organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Moxifloxacinium chloride monohydrate

aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and cChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 5 September 2011; accepted 13 September 2011; online 30 September 2011)

The title compound {systematic name: 7-[(1S,6S)-8-aza-2-azonia­bicyclo­[4.3.0]non-8-yl]-1-cyclo­propyl-6-fluoro-8-meth­oxy-4-oxo-1,4-dihydro­quinoline-3-carb­oxy­lic acid chloride monohydrate}, C21H25FN3O4+·Cl·H2O, crystallizes with two moxi­floxa­cinium cations, two chloride ions and two uncoordinated water mol­ecules in the unit cell. The crystal structure has a pseudo-inversion center except for the chloride ions. In both moxi­floxa­cinium cations, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å. The piperidine rings adopt a chair conformation while the pyrrolidine rings display a half-chair conformation. In the crystal, the carboxyl groups, the protonated piperidyl groups, the uncoordinated water mol­ecule and chloride anions participate in O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonding; weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonding is also present in the crystal structure.

Related literature

For applications of moxifloxacin hydro­chloride in the medicine field, see: Seidel et al. (2000[Seidel, D., Conrad, M., Brehmer, P., Mohrs, K. & Petersen, U. (2000). J. Labelled Compd Radiopharm. 43, 795-805.]); Talib et al. (2002[Talib, S. H., Arshad, M., Chauhan, H., Jain, R. & Vaya, L. (2002). J. Indian Acad. Clin. Med. 3, 360-366.]); Culley et al. (2001[Culley, C. M., Lacy, M. K., Klutman, N. & Edwards, B. (2001). Am. J. Health Syst. Pharm. 58, 379-388.]); Liu & Sun (2008[Liu, H. & Sun, F. G. (2008). Adverse Drug React. J. 10, 141-142.]). For the tolerability, solubility, safety and pharmacodynamics of moxifloxacin hydro­chloride, see: Stass et al. (1998[Stass, H., Dalhoff, A., Kubitza, D. & Schuhly, U. (1998). Antimicrob. Agents Chemother. 42, 2060-2065.]); Noel et al. (2005[Noel, A. R., Bowker, K. E. & MacGowan, A. P. (2005). Antimicrob. Agents Chemother. 49, 4234-4239.]); Varanda et al. (2006[Varanda, F., Pratas de Melo, M. J., Cac\,o, A. I., Dohrn, R., Makrydaki, F. A., Voutsas, E., Tassios, D. & Marrucho, I. M. (2006). Ind. Eng. Chem. Res. 45, 6368-6374.]). For a related structure of moxifloxacin hydro­chloride methanol solvate, see: Ravikumar & Sridhar (2006[Ravikumar, K. & Sridhar, B. (2006). Acta Cryst. C62, o478-o482.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25FN3O4+·Cl·H2O

  • Mr = 455.91

  • Triclinic, P 1

  • a = 6.7280 (3) Å

  • b = 10.6406 (5) Å

  • c = 15.3127 (7) Å

  • α = 91.7293 (14)°

  • β = 91.1313 (13)°

  • γ = 100.8823 (13)°

  • V = 1075.67 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.49 × 0.37 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.898, Tmax = 0.952

  • 10677 measured reflections

  • 8038 independent reflections

  • 5933 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.118

  • S = 1.10

  • 8038 reflections

  • 563 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3107 Friedel pairs

  • Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H12A⋯Cl1Bi 0.90 2.26 3.113 (3) 158
N1A—H13A⋯Cl1A 0.90 2.43 3.234 (3) 150
N1B—H12B⋯Cl1Aii 0.90 2.22 3.109 (3) 170
N1B—H13B⋯Cl1B 0.90 2.25 3.114 (2) 162
O3A—H3A⋯O2A 0.82 1.74 2.512 (4) 156
O3B—H3B⋯O2B 0.82 1.74 2.508 (4) 155
O5A—H51A⋯O4A 0.82 2.24 3.011 (5) 157
O5A—H52A⋯Cl1B 0.82 2.72 3.422 (5) 144
O5B—H51B⋯O4B 0.82 2.12 2.911 (5) 161
O5B—H52B⋯Cl1Biii 0.82 2.41 3.208 (4) 163
C1A—H1A⋯O3B 0.98 2.53 3.373 (4) 144
C2A—H21A⋯Cl1Aiv 0.97 2.80 3.742 (4) 163
C3A—H31A⋯Cl1A 0.97 2.74 3.518 (5) 138
C3A—H32A⋯O1Bv 0.97 2.59 3.450 (5) 148
C6A—H61A⋯O3Bvi 0.97 2.49 3.340 (6) 146
C18B—H18B⋯O5Avii 0.98 2.58 3.564 (7) 179
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z-1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x-1, y, z; (vii) x+1, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Moxifloxacin hydrochloride, a new fluoroquinolone with a broad spectrum of antibacterial, anaerobes and atypical oranisms (Seidel et al., 2000), is approved by the Food and Drug Administration in December 1999 for use in the treatment of acute bacterial sinusitis, acute bacterial exacerbations of chronic bronchitis, and community-acquired pneumonia caused by susceptible microorganisms (Culley et al., 2001). The crystal structure of moxifloxacin hydrochloride methanol solvate have been reported (Ravikumar & Sridhar, 2006). In the present study, we report the crystal structure of moxifloxacin hydrochloride monohydrate.

