraction.
The difference density indicated the presence of a possible H atom in the atom N1A and N1B, showing that a proton transfer from HCl to amino group of moxifloxacinium molecule. But this H atom was placed in calculated position with N···H = 0.90 Å and refined as riding with Uiso(H) = 1.2Ueq(N). All H atoms of water molecules were located in a difference electron-density map and refined with O—H bond-length restraints of 0.82 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.93–0.98 Å and included in the
in riding model, with Uiso(H)= 1.2Ueq or 1.5Ueq(carrier atom).Moxifloxacin hydrochloride, a new fluoroquinolone with a broad spectrum of antibacterial, anaerobes and atypical oranisms (Seidel et al., 2000), is approved by the Food and Drug Administration in December 1999 for use in the treatment of acute bacterial sinusitis, acute bacterial exacerbations of chronic bronchitis, and community-acquired pneumonia caused by susceptible microorganisms (Culley et al., 2001). The
of moxifloxacin hydrochloride methanol solvate have been reported (Ravikumar & Sridhar, 2006). In the present study, we report the of moxifloxacin hydrochloride monohydrate.The
consists of two independent moxifloxacin cations protonated at the terminal piperidyl N atom, two chloride ions and two lattice water molecules (Fig. 1). The important different of is the orientation of its piperidinopyrrolidine side chain. In the cation A, the torsion angle of C9—C8—N2—C7 is 35.9 (5)°, while in the cation B, the torsion angle is 168.4 (3)°. So, we can see that the two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. Conformation of the moxifloxacin cations in the structure of title compound and moxifloxacinium chloride-water-methanol solvate (Ravikumar & Sridhar, 2006) shows not much different.In both moxifloxacin cations of the title compound, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å, respectively. The peridine rings adopt chair conformation with the exposed N atom participating in the hydrogen-bonding interactions, and the pyrrolidine rings favour a half-chair conformation twisted on atoms C1—C5, which is similar to that of moxifloxacinium methanol solvate (Ravikumar & Sridhar, 2006). The cyclopropyl rings are not coplanar with the quinoline ring system, forming the dihedral angles with quinoline ring systems of 73.9 (2) and 74.3 (2)° for cation A and B respectively. The C17—O1 methoxy group is almost perpendicular to the plane of the quinoline ring system [torsion angle of C17—O1—C9—C8 is 94.2 (4)° and -84.1 (4)° for the A and B cations, respectively].
In the
different modes of hydrogen-bonding interactions, cation-cation, cation-water, cation-chloride ion and water-chloride ion, stablizing the molecules. Carboxyl atom O3 forms an intramolecular hydrogen bond with carbonyl group O2. This hydrogen bond forms a quasi-six-membered ring. The two H atoms at atom N1 of piperidine ring participate in intramolecular and intermolecular hydrogen bonding with chloride ion. The water molecule acts as a donor in hydrogen bonds with the carbonyl O atom of the carboxylic acid group of cation A, while in the cation B, water molecule forms hydrogen bonds with a chloride ion and the the carbonyl O atom of the carboxylic acid group. In this way, the hydrogen bonds link all of the components of the structure into extented two dimensional networks (Fig.2). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is also present in the crystal structure.For applications of moxifloxacin hydrochloride in the medicine field, see: Seidel et al. (2000); Talib et al. (2002); Culley et al. (2001); Liu & Sun (2008). For the tolerability, solubility, safety and pharmacodynamics of moxifloxacin hydrochloride, see: Stass et al. (1998); Noel et al. (2005); Varanda et al. (2006). For a related structure of moxifloxacin hydrochloride methanol solvate, see: Ravikumar & Sridhar (2006).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound (I) showing atom-labelling scheme and displacement ellipsoids at 40% probability level. H atoms are shown as small circles of arbitary radii. | |
Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. |
C21H25FN3O4+·Cl−·H2O | Z = 2 |
Mr = 455.91 | F(000) = 480 |
Triclinic, P1 | Dx = 1.408 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7280 (3) Å | Cell parameters from 8287 reflections |
b = 10.6406 (5) Å | θ = 3.1–27.4° |
c = 15.3127 (7) Å | µ = 0.23 mm−1 |
α = 91.7293 (14)° | T = 296 K |
β = 91.1313 (13)° | Platelet, yellow |
γ = 100.8823 (13)° | 0.49 × 0.37 × 0.22 mm |
V = 1075.67 (9) Å3 |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 8038 independent reflections |
Radiation source: rolling anode | 5933 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.898, Tmax = 0.952 | l = −19→19 |
10677 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0483P)2 + 0.3081P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.002 |
8038 reflections | Δρmax = 0.25 e Å−3 |
563 parameters | Δρmin = −0.29 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 3107 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (6) |
C21H25FN3O4+·Cl−·H2O | γ = 100.8823 (13)° |
Mr = 455.91 | V = 1075.67 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7280 (3) Å | Mo Kα radiation |
b = 10.6406 (5) Å | µ = 0.23 mm−1 |
c = 15.3127 (7) Å | T = 296 K |
α = 91.7293 (14)° | 0.49 × 0.37 × 0.22 mm |
β = 91.1313 (13)° |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 8038 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 5933 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 0.952 | Rint = 0.024 |
10677 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.118 | Δρmax = 0.25 e Å−3 |
S = 1.10 | Δρmin = −0.29 e Å−3 |
8038 reflections | Absolute structure: Flack (1983), 3107 Friedel pairs |
563 parameters | Absolute structure parameter: 0.00 (6) |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1A | 0.08670 (14) | 0.50137 (8) | 0.99176 (7) | 0.0548 (2) | |
Cl1B | 0.10870 (14) | 0.02176 (8) | −0.03926 (7) | 0.0567 (3) | |
N1A | 0.3204 (5) | 0.7860 (3) | 0.94810 (19) | 0.0441 (7) | |
H12A | 0.2306 | 0.8388 | 0.9455 | 0.053* | |
H13A | 0.2528 | 0.7055 | 0.9375 | 0.053* | |
N1B | 0.3516 (4) | 0.2937 (2) | 0.01252 (17) | 0.0400 (6) | |
H12B | 0.2868 | 0.3602 | 0.0099 | 0.048* | |
H13B | 0.2680 | 0.2245 | −0.0112 | 0.048* | |
N2A | 0.3990 (4) | 0.6616 (2) | 0.76809 (17) | 0.0372 (6) | |
N2B | 0.5973 (4) | 0.3338 (2) | 0.22997 (17) | 0.0374 (6) | |
N3A | 0.2638 (5) | 0.2658 (2) | 0.58859 (19) | 0.0416 (7) | |
N3B | 0.7482 (4) | 0.7350 (2) | 0.40000 (17) | 0.0385 (6) | |
O1A | 0.2857 (4) | 0.3959 (2) | 0.75552 (14) | 0.0415 (6) | |
O1B | 0.7298 (4) | 0.59852 (19) | 0.23736 (14) | 0.0383 (5) | |
O2A | 0.1857 (4) | 0.4667 (2) | 0.37071 (15) | 0.0489 (6) | |
O2B | 0.8173 (4) | 0.5445 (2) | 0.62383 (14) | 0.0515 (7) | |
O3A | 0.0877 (5) | 0.2578 (3) | 0.28571 (17) | 0.0638 (8) | |
H3A | 0.1155 | 0.3342 | 0.2996 | 0.096* | |
O3B | 0.9164 (5) | 0.7573 (3) | 0.70351 (17) | 0.0669 (8) | |
H3B | 0.8928 | 0.6803 | 0.6913 | 0.100* | |
O4A | 0.0747 (5) | 0.0744 (3) | 0.3508 (2) | 0.0770 (9) | |
O4B | 0.9382 (6) | 0.9377 (3) | 0.6324 (2) | 0.0767 (9) | |
O5A | 0.0249 (13) | −0.0589 (4) | 0.1733 (3) | 0.204 (4) | |
H51A | 0.0738 | −0.0201 | 0.2181 | 0.306* | |
H52A | 0.0571 | −0.0067 | 0.1354 | 0.306* | |
O5B | 0.8200 (6) | 1.0469 (3) | 0.7955 (2) | 0.0864 (10) | |
H51B | 0.8621 | 1.0037 | 0.7573 | 0.130* | |
H52B | 0.8963 | 1.0577 | 0.8386 | 0.130* | |
F1A | 0.3699 (4) | 0.79303 (17) | 0.61130 (13) | 0.0542 (6) | |
F1B | 0.6310 (4) | 0.20723 (17) | 0.38902 (13) | 0.0536 (6) | |
C1A | 0.6328 (5) | 0.7360 (3) | 0.8836 (2) | 0.0393 (7) | |
H1A | 0.7466 | 0.7748 | 0.8482 | 0.047* | |
C1B | 0.5301 (5) | 0.1742 (3) | 0.1187 (2) | 0.0359 (7) | |
H1B | 0.4562 | 0.0868 | 0.1061 | 0.043* | |
C2A | 0.7169 (6) | 0.7224 (3) | 0.9757 (2) | 0.0483 (9) | |
H21A | 0.7871 | 0.6507 | 0.9753 | 0.058* | |
H22A | 0.8149 | 0.7991 | 0.9920 | 0.058* | |
C2B | 0.7169 (6) | 0.2031 (3) | 0.0622 (2) | 0.0460 (8) | |
H21B | 0.8035 | 0.2817 | 0.0839 | 0.055* | |
H22B | 0.7927 | 0.1344 | 0.0666 | 0.055* | |
C3A | 0.5553 (7) | 0.7016 (4) | 1.0439 (3) | 0.0532 (9) | |
H31A | 0.4770 | 0.6154 | 1.0366 | 0.064* | |
H32A | 0.6193 | 0.7101 | 1.1017 | 0.064* | |
C3B | 0.6593 (6) | 0.2168 (4) | −0.0324 (2) | 0.0501 (9) | |
H31B | 0.5806 | 0.1362 | −0.0554 | 0.060* | |
H32B | 0.7810 | 0.2368 | −0.0662 | 0.060* | |
C4A | 0.4157 (7) | 0.7962 (4) | 1.0371 (2) | 0.0519 (9) | |
H41A | 0.3116 | 0.7788 | 1.0804 | 0.062* | |
H42A | 0.4915 | 0.8823 | 1.0485 | 0.062* | |
C4B | 0.5366 (6) | 0.3217 (4) | −0.0419 (2) | 0.0473 (9) | |
H41B | 0.6183 | 0.4035 | −0.0231 | 0.057* | |
H42B | 0.4969 | 0.3268 | −0.1027 | 0.057* | |
C5A | 0.4756 (5) | 0.8203 (3) | 0.8792 (2) | 0.0398 (8) | |
H5A | 0.5414 | 0.9104 | 0.8872 | 0.048* | |
C5B | 0.3902 (5) | 0.2698 (3) | 0.1065 (2) | 0.0356 (7) | |
H5B | 0.2603 | 0.2356 | 0.1328 | 0.043* | |
C6A | 0.3868 (7) | 0.7958 (3) | 0.7874 (2) | 0.0500 (9) | |
H61A | 0.2475 | 0.8080 | 0.7849 | 0.060* | |
H62A | 0.4650 | 0.8521 | 0.7467 | 0.060* | |
C6B | 0.4919 (5) | 0.3884 (3) | 0.1599 (2) | 0.0371 (7) | |
H61B | 0.5864 | 0.4452 | 0.1252 | 0.045* | |
H62B | 0.3927 | 0.4348 | 0.1833 | 0.045* | |
C7A | 0.5250 (5) | 0.6133 (3) | 0.8348 (2) | 0.0354 (7) | |
H7A1 | 0.6215 | 0.5681 | 0.8078 | 0.042* | |
H7A2 | 0.4419 | 0.5566 | 0.8738 | 0.042* | |