The asymmetric unit consists of two independent moxifloxacin cations protonated at the terminal piperidyl N atom, two chloride ions and two lattice water molecules (Fig. 1). The important different of asymmetric unit is the orientation of its piperidinopyrrolidine side chain. In the cation A, the torsion angle of C9—C8—N2—C7 is 35.9 (5)°, while in the cation B, the torsion angle is 168.4 (3)°. So, we can see that the two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. Conformation of the moxifloxacin cations in the structure of title compound and moxifloxacinium chloride-water-methanol solvate (Ravikumar & Sridhar, 2006) shows not much different.

In both moxifloxacin cations of the title compound, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å, respectively. The peridine rings adopt chair conformation with the exposed N atom participating in the hydrogen-bonding interactions, and the pyrrolidine rings favour a half-chair conformation twisted on atoms C1—C5, which is similar to that of moxifloxacinium methanol solvate (Ravikumar & Sridhar, 2006). The cyclopropyl rings are not coplanar with the quinoline ring system, forming the dihedral angles with quinoline ring systems of 73.9 (2) and 74.3 (2)° for cation A and B respectively. The C17—O1 methoxy group is almost perpendicular to the plane of the quinoline ring system [torsion angle of C17—O1—C9—C8 is 94.2 (4)° and -84.1 (4)° for the A and B cations, respectively].

In the crystal structure, different modes of hydrogen-bonding interactions, cation-cation, cation-water, cation-chloride ion and water-chloride ion, stablizing the molecules. Carboxyl atom O3 forms an intramolecular hydrogen bond with carbonyl group O2. This hydrogen bond forms a quasi-six-membered ring. The two H atoms at atom N1 of piperidine ring participate in intramolecular and intermolecular hydrogen bonding with chloride ion. The water molecule acts as a donor in hydrogen bonds with the carbonyl O atom of the carboxylic acid group of cation A, while in the cation B, water molecule forms hydrogen bonds with a chloride ion and the the carbonyl O atom of the carboxylic acid group. In this way, the hydrogen bonds link all of the components of the structure into extented two dimensional networks (Fig.2). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is also present in the crystal structure.

Related literature top

For applications of moxifloxacin hydrochloride in the medicine field, see: Seidel et al. (2000); Talib et al. (2002); Culley et al. (2001); Liu & Sun (2008). For the tolerability, solubility, safety and pharmacodynamics of moxifloxacin hydrochloride, see: Stass et al. (1998); Noel et al. (2005); Varanda et al. (2006). For a related structure of moxifloxacin hydrochloride methanol solvate, see: Ravikumar & Sridhar (2006).

Experimental top

The crude product is supplied by Zhejiang Jingxin Pharmaceutical Co., LTD. It was recrystallized from ethanol solution, giving yellow crystals suitable for X-ray diffraction.

Refinement top

The difference density indicated the presence of a possible H atom in the atom N1A and N1B, showing that a proton transfer from HCl to amino group of moxifloxacinium molecule. But this H atom was placed in calculated position with N···H = 0.90 Å and refined as riding with Uiso(H) = 1.2Ueq(N). All H atoms of water molecules were located in a difference electron-density map and refined with O—H bond-length restraints of 0.82 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.93–0.98 Å and included in the refinement in riding model, with Uiso(H)= 1.2Ueq or 1.5Ueq(carrier atom).