C7B | 0.5792 (6) | 0.1942 (3) | 0.2154 (2) | 0.0402 (8) | |
H7B1 | 0.4716 | 0.1474 | 0.2496 | 0.048* | |
H7B2 | 0.7051 | 0.1673 | 0.2304 | 0.048* | |
C8A | 0.3480 (5) | 0.5983 (3) | 0.6879 (2) | 0.0336 (7) | |
C8B | 0.6511 (5) | 0.3980 (3) | 0.3089 (2) | 0.0321 (7) | |
C9A | 0.3091 (5) | 0.4642 (3) | 0.6802 (2) | 0.0340 (7) | |
C9B | 0.7005 (5) | 0.5329 (3) | 0.31349 (19) | 0.0321 (7) | |
C10A | 0.2781 (5) | 0.3988 (3) | 0.5982 (2) | 0.0359 (7) | |
C10B | 0.7331 (5) | 0.6013 (3) | 0.3943 (2) | 0.0330 (7) | |
C11A | 0.2025 (6) | 0.2064 (3) | 0.5112 (2) | 0.0458 (8) | |
H11A | 0.1843 | 0.1175 | 0.5078 | 0.055* | |
C11B | 0.8098 (6) | 0.7976 (3) | 0.4764 (2) | 0.0449 (8) | |
H11B | 0.8309 | 0.8866 | 0.4776 | 0.054* | |
C12A | 0.1653 (5) | 0.2675 (3) | 0.4375 (2) | 0.0437 (8) | |
C12B | 0.8430 (5) | 0.7403 (3) | 0.5515 (2) | 0.0431 (8) | |
C13A | 0.2009 (5) | 0.4047 (3) | 0.4385 (2) | 0.0393 (8) | |
C13B | 0.8052 (5) | 0.6032 (3) | 0.5539 (2) | 0.0393 (8) | |
C14A | 0.2551 (5) | 0.4681 (3) | 0.5228 (2) | 0.0341 (7) | |
C14B | 0.7501 (5) | 0.5352 (3) | 0.4709 (2) | 0.0337 (7) | |
C15A | 0.2818 (5) | 0.6017 (3) | 0.5308 (2) | 0.0371 (7) | |
H15A | 0.2636 | 0.6488 | 0.4821 | 0.045* | |
C15B | 0.7215 (5) | 0.4016 (3) | 0.4659 (2) | 0.0365 (7) | |
H15B | 0.7400 | 0.3567 | 0.5156 | 0.044* | |
C16A | 0.3342 (5) | 0.6629 (3) | 0.6093 (2) | 0.0364 (7) | |
C16B | 0.6664 (5) | 0.3369 (3) | 0.3883 (2) | 0.0359 (7) | |
C17A | 0.0780 (7) | 0.3606 (5) | 0.7779 (3) | 0.0736 (14) | |
H17D | 0.0250 | 0.4364 | 0.7915 | 0.110* | |
H17E | 0.0673 | 0.3075 | 0.8278 | 0.110* | |
H17F | 0.0022 | 0.3143 | 0.7295 | 0.110* | |
C17B | 0.9320 (7) | 0.6076 (5) | 0.2066 (3) | 0.0665 (12) | |
H17A | 1.0256 | 0.6601 | 0.2469 | 0.100* | |
H17B | 0.9414 | 0.6452 | 0.1502 | 0.100* | |
H17C | 0.9643 | 0.5236 | 0.2019 | 0.100* | |
C18A | 0.3418 (7) | 0.1899 (3) | 0.6553 (2) | 0.0511 (9) | |
H18A | 0.2446 | 0.1483 | 0.6973 | 0.061* | |
C18B | 0.6706 (7) | 0.8076 (3) | 0.3312 (2) | 0.0499 (9) | |
H18B | 0.7667 | 0.8434 | 0.2871 | 0.060* | |
C19A | 0.5531 (7) | 0.2305 (4) | 0.6868 (3) | 0.0559 (10) | |
H19C | 0.5842 | 0.2153 | 0.7473 | 0.067* | |
H19D | 0.6303 | 0.3086 | 0.6643 | 0.067* | |
C19B | 0.4564 (7) | 0.7664 (4) | 0.3015 (3) | 0.0553 (10) | |
H19A | 0.3774 | 0.6921 | 0.3280 | 0.066* | |
H19B | 0.4234 | 0.7761 | 0.2405 | 0.066* | |
C20A | 0.5007 (8) | 0.1171 (4) | 0.6256 (3) | 0.0723 (14) | |
H20A | 0.4987 | 0.0331 | 0.6489 | 0.087* | |
H20B | 0.5449 | 0.1265 | 0.5658 | 0.087* | |
C20B | 0.5185 (9) | 0.8854 (4) | 0.3576 (3) | 0.0750 (15) | |
H20C | 0.5232 | 0.9671 | 0.3304 | 0.090* | |
H20D | 0.4772 | 0.8831 | 0.4180 | 0.090* | |
C21A | 0.1039 (6) | 0.1893 (4) | 0.3556 (3) | 0.0544 (10) | |
C21B | 0.9039 (6) | 0.8217 (4) | 0.6315 (3) | 0.0552 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.0484 (5) | 0.0424 (4) | 0.0767 (6) | 0.0148 (4) | 0.0123 (5) | 0.0061 (4) |
Cl1B | 0.0521 (6) | 0.0390 (4) | 0.0793 (7) | 0.0128 (4) | −0.0135 (5) | −0.0130 (4) |
N1A | 0.0464 (18) | 0.0370 (14) | 0.0521 (17) | 0.0164 (13) | 0.0028 (14) | −0.0012 (13) |
N1B | 0.0443 (17) | 0.0328 (13) | 0.0438 (16) | 0.0115 (12) | −0.0112 (13) | −0.0035 (12) |
N2A | 0.0485 (17) | 0.0249 (12) | 0.0387 (15) | 0.0097 (12) | −0.0060 (12) | −0.0024 (11) |
N2B | 0.0508 (18) | 0.0281 (12) | 0.0340 (14) | 0.0102 (12) | −0.0080 (13) | 0.0004 (11) |
N3A | 0.0476 (18) | 0.0316 (13) | 0.0437 (16) | 0.0038 (12) | −0.0070 (13) | −0.0011 (12) |
N3B | 0.0453 (17) | 0.0340 (14) | 0.0330 (15) | 0.0002 (12) | −0.0019 (12) | −0.0038 (12) |
O1A | 0.0486 (15) | 0.0380 (12) | 0.0337 (12) | −0.0028 (10) | −0.0037 (10) | 0.0086 (10) |
O1B | 0.0463 (14) | 0.0358 (11) | 0.0311 (11) | 0.0038 (10) | −0.0016 (10) | 0.0033 (9) |
O2A | 0.0511 (16) | 0.0618 (16) | 0.0348 (13) | 0.0128 (12) | −0.0015 (11) | 0.0050 (12) |
O2B | 0.0528 (17) | 0.0706 (17) | 0.0293 (13) | 0.0073 (14) | −0.0006 (11) | 0.0033 (12) |
O3A | 0.0571 (19) | 0.086 (2) | 0.0439 (15) | 0.0077 (17) | −0.0081 (13) | −0.0173 (15) |
O3B | 0.073 (2) | 0.086 (2) | 0.0369 (15) | 0.0040 (18) | −0.0013 (13) | −0.0106 (14) |
O4A | 0.094 (3) | 0.0627 (19) | 0.069 (2) | 0.0093 (17) | −0.0204 (17) | −0.0276 (16) |
O4B | 0.093 (3) | 0.0661 (19) | 0.0637 (19) | 0.0034 (17) | −0.0099 (17) | −0.0280 (15) |
O5A | 0.392 (11) | 0.087 (3) | 0.100 (3) | −0.040 (4) | 0.049 (5) | −0.013 (3) |
O5B | 0.109 (3) | 0.081 (2) | 0.074 (2) | 0.030 (2) | −0.0072 (19) | −0.0076 (17) |
F1A | 0.0842 (18) | 0.0330 (10) | 0.0460 (12) | 0.0118 (10) | 0.0021 (11) | 0.0064 (9) |
F1B | 0.0809 (17) | 0.0334 (10) | 0.0472 (12) | 0.0122 (10) | −0.0024 (11) | 0.0074 (9) |
C1A | 0.0401 (19) | 0.0315 (15) | 0.0458 (19) | 0.0058 (14) | −0.0014 (15) | −0.0023 (14) |
C1B | 0.0398 (19) | 0.0236 (13) | 0.0440 (18) | 0.0065 (13) | −0.0047 (15) | −0.0031 (13) |
C2A | 0.047 (2) | 0.0431 (18) | 0.054 (2) | 0.0095 (16) | −0.0125 (17) | −0.0069 (17) |
C2B | 0.044 (2) | 0.0427 (18) | 0.054 (2) | 0.0164 (16) | 0.0001 (17) | −0.0066 (16) |
C3A | 0.062 (3) | 0.051 (2) | 0.049 (2) | 0.0182 (19) | −0.0073 (19) | 0.0047 (17) |
C3B | 0.055 (2) | 0.049 (2) | 0.048 (2) | 0.0141 (18) | 0.0084 (18) | −0.0069 (17) |
C4A | 0.074 (3) | 0.053 (2) | 0.0314 (17) | 0.0197 (19) | −0.0018 (17) | −0.0018 (15) |
C4B | 0.061 (2) | 0.0436 (18) | 0.0364 (18) | 0.0079 (17) | 0.0037 (17) | −0.0017 (15) |
C5A | 0.051 (2) | 0.0275 (14) | 0.0397 (18) | 0.0053 (14) | −0.0001 (16) | 0.0024 (13) |
C5B | 0.0384 (19) | 0.0332 (15) | 0.0355 (17) | 0.0086 (13) | −0.0007 (14) | −0.0034 (13) |
C6A | 0.072 (3) | 0.0367 (17) | 0.044 (2) | 0.0211 (18) | −0.0107 (18) | −0.0006 (15) |
C6B | 0.052 (2) | 0.0306 (15) | 0.0308 (16) | 0.0152 (15) | −0.0077 (15) | −0.0015 (13) |
C7A | 0.0419 (19) | 0.0315 (15) | 0.0334 (17) | 0.0093 (14) | −0.0043 (14) | 0.0008 (13) |
C7B | 0.047 (2) | 0.0283 (14) | 0.0463 (19) | 0.0105 (14) | −0.0052 (15) | −0.0022 (14) |
C8A | 0.0331 (17) | 0.0338 (15) | 0.0341 (17) | 0.0060 (13) | 0.0028 (14) | 0.0037 (13) |
C8B | 0.0291 (17) | 0.0317 (15) | 0.0354 (17) | 0.0060 (13) | −0.0002 (13) | 0.0000 (13) |
C9A | 0.0346 (18) | 0.0341 (15) | 0.0333 (17) | 0.0059 (13) | −0.0010 (13) | 0.0051 (13) |
C9B | 0.0353 (18) | 0.0329 (14) | 0.0274 (15) | 0.0042 (13) | 0.0000 (13) | 0.0024 (12) |
C10A | 0.0303 (18) | 0.0340 (15) | 0.0418 (18) | 0.0024 (13) | −0.0017 (14) | 0.0022 (14) |
C10B | 0.0289 (17) | 0.0330 (15) | 0.0356 (17) | 0.0026 (13) | 0.0004 (13) | −0.0034 (13) |
C11A | 0.041 (2) | 0.0447 (18) | 0.047 (2) | 0.0008 (15) | −0.0072 (16) | −0.0087 (16) |
C11B | 0.045 (2) | 0.0395 (17) | 0.047 (2) | 0.0039 (15) | −0.0018 (16) | −0.0113 (16) |
C12A | 0.0372 (19) | 0.0518 (19) | 0.0419 (19) | 0.0102 (16) | −0.0069 (15) | −0.0109 (16) |
C12B | 0.0377 (19) | 0.054 (2) | 0.0360 (18) | 0.0064 (16) | 0.0007 (15) | −0.0099 (16) |
C13A | 0.0297 (18) | 0.0510 (19) | 0.0372 (19) | 0.0076 (15) | 0.0010 (14) | 0.0010 (16) |
C13B | 0.0273 (17) | 0.0559 (19) | 0.0346 (18) | 0.0078 (15) | 0.0024 (14) | −0.0033 (16) |
C14A | 0.0284 (17) | 0.0424 (17) | 0.0330 (17) | 0.0106 (14) | 0.0013 (13) | 0.0000 (14) |
C14B | 0.0264 (16) | 0.0459 (17) | 0.0283 (16) | 0.0057 (14) | 0.0002 (13) | 0.0016 (14) |
C15A | 0.0331 (18) | 0.0418 (17) | 0.0382 (18) | 0.0097 (14) | 0.0028 (14) | 0.0091 (14) |
C15B | 0.0300 (17) | 0.0460 (17) | 0.0345 (17) | 0.0089 (14) | 0.0011 (13) | 0.0059 (14) |
C16A | 0.0382 (18) | 0.0317 (15) | 0.0404 (19) | 0.0094 (14) | 0.0037 (15) | 0.0008 (14) |
C16B | 0.041 (2) | 0.0312 (15) | 0.0366 (17) | 0.0085 (14) | 0.0039 (15) | 0.0078 (14) |
C17A | 0.061 (3) | 0.097 (3) | 0.054 (2) | −0.013 (2) | 0.014 (2) | 0.015 (2) |
C17B | 0.047 (2) | 0.096 (3) | 0.056 (2) | 0.008 (2) | 0.0145 (19) | 0.029 (2) |
C18A | 0.068 (3) | 0.0351 (17) | 0.048 (2) | 0.0037 (17) | −0.0059 (18) | 0.0054 (16) |
C18B | 0.074 (3) | 0.0315 (16) | 0.0413 (19) | 0.0017 (17) | −0.0035 (19) | 0.0043 (15) |
C19A | 0.069 (3) | 0.047 (2) | 0.053 (2) | 0.0155 (19) | −0.016 (2) | 0.0062 (18) |
C19B | 0.070 (3) | 0.051 (2) | 0.049 (2) | 0.022 (2) | −0.0089 (19) | 0.0047 (17) |
C20A | 0.111 (4) | 0.048 (2) | 0.066 (3) | 0.038 (3) | −0.021 (3) | −0.002 (2) |
C20B | 0.127 (5) | 0.053 (2) | 0.055 (3) | 0.045 (3) | −0.012 (3) | −0.003 (2) |
C21A | 0.042 (2) | 0.073 (3) | 0.047 (2) | 0.011 (2) | −0.0078 (17) | −0.015 (2) |
C21B | 0.044 (2) | 0.071 (3) | 0.047 (2) | 0.006 (2) | −0.0006 (18) | −0.016 (2) |
N1A—C4A | 1.487 (5) | C4B—H41B | 0.9700 |
N1A—C5A | 1.503 (4) | C4B—H42B | 0.9700 |
N1A—H12A | 0.9000 | C5A—C6A | 1.511 (5) |
N1A—H13A | 0.9000 | C5A—H5A | 0.9800 |
N1B—C5B | 1.495 (4) | C5B—C6B | 1.523 (4) |
N1B—C4B | 1.499 (5) | C5B—H5B | 0.9800 |
N1B—H12B | 0.9000 | C6A—H61A | 0.9700 |
N1B—H13B | 0.9000 | C6A—H62A | 0.9700 |
N2A—C8A | 1.388 (4) | C6B—H61B | 0.9700 |
N2A—C6A | 1.468 (4) | C6B—H62B | 0.9700 |
N2A—C7A | 1.479 (4) | C7A—H7A1 | 0.9700 |
N2B—C8B | 1.378 (4) | C7A—H7A2 | 0.9700 |
N2B—C6B | 1.467 (4) | C7B—H7B1 | 0.9700 |
N2B—C7B | 1.476 (4) | C7B—H7B2 | 0.9700 |
N3A—C11A | 1.346 (4) | C8A—C9A | 1.403 (4) |
N3A—C10A | 1.404 (4) | C8A—C16A | 1.413 (4) |
N3A—C18A | 1.470 (5) | C8B—C16B | 1.406 (4) |
N3B—C11B | 1.347 (4) | C8B—C9B | 1.410 (4) |
N3B—C10B | 1.406 (4) | C9A—C10A | 1.410 (5) |
N3B—C18B | 1.469 (5) | C9B—C10B | 1.408 (4) |
O1A—C9A | 1.377 (4) | C10A—C14A | 1.409 (4) |
O1A—C17A | 1.428 (5) | C10B—C14B | 1.399 (4) |
O1B—C9B | 1.375 (3) | C11A—C12A | 1.361 (5) |