Structure description top

Moxifloxacin hydrochloride, a new fluoroquinolone with a broad spectrum of antibacterial, anaerobes and atypical oranisms (Seidel et al., 2000), is approved by the Food and Drug Administration in December 1999 for use in the treatment of acute bacterial sinusitis, acute bacterial exacerbations of chronic bronchitis, and community-acquired pneumonia caused by susceptible microorganisms (Culley et al., 2001). The crystal structure of moxifloxacin hydrochloride methanol solvate have been reported (Ravikumar & Sridhar, 2006). In the present study, we report the crystal structure of moxifloxacin hydrochloride monohydrate.

The asymmetric unit consists of two independent moxifloxacin cations protonated at the terminal piperidyl N atom, two chloride ions and two lattice water molecules (Fig. 1). The important different of asymmetric unit is the orientation of its piperidinopyrrolidine side chain. In the cation A, the torsion angle of C9—C8—N2—C7 is 35.9 (5)°, while in the cation B, the torsion angle is 168.4 (3)°. So, we can see that the two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. Conformation of the moxifloxacin cations in the structure of title compound and moxifloxacinium chloride-water-methanol solvate (Ravikumar & Sridhar, 2006) shows not much different.

In both moxifloxacin cations of the title compound, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å, respectively. The peridine rings adopt chair conformation with the exposed N atom participating in the hydrogen-bonding interactions, and the pyrrolidine rings favour a half-chair conformation twisted on atoms C1—C5, which is similar to that of moxifloxacinium methanol solvate (Ravikumar & Sridhar, 2006). The cyclopropyl rings are not coplanar with the quinoline ring system, forming the dihedral angles with quinoline ring systems of 73.9 (2) and 74.3 (2)° for cation A and B respectively. The C17—O1 methoxy group is almost perpendicular to the plane of the quinoline ring system [torsion angle of C17—O1—C9—C8 is 94.2 (4)° and -84.1 (4)° for the A and B cations, respectively].

In the crystal structure, different modes of hydrogen-bonding interactions, cation-cation, cation-water, cation-chloride ion and water-chloride ion, stablizing the molecules. Carboxyl atom O3 forms an intramolecular hydrogen bond with carbonyl group O2. This hydrogen bond forms a quasi-six-membered ring. The two H atoms at atom N1 of piperidine ring participate in intramolecular and intermolecular hydrogen bonding with chloride ion. The water molecule acts as a donor in hydrogen bonds with the carbonyl O atom of the carboxylic acid group of cation A, while in the cation B, water molecule forms hydrogen bonds with a chloride ion and the the carbonyl O atom of the carboxylic acid group. In this way, the hydrogen bonds link all of the components of the structure into extented two dimensional networks (Fig.2). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is also present in the crystal structure.