O1B—C17B | 1.436 (5) | C11A—H11A | 0.9300 |
O2A—C13A | 1.260 (4) | C11B—C12B | 1.351 (5) |
O2B—C13B | 1.264 (4) | C11B—H11B | 0.9300 |
O3A—C21A | 1.327 (5) | C12A—C13A | 1.433 (5) |
O3A—H3A | 0.8200 | C12A—C21A | 1.491 (5) |
O3B—C21B | 1.325 (5) | C12B—C13B | 1.435 (5) |
O3B—H3B | 0.8200 | C12B—C21B | 1.484 (5) |
O4A—C21A | 1.201 (5) | C13A—C14A | 1.447 (5) |
O4B—C21B | 1.211 (5) | C13B—C14B | 1.450 (4) |
O5A—H51A | 0.8204 | C14A—C15A | 1.400 (4) |
O5A—H52A | 0.8195 | C14B—C15B | 1.397 (5) |
O5B—H51B | 0.8202 | C15A—C16A | 1.358 (5) |
O5B—H52B | 0.8204 | C15A—H15A | 0.9300 |
F1A—C16A | 1.359 (3) | C15B—C16B | 1.364 (5) |
F1B—C16B | 1.356 (3) | C15B—H15B | 0.9300 |
C1A—C5A | 1.512 (5) | C17A—H17D | 0.9600 |
C1A—C2A | 1.531 (5) | C17A—H17E | 0.9600 |
C1A—C7A | 1.534 (4) | C17A—H17F | 0.9600 |
C1A—H1A | 0.9800 | C17B—H17A | 0.9600 |
C1B—C7B | 1.510 (5) | C17B—H17B | 0.9600 |
C1B—C5B | 1.523 (4) | C17B—H17C | 0.9600 |
C1B—C2B | 1.528 (5) | C18A—C19A | 1.473 (6) |
C1B—H1B | 0.9800 | C18A—C20A | 1.503 (6) |
C2A—C3A | 1.513 (6) | C18A—H18A | 0.9800 |
C2A—H21A | 0.9700 | C18B—C19B | 1.483 (6) |
C2A—H22A | 0.9700 | C18B—C20B | 1.487 (6) |
C2B—C3B | 1.511 (5) | C18B—H18B | 0.9800 |
C2B—H21B | 0.9700 | C19A—C20A | 1.489 (6) |
C2B—H22B | 0.9700 | C19A—H19C | 0.9700 |
C3A—C4A | 1.504 (5) | C19A—H19D | 0.9700 |
C3A—H31A | 0.9700 | C19B—C20B | 1.495 (6) |
C3A—H32A | 0.9700 | C19B—H19A | 0.9700 |
C3B—C4B | 1.517 (5) | C19B—H19B | 0.9700 |
C3B—H31B | 0.9700 | C20A—H20A | 0.9700 |
C3B—H32B | 0.9700 | C20A—H20B | 0.9700 |
C4A—H41A | 0.9700 | C20B—H20C | 0.9700 |
C4A—H42A | 0.9700 | C20B—H20D | 0.9700 |
C4A—N1A—C5A | 111.6 (3) | N2B—C7B—H7B2 | 111.1 |
C4A—N1A—H12A | 109.3 | C1B—C7B—H7B2 | 111.1 |
C5A—N1A—H12A | 109.3 | H7B1—C7B—H7B2 | 109.1 |
C4A—N1A—H13A | 109.3 | N2A—C8A—C9A | 121.1 (3) |
C5A—N1A—H13A | 109.3 | N2A—C8A—C16A | 123.1 (3) |
H12A—N1A—H13A | 108.0 | C9A—C8A—C16A | 115.8 (3) |
C5B—N1B—C4B | 115.2 (3) | N2B—C8B—C16B | 123.9 (3) |
C5B—N1B—H12B | 108.5 | N2B—C8B—C9B | 120.4 (3) |
C4B—N1B—H12B | 108.5 | C16B—C8B—C9B | 115.7 (3) |
C5B—N1B—H13B | 108.5 | O1A—C9A—C8A | 118.4 (3) |
C4B—N1B—H13B | 108.5 | O1A—C9A—C10A | 119.7 (3) |
H12B—N1B—H13B | 107.5 | C8A—C9A—C10A | 121.7 (3) |
C8A—N2A—C6A | 124.6 (3) | O1B—C9B—C10B | 119.3 (3) |
C8A—N2A—C7A | 122.3 (2) | O1B—C9B—C8B | 119.2 (3) |
C6A—N2A—C7A | 111.1 (3) | C10B—C9B—C8B | 121.4 (3) |
C8B—N2B—C6B | 122.2 (2) | N3A—C10A—C14A | 118.3 (3) |
C8B—N2B—C7B | 124.3 (3) | N3A—C10A—C9A | 122.4 (3) |
C6B—N2B—C7B | 110.9 (2) | C14A—C10A—C9A | 119.3 (3) |
C11A—N3A—C10A | 119.5 (3) | C14B—C10B—N3B | 119.0 (3) |
C11A—N3A—C18A | 117.3 (3) | C14B—C10B—C9B | 119.5 (3) |
C10A—N3A—C18A | 122.6 (3) | N3B—C10B—C9B | 121.5 (3) |
C11B—N3B—C10B | 118.8 (3) | N3A—C11A—C12A | 124.4 (3) |
C11B—N3B—C18B | 117.5 (3) | N3A—C11A—H11A | 117.8 |
C10B—N3B—C18B | 123.0 (3) | C12A—C11A—H11A | 117.8 |
C9A—O1A—C17A | 112.1 (3) | N3B—C11B—C12B | 124.6 (3) |
C9B—O1B—C17B | 112.3 (3) | N3B—C11B—H11B | 117.7 |
C21A—O3A—H3A | 109.5 | C12B—C11B—H11B | 117.7 |
C21B—O3B—H3B | 109.5 | C11A—C12A—C13A | 119.7 (3) |
H51A—O5A—H52A | 103.2 | C11A—C12A—C21A | 118.5 (3) |
H51B—O5B—H52B | 111.0 | C13A—C12A—C21A | 121.6 (3) |
C5A—C1A—C2A | 114.4 (3) | C11B—C12B—C13B | 119.9 (3) |
C5A—C1A—C7A | 102.2 (3) | C11B—C12B—C21B | 118.6 (3) |
C2A—C1A—C7A | 117.2 (3) | C13B—C12B—C21B | 121.4 (3) |
C5A—C1A—H1A | 107.5 | O2A—C13A—C12A | 122.6 (3) |
C2A—C1A—H1A | 107.5 | O2A—C13A—C14A | 121.8 (3) |
C7A—C1A—H1A | 107.5 | C12A—C13A—C14A | 115.7 (3) |
C7B—C1B—C5B | 100.3 (2) | O2B—C13B—C12B | 122.6 (3) |
C7B—C1B—C2B | 113.2 (3) | O2B—C13B—C14B | 121.7 (3) |
C5B—C1B—C2B | 112.2 (3) | C12B—C13B—C14B | 115.7 (3) |
C7B—C1B—H1B | 110.3 | C15A—C14A—C10A | 118.7 (3) |
C5B—C1B—H1B | 110.3 | C15A—C14A—C13A | 119.6 (3) |
C2B—C1B—H1B | 110.3 | C10A—C14A—C13A | 121.7 (3) |
C3A—C2A—C1A | 113.3 (3) | C15B—C14B—C10B | 118.9 (3) |
C3A—C2A—H21A | 108.9 | C15B—C14B—C13B | 119.9 (3) |
C1A—C2A—H21A | 108.9 | C10B—C14B—C13B | 121.1 (3) |
C3A—C2A—H22A | 108.9 | C16A—C15A—C14A | 120.3 (3) |
C1A—C2A—H22A | 108.9 | C16A—C15A—H15A | 119.8 |
H21A—C2A—H22A | 107.7 | C14A—C15A—H15A | 119.8 |
C3B—C2B—C1B | 111.5 (3) | C16B—C15B—C14B | 120.2 (3) |
C3B—C2B—H21B | 109.3 | C16B—C15B—H15B | 119.9 |
C1B—C2B—H21B | 109.3 | C14B—C15B—H15B | 119.9 |
C3B—C2B—H22B | 109.3 | C15A—C16A—F1A | 117.2 (3) |
C1B—C2B—H22B | 109.3 | C15A—C16A—C8A | 123.4 (3) |
H21B—C2B—H22B | 108.0 | F1A—C16A—C8A | 119.4 (3) |
C4A—C3A—C2A | 111.7 (3) | F1B—C16B—C15B | 117.1 (3) |
C4A—C3A—H31A | 109.3 | F1B—C16B—C8B | 119.5 (3) |
C2A—C3A—H31A | 109.3 | C15B—C16B—C8B | 123.3 (3) |
C4A—C3A—H32A | 109.3 | O1A—C17A—H17D | 109.5 |
C2A—C3A—H32A | 109.3 | O1A—C17A—H17E | 109.5 |
H31A—C3A—H32A | 107.9 | H17D—C17A—H17E | 109.5 |
C2B—C3B—C4B | 111.0 (3) | O1A—C17A—H17F | 109.5 |
C2B—C3B—H31B | 109.4 | H17D—C17A—H17F | 109.5 |
C4B—C3B—H31B | 109.4 | H17E—C17A—H17F | 109.5 |
C2B—C3B—H32B | 109.4 | O1B—C17B—H17A | 109.5 |
C4B—C3B—H32B | 109.4 | O1B—C17B—H17B | 109.5 |
H31B—C3B—H32B | 108.0 | H17A—C17B—H17B | 109.5 |
N1A—C4A—C3A | 109.7 (3) | O1B—C17B—H17C | 109.5 |
N1A—C4A—H41A | 109.7 | H17A—C17B—H17C | 109.5 |
C3A—C4A—H41A | 109.7 | H17B—C17B—H17C | 109.5 |
N1A—C4A—H42A | 109.7 | N3A—C18A—C19A | 118.4 (3) |
C3A—C4A—H42A | 109.7 | N3A—C18A—C20A | 115.7 (3) |
H41A—C4A—H42A | 108.2 | C19A—C18A—C20A | 60.0 (3) |
N1B—C4B—C3B | 109.8 (3) | N3A—C18A—H18A | 116.9 |
N1B—C4B—H41B | 109.7 | C19A—C18A—H18A | 116.9 |
C3B—C4B—H41B | 109.7 | C20A—C18A—H18A | 116.9 |
N1B—C4B—H42B | 109.7 | N3B—C18B—C19B | 118.0 (3) |
C3B—C4B—H42B | 109.7 | N3B—C18B—C20B | 116.7 (3) |
H41B—C4B—H42B | 108.2 | C19B—C18B—C20B | 60.4 (3) |
N1A—C5A—C6A | 112.8 (3) | N3B—C18B—H18B | 116.6 |
N1A—C5A—C1A | 110.6 (3) | C19B—C18B—H18B | 116.6 |
C6A—C5A—C1A | 103.9 (3) | C20B—C18B—H18B | 116.6 |
N1A—C5A—H5A | 109.8 | C18A—C19A—C20A | 61.0 (3) |
C6A—C5A—H5A | 109.8 | C18A—C19A—H19C | 117.7 |
C1A—C5A—H5A | 109.8 | C20A—C19A—H19C | 117.7 |
N1B—C5B—C6B | 114.2 (2) | C18A—C19A—H19D | 117.7 |
N1B—C5B—C1B | 112.9 (2) | C20A—C19A—H19D | 117.7 |
C6B—C5B—C1B | 104.4 (3) | H19C—C19A—H19D | 114.8 |
N1B—C5B—H5B | 108.4 | C18B—C19B—C20B | 59.9 (3) |
C6B—C5B—H5B | 108.4 | C18B—C19B—H19A | 117.8 |
C1B—C5B—H5B | 108.4 | C20B—C19B—H19A | 117.8 |
N2A—C6A—C5A | 103.5 (3) | C18B—C19B—H19B | 117.8 |
N2A—C6A—H61A | 111.1 | C20B—C19B—H19B | 117.8 |
C5A—C6A—H61A | 111.1 | H19A—C19B—H19B | 114.9 |
N2A—C6A—H62A | 111.1 | C19A—C20A—C18A | 58.9 (3) |
C5A—C6A—H62A | 111.1 | C19A—C20A—H20A | 117.9 |
H61A—C6A—H62A | 109.0 | C18A—C20A—H20A | 117.9 |
N2B—C6B—C5B | 102.5 (2) | C19A—C20A—H20B | 117.9 |
N2B—C6B—H61B | 111.3 | C18A—C20A—H20B | 117.9 |
C5B—C6B—H61B | 111.3 | H20A—C20A—H20B | 115.0 |
N2B—C6B—H62B | 111.3 | C18B—C20B—C19B | 59.6 (3) |
C5B—C6B—H62B | 111.3 | C18B—C20B—H20C | 117.8 |
H61B—C6B—H62B | 109.2 | C19B—C20B—H20C | 117.8 |
N2A—C7A—C1A | 103.1 (2) | C18B—C20B—H20D | 117.8 |
N2A—C7A—H7A1 | 111.1 | C19B—C20B—H20D | 117.8 |
C1A—C7A—H7A1 | 111.1 | H20C—C20B—H20D | 114.9 |
N2A—C7A—H7A2 | 111.1 | O4A—C21A—O3A | 121.4 (4) |
C1A—C7A—H7A2 | 111.2 | O4A—C21A—C12A | 124.4 (4) |
H7A1—C7A—H7A2 | 109.1 | O3A—C21A—C12A | 114.1 (4) |
N2B—C7B—C1B | 103.4 (2) | O4B—C21B—O3B | 121.8 (4) |
N2B—C7B—H7B1 | 111.1 | O4B—C21B—C12B | 123.6 (4) |
C1B—C7B—H7B1 | 111.1 | O3B—C21B—C12B | 114.5 (4) |
C5A—C1A—C2A—C3A | 43.5 (4) | C8B—C9B—C10B—C14B | 10.7 (5) |
C7A—C1A—C2A—C3A | −76.1 (4) | O1B—C9B—C10B—N3B | 15.1 (5) |
C7B—C1B—C2B—C3B | −164.7 (3) | C8B—C9B—C10B—N3B | −169.0 (3) |
C5B—C1B—C2B—C3B | −52.1 (4) | C10A—N3A—C11A—C12A | 4.8 (5) |
C1A—C2A—C3A—C4A | −48.2 (4) | C18A—N3A—C11A—C12A | −166.2 (4) |
C1B—C2B—C3B—C4B | 57.9 (4) | C10B—N3B—C11B—C12B | −5.8 (5) |
C5A—N1A—C4A—C3A | −62.9 (4) | C18B—N3B—C11B—C12B | 165.0 (4) |
C2A—C3A—C4A—N1A | 57.7 (5) | N3A—C11A—C12A—C13A | 3.1 (6) |
C5B—N1B—C4B—C3B | 53.3 (3) | N3A—C11A—C12A—C21A | 178.2 (3) |
C2B—C3B—C4B—N1B | −57.2 (4) | N3B—C11B—C12B—C13B | −2.4 (5) |
C4A—N1A—C5A—C6A | 173.1 (3) | N3B—C11B—C12B—C21B | −178.0 (4) |
C4A—N1A—C5A—C1A | 57.2 (3) | C11A—C12A—C13A—O2A | 173.9 (3) |
C2A—C1A—C5A—N1A | −47.1 (4) | C21A—C12A—C13A—O2A | −1.1 (5) |
C7A—C1A—C5A—N1A | 80.7 (3) | C11A—C12A—C13A—C14A | −6.4 (5) |
C2A—C1A—C5A—C6A | −168.4 (3) | C21A—C12A—C13A—C14A | 178.7 (3) |
C7A—C1A—C5A—C6A | −40.7 (3) | C11B—C12B—C13B—O2B | −174.0 (3) |
C4B—N1B—C5B—C6B | 70.6 (4) | C21B—C12B—C13B—O2B | 1.5 (5) |
C4B—N1B—C5B—C1B | −48.5 (4) | C11B—C12B—C13B—C14B | 5.5 (5) |
C7B—C1B—C5B—N1B | 167.1 (3) | C21B—C12B—C13B—C14B | −179.0 (3) |
C2B—C1B—C5B—N1B | 46.7 (4) | N3A—C10A—C14A—C15A | −176.0 (3) |
C7B—C1B—C5B—C6B | 42.5 (3) | C9A—C10A—C14A—C15A | 5.7 (4) |
C2B—C1B—C5B—C6B | −78.0 (3) | N3A—C10A—C14A—C13A | 5.3 (5) |
C8A—N2A—C6A—C5A | −175.1 (3) | C9A—C10A—C14A—C13A | −173.1 (3) |
C7A—N2A—C6A—C5A | −11.3 (4) | O2A—C13A—C14A—C15A | 3.2 (5) |
N1A—C5A—C6A—N2A | −87.7 (3) | C12A—C13A—C14A—C15A | −176.5 (3) |
C1A—C5A—C6A—N2A | 32.2 (4) | O2A—C13A—C14A—C10A | −178.0 (3) |
C8B—N2B—C6B—C5B | −157.2 (3) | C12A—C13A—C14A—C10A | 2.2 (5) |
C7B—N2B—C6B—C5B | 5.5 (3) | N3B—C10B—C14B—C15B | 175.7 (3) |
N1B—C5B—C6B—N2B | −153.7 (3) | C9B—C10B—C14B—C15B | −4.0 (5) |
C1B—C5B—C6B—N2B | −29.9 (3) | N3B—C10B—C14B—C13B | −7.0 (4) |
C8A—N2A—C7A—C1A | 150.5 (3) | C9B—C10B—C14B—C13B | 173.3 (3) |
C6A—N2A—C7A—C1A | −13.7 (4) | O2B—C13B—C14B—C15B | −4.1 (5) |
C5A—C1A—C7A—N2A | 33.0 (3) | C12B—C13B—C14B—C15B | 176.4 (3) |
C2A—C1A—C7A—N2A | 158.9 (3) | O2B—C13B—C14B—C10B | 178.7 (3) |