For applications of moxifloxacin hydrochloride in the medicine field, see: Seidel et al. (2000); Talib et al. (2002); Culley et al. (2001); Liu & Sun (2008). For the tolerability, solubility, safety and pharmacodynamics of moxifloxacin hydrochloride, see: Stass et al. (1998); Noel et al. (2005); Varanda et al. (2006). For a related structure of moxifloxacin hydrochloride methanol solvate, see: Ravikumar & Sridhar (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) showing atom-labelling scheme and displacement ellipsoids at 40% probability level. H atoms are shown as small circles of arbitary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
7-[(1S,6S)-8-aza-2-azoniabicyclo[4.3.0]non-8-yl]-1-cyclopropyl-6- fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid chloride monohydrate top
Crystal data top
C21H25FN3O4+·Cl·H2OZ = 2
Mr = 455.91F(000) = 480
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7280 (3) ÅCell parameters from 8287 reflections
b = 10.6406 (5) Åθ = 3.1–27.4°
c = 15.3127 (7) ŵ = 0.23 mm1
α = 91.7293 (14)°T = 296 K
β = 91.1313 (13)°Platelet, yellow
γ = 100.8823 (13)°0.49 × 0.37 × 0.22 mm
V = 1075.67 (9) Å3
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
8038 independent reflections
Radiation source: rolling anode5933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 87
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.898, Tmax = 0.952l = 1919
10677 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.3081P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
8038 reflectionsΔρmax = 0.25 e Å3
563 parametersΔρmin = 0.29 e Å3
3 restraintsAbsolute structure: Flack (1983), 3107 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
C21H25FN3O4+·Cl·H2Oγ = 100.8823 (13)°
Mr = 455.91V = 1075.67 (9) Å3
Triclinic, P1Z = 2
a = 6.7280 (3) ÅMo Kα radiation
b = 10.6406 (5) ŵ = 0.23 mm1
c = 15.3127 (7) ÅT = 296 K
α = 91.7293 (14)°0.49 × 0.37 × 0.22 mm
β = 91.1313 (13)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
8038 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5933 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.952Rint = 0.024
10677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.29 e Å3
8038 reflectionsAbsolute structure: Flack (1983), 3107 Friedel pairs
563 parametersAbsolute structure parameter: 0.00 (6)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.08670 (14)0.50137 (8)0.99176 (7)0.0548 (2)
Cl1B0.10870 (14)0.02176 (8)0.03926 (7)0.0567 (3)
N1A0.3204 (5)0.7860 (3)0.94810 (19)0.0441 (7)
H12A0.23060.83880.94550.053*
H13A0.25280.70550.93750.053*
N1B0.3516 (4)0.2937 (2)0.01252 (17)0.0400 (6)
H12B0.28680.36020.00990.048*
H13B0.26800.22450.01120.048*
N2A0.3990 (4)0.6616 (2)0.76809 (17)0.0372 (6)
N2B0.5973 (4)0.3338 (2)0.22997 (17)0.0374 (6)
N3A0.2638 (5)0.2658 (2)0.58859 (19)0.0416 (7)
N3B0.7482 (4)0.7350 (2)0.40000 (17)0.0385 (6)
O1A0.2857 (4)0.3959 (2)0.75552 (14)0.0415 (6)
O1B0.7298 (4)0.59852 (19)0.23736 (14)0.0383 (5)
O2A0.1857 (4)0.4667 (2)0.37071 (15)0.0489 (6)
O2B0.8173 (4)0.5445 (2)0.62383 (14)0.0515 (7)
O3A0.0877 (5)0.2578 (3)0.28571 (17)0.0638 (8)
H3A0.11550.33420.29960.096*
O3B0.9164 (5)0.7573 (3)0.70351 (17)0.0669 (8)
H3B0.89280.68030.69130.100*
O4A0.0747 (5)0.0744 (3)0.3508 (2)0.0770 (9)
O4B0.9382 (6)0.9377 (3)0.6324 (2)0.0767 (9)
O5A0.0249 (13)0.0589 (4)0.1733 (3)0.204 (4)
H51A0.07380.02010.21810.306*
H52A0.05710.00670.13540.306*
O5B0.8200 (6)1.0469 (3)0.7955 (2)0.0864 (10)
H51B0.86211.00370.75730.130*
H52B0.89631.05770.83860.130*
F1A0.3699 (4)0.79303 (17)0.61130 (13)0.0542 (6)