C8B—N2B—C7B—C1B | −176.7 (3) | C12B—C13B—C14B—C10B | −0.8 (4) |
C6B—N2B—C7B—C1B | 21.1 (4) | C10A—C14A—C15A—C16A | 1.7 (5) |
C5B—C1B—C7B—N2B | −38.1 (3) | C13A—C14A—C15A—C16A | −179.5 (3) |
C2B—C1B—C7B—N2B | 81.6 (3) | C10B—C14B—C15B—C16B | −3.7 (5) |
C6A—N2A—C8A—C9A | −162.1 (3) | C13B—C14B—C15B—C16B | 178.9 (3) |
C7A—N2A—C8A—C9A | 35.9 (5) | C14A—C15A—C16A—F1A | 176.0 (3) |
C6A—N2A—C8A—C16A | 18.8 (5) | C14A—C15A—C16A—C8A | −5.6 (5) |
C7A—N2A—C8A—C16A | −143.3 (3) | N2A—C8A—C16A—C15A | −179.1 (3) |
C6B—N2B—C8B—C16B | 150.5 (3) | C9A—C8A—C16A—C15A | 1.7 (5) |
C7B—N2B—C8B—C16B | −9.8 (5) | N2A—C8A—C16A—F1A | −0.7 (5) |
C6B—N2B—C8B—C9B | −31.3 (5) | C9A—C8A—C16A—F1A | −180.0 (3) |
C7B—N2B—C8B—C9B | 168.4 (3) | C14B—C15B—C16B—F1B | −176.7 (3) |
C17A—O1A—C9A—C8A | 94.2 (4) | C14B—C15B—C16B—C8B | 5.2 (5) |
C17A—O1A—C9A—C10A | −80.8 (4) | N2B—C8B—C16B—F1B | 1.4 (5) |
N2A—C8A—C9A—O1A | 11.8 (5) | C9B—C8B—C16B—F1B | −176.9 (3) |
C16A—C8A—C9A—O1A | −168.9 (3) | N2B—C8B—C16B—C15B | 179.4 (3) |
N2A—C8A—C9A—C10A | −173.2 (3) | C9B—C8B—C16B—C15B | 1.2 (5) |
C16A—C8A—C9A—C10A | 6.0 (5) | C11A—N3A—C18A—C19A | 118.3 (4) |
C17B—O1B—C9B—C10B | 91.9 (4) | C10A—N3A—C18A—C19A | −52.5 (5) |
C17B—O1B—C9B—C8B | −84.1 (4) | C11A—N3A—C18A—C20A | 50.0 (5) |
N2B—C8B—C9B—O1B | −11.5 (5) | C10A—N3A—C18A—C20A | −120.7 (4) |
C16B—C8B—C9B—O1B | 166.8 (3) | C11B—N3B—C18B—C19B | −117.0 (4) |
N2B—C8B—C9B—C10B | 172.6 (3) | C10B—N3B—C18B—C19B | 53.3 (5) |
C16B—C8B—C9B—C10B | −9.1 (5) | C11B—N3B—C18B—C20B | −48.0 (5) |
C11A—N3A—C10A—C14A | −8.8 (5) | C10B—N3B—C18B—C20B | 122.3 (4) |
C18A—N3A—C10A—C14A | 161.8 (3) | N3A—C18A—C19A—C20A | −104.9 (4) |
C11A—N3A—C10A—C9A | 169.5 (3) | N3B—C18B—C19B—C20B | 106.4 (4) |
C18A—N3A—C10A—C9A | −19.9 (5) | N3A—C18A—C20A—C19A | 109.4 (4) |
O1A—C9A—C10A—N3A | −13.1 (5) | N3B—C18B—C20B—C19B | −108.6 (4) |
C8A—C9A—C10A—N3A | 172.0 (3) | C11A—C12A—C21A—O4A | 3.9 (6) |
O1A—C9A—C10A—C14A | 165.2 (3) | C13A—C12A—C21A—O4A | 179.0 (4) |
C8A—C9A—C10A—C14A | −9.7 (5) | C11A—C12A—C21A—O3A | −174.5 (3) |
C11B—N3B—C10B—C14B | 10.3 (5) | C13A—C12A—C21A—O3A | 0.5 (5) |
C18B—N3B—C10B—C14B | −159.9 (3) | C11B—C12B—C21B—O4B | −4.8 (6) |
C11B—N3B—C10B—C9B | −170.0 (3) | C13B—C12B—C21B—O4B | 179.7 (4) |
C18B—N3B—C10B—C9B | 19.8 (5) | C11B—C12B—C21B—O3B | 174.5 (3) |
O1B—C9B—C10B—C14B | −165.2 (3) | C13B—C12B—C21B—O3B | −1.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H12A···Cl1Bi | 0.90 | 2.26 | 3.113 (3) | 158 |
N1A—H13A···Cl1A | 0.90 | 2.43 | 3.234 (3) | 150 |
N1B—H12B···Cl1Aii | 0.90 | 2.22 | 3.109 (3) | 170 |
N1B—H13B···Cl1B | 0.90 | 2.25 | 3.114 (2) | 162 |
O3A—H3A···O2A | 0.82 | 1.74 | 2.512 (4) | 156 |
O3B—H3B···O2B | 0.82 | 1.74 | 2.508 (4) | 155 |
O5A—H51A···O4A | 0.82 | 2.24 | 3.011 (5) | 157 |
O5A—H52A···Cl1B | 0.82 | 2.72 | 3.422 (5) | 144 |
O5B—H51B···O4B | 0.82 | 2.12 | 2.911 (5) | 161 |
O5B—H52B···Cl1Biii | 0.82 | 2.41 | 3.208 (4) | 163 |
C1A—H1A···O3B | 0.98 | 2.53 | 3.373 (4) | 144 |
C2A—H21A···Cl1Aiv | 0.97 | 2.80 | 3.742 (4) | 163 |
C3A—H31A···Cl1A | 0.97 | 2.74 | 3.518 (5) | 138 |
C3A—H32A···O1Bv | 0.97 | 2.59 | 3.450 (5) | 148 |
C6A—H61A···O3Bvi | 0.97 | 2.49 | 3.340 (6) | 146 |
C18B—H18B···O5Avii | 0.98 | 2.58 | 3.564 (7) | 179 |
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z−1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x−1, y, z; (vii) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H25FN3O4+·Cl−·H2O |
Mr | 455.91 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.7280 (3), 10.6406 (5), 15.3127 (7) |
α, β, γ (°) | 91.7293 (14), 91.1313 (13), 100.8823 (13) |
V (Å3) | 1075.67 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.49 × 0.37 × 0.22 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID/ZJUG |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.898, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10677, 8038, 5933 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.118, 1.10 |
No. of reflections | 8038 |
No. of parameters | 563 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.29 |
Absolute structure | Flack (1983), 3107 Friedel pairs |
Absolute structure parameter | 0.00 (6) |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H12A···Cl1Bi | 0.90 | 2.26 | 3.113 (3) | 158 |
N1A—H13A···Cl1A | 0.90 | 2.43 | 3.234 (3) | 150 |
N1B—H12B···Cl1Aii | 0.90 | 2.22 | 3.109 (3) | 170 |
N1B—H13B···Cl1B | 0.90 | 2.25 | 3.114 (2) | 162 |
O3A—H3A···O2A | 0.82 | 1.74 | 2.512 (4) | 156 |
O3B—H3B···O2B | 0.82 | 1.74 | 2.508 (4) | 155 |
O5A—H51A···O4A | 0.82 | 2.24 | 3.011 (5) | 157 |
O5A—H52A···Cl1B | 0.82 | 2.72 | 3.422 (5) | 144 |
O5B—H51B···O4B | 0.82 | 2.12 | 2.911 (5) | 161 |
O5B—H52B···Cl1Biii | 0.82 | 2.41 | 3.208 (4) | 163 |
C1A—H1A···O3B | 0.98 | 2.53 | 3.373 (4) | 144 |
C2A—H21A···Cl1Aiv | 0.97 | 2.80 | 3.742 (4) | 163 |
C3A—H31A···Cl1A | 0.97 | 2.74 | 3.518 (5) | 138 |
C3A—H32A···O1Bv | 0.97 | 2.59 | 3.450 (5) | 148 |
C6A—H61A···O3Bvi | 0.97 | 2.49 | 3.340 (6) | 146 |
C18B—H18B···O5Avii | 0.98 | 2.58 | 3.564 (7) | 179 |
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z−1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x−1, y, z; (vii) x+1, y+1, z. |
Acknowledgements
The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).
References
Culley, C. M., Lacy, M. K., Klutman, N. & Edwards, B. (2001). Am. J. Health Syst. Pharm. 58, 379–388. PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, H. & Sun, F. G. (2008). Adverse Drug React. J. 10, 141–142. Google Scholar
Noel, A. R., Bowker, K. E. & MacGowan, A. P. (2005). Antimicrob. Agents Chemother. 49, 4234–4239. Web of Science CrossRef PubMed CAS Google Scholar
Ravikumar, K. & Sridhar, B. (2006). Acta Cryst. C62, o478–o482. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan. Google Scholar
Seidel, D., Conrad, M., Brehmer, P., Mohrs, K. & Petersen, U. (2000). J. Labelled Compd Radiopharm. 43, 795–805. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stass, H., Dalhoff, A., Kubitza, D. & Schuhly, U. (1998). Antimicrob. Agents Chemother. 42, 2060–2065. CAS PubMed Google Scholar
Talib, S. H., Arshad, M., Chauhan, H., Jain, R. & Vaya, L. (2002). J. Indian Acad. Clin. Med. 3, 360–366. Google Scholar
Varanda, F., Pratas de Melo, M. J., Cac\,o, A. I., Dohrn, R., Makrydaki, F. A., Voutsas, E., Tassios, D. & Marrucho, I. M. (2006). Ind. Eng. Chem. Res. 45, 6368–6374. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Moxifloxacin hydrochloride, a new fluoroquinolone with a broad spectrum of antibacterial, anaerobes and atypical oranisms (Seidel et al., 2000), is approved by the Food and Drug Administration in December 1999 for use in the treatment of acute bacterial sinusitis, acute bacterial exacerbations of chronic bronchitis, and community-acquired pneumonia caused by susceptible microorganisms (Culley et al., 2001). The crystal structure of moxifloxacin hydrochloride methanol solvate have been reported (Ravikumar & Sridhar, 2006). In the present study, we report the crystal structure of moxifloxacin hydrochloride monohydrate.
The asymmetric unit consists of two independent moxifloxacin cations protonated at the terminal piperidyl N atom, two chloride ions and two lattice water molecules (Fig. 1). The important different of asymmetric unit is the orientation of its piperidinopyrrolidine side chain. In the cation A, the torsion angle of C9—C8—N2—C7 is 35.9 (5)°, while in the cation B, the torsion angle is 168.4 (3)°. So, we can see that the two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. Conformation of the moxifloxacin cations in the structure of title compound and moxifloxacinium chloride-water-methanol solvate (Ravikumar & Sridhar, 2006) shows not much different.
In both moxifloxacin cations of the title compound, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å, respectively. The peridine rings adopt chair conformation with the exposed N atom participating in the hydrogen-bonding interactions, and the pyrrolidine rings favour a half-chair conformation twisted on atoms C1—C5, which is similar to that of moxifloxacinium methanol solvate (Ravikumar & Sridhar, 2006). The cyclopropyl rings are not coplanar with the quinoline ring system, forming the dihedral angles with quinoline ring systems of 73.9 (2) and 74.3 (2)° for cation A and B respectively. The C17—O1 methoxy group is almost perpendicular to the plane of the quinoline ring system [torsion angle of C17—O1—C9—C8 is 94.2 (4)° and -84.1 (4)° for the A and B cations, respectively].
In the crystal structure, different modes of hydrogen-bonding interactions, cation-cation, cation-water, cation-chloride ion and water-chloride ion, stablizing the molecules. Carboxyl atom O3 forms an intramolecular hydrogen bond with carbonyl group O2. This hydrogen bond forms a quasi-six-membered ring. The two H atoms at atom N1 of piperidine ring participate in intramolecular and intermolecular hydrogen bonding with chloride ion. The water molecule acts as a donor in hydrogen bonds with the carbonyl O atom of the carboxylic acid group of cation A, while in the cation B, water molecule forms hydrogen bonds with a chloride ion and the the carbonyl O atom of the carboxylic acid group. In this way, the hydrogen bonds link all of the components of the structure into extented two dimensional networks (Fig.2). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is also present in the crystal structure.