F1B0.6310 (4)0.20723 (17)0.38902 (13)0.0536 (6)
C1A0.6328 (5)0.7360 (3)0.8836 (2)0.0393 (7)
H1A0.74660.77480.84820.047*
C1B0.5301 (5)0.1742 (3)0.1187 (2)0.0359 (7)
H1B0.45620.08680.10610.043*
C2A0.7169 (6)0.7224 (3)0.9757 (2)0.0483 (9)
H21A0.78710.65070.97530.058*
H22A0.81490.79910.99200.058*
C2B0.7169 (6)0.2031 (3)0.0622 (2)0.0460 (8)
H21B0.80350.28170.08390.055*
H22B0.79270.13440.06660.055*
C3A0.5553 (7)0.7016 (4)1.0439 (3)0.0532 (9)
H31A0.47700.61541.03660.064*
H32A0.61930.71011.10170.064*
C3B0.6593 (6)0.2168 (4)0.0324 (2)0.0501 (9)
H31B0.58060.13620.05540.060*
H32B0.78100.23680.06620.060*
C4A0.4157 (7)0.7962 (4)1.0371 (2)0.0519 (9)
H41A0.31160.77881.08040.062*
H42A0.49150.88231.04850.062*
C4B0.5366 (6)0.3217 (4)0.0419 (2)0.0473 (9)
H41B0.61830.40350.02310.057*
H42B0.49690.32680.10270.057*
C5A0.4756 (5)0.8203 (3)0.8792 (2)0.0398 (8)
H5A0.54140.91040.88720.048*
C5B0.3902 (5)0.2698 (3)0.1065 (2)0.0356 (7)
H5B0.26030.23560.13280.043*
C6A0.3868 (7)0.7958 (3)0.7874 (2)0.0500 (9)
H61A0.24750.80800.78490.060*
H62A0.46500.85210.74670.060*
C6B0.4919 (5)0.3884 (3)0.1599 (2)0.0371 (7)
H61B0.58640.44520.12520.045*
H62B0.39270.43480.18330.045*
C7A0.5250 (5)0.6133 (3)0.8348 (2)0.0354 (7)
H7A10.62150.56810.80780.042*
H7A20.44190.55660.87380.042*
C7B0.5792 (6)0.1942 (3)0.2154 (2)0.0402 (8)
H7B10.47160.14740.24960.048*
H7B20.70510.16730.23040.048*
C8A0.3480 (5)0.5983 (3)0.6879 (2)0.0336 (7)
C8B0.6511 (5)0.3980 (3)0.3089 (2)0.0321 (7)
C9A0.3091 (5)0.4642 (3)0.6802 (2)0.0340 (7)
C9B0.7005 (5)0.5329 (3)0.31349 (19)0.0321 (7)
C10A0.2781 (5)0.3988 (3)0.5982 (2)0.0359 (7)
C10B0.7331 (5)0.6013 (3)0.3943 (2)0.0330 (7)
C11A0.2025 (6)0.2064 (3)0.5112 (2)0.0458 (8)
H11A0.18430.11750.50780.055*
C11B0.8098 (6)0.7976 (3)0.4764 (2)0.0449 (8)
H11B0.83090.88660.47760.054*
C12A0.1653 (5)0.2675 (3)0.4375 (2)0.0437 (8)
C12B0.8430 (5)0.7403 (3)0.5515 (2)0.0431 (8)
C13A0.2009 (5)0.4047 (3)0.4385 (2)0.0393 (8)
C13B0.8052 (5)0.6032 (3)0.5539 (2)0.0393 (8)
C14A0.2551 (5)0.4681 (3)0.5228 (2)0.0341 (7)
C14B0.7501 (5)0.5352 (3)0.4709 (2)0.0337 (7)
C15A0.2818 (5)0.6017 (3)0.5308 (2)0.0371 (7)
H15A0.26360.64880.48210.045*
C15B0.7215 (5)0.4016 (3)0.4659 (2)0.0365 (7)
H15B0.74000.35670.51560.044*
C16A0.3342 (5)0.6629 (3)0.6093 (2)0.0364 (7)
C16B0.6664 (5)0.3369 (3)0.3883 (2)0.0359 (7)
C17A0.0780 (7)0.3606 (5)0.7779 (3)0.0736 (14)
H17D0.02500.43640.79150.110*
H17E0.06730.30750.82780.110*
H17F0.00220.31430.72950.110*
C17B0.9320 (7)0.6076 (5)0.2066 (3)0.0665 (12)
H17A1.02560.66010.24690.100*
H17B0.94140.64520.15020.100*
H17C0.96430.52360.20190.100*
C18A0.3418 (7)0.1899 (3)0.6553 (2)0.0511 (9)
H18A0.24460.14830.69730.061*
C18B0.6706 (7)0.8076 (3)0.3312 (2)0.0499 (9)
H18B0.76670.84340.28710.060*
C19A0.5531 (7)0.2305 (4)0.6868 (3)0.0559 (10)
H19C0.58420.21530.74730.067*
H19D0.63030.30860.66430.067*
C19B0.4564 (7)0.7664 (4)0.3015 (3)0.0553 (10)
H19A0.37740.69210.32800.066*
H19B0.42340.77610.24050.066*
C20A0.5007 (8)0.1171 (4)0.6256 (3)0.0723 (14)
H20A0.49870.03310.64890.087*
H20B0.54490.12650.56580.087*
C20B0.5185 (9)0.8854 (4)0.3576 (3)0.0750 (15)
H20C0.52320.96710.33040.090*
H20D0.47720.88310.41800.090*
C21A0.1039 (6)0.1893 (4)0.3556 (3)0.0544 (10)
C21B0.9039 (6)0.8217 (4)0.6315 (3)0.0552 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0484 (5)0.0424 (4)0.0767 (6)0.0148 (4)0.0123 (5)0.0061 (4)
Cl1B0.0521 (6)0.0390 (4)0.0793 (7)0.0128 (4)0.0135 (5)0.0130 (4)
N1A0.0464 (18)0.0370 (14)0.0521 (17)0.0164 (13)0.0028 (14)0.0012 (13)
N1B0.0443 (17)0.0328 (13)0.0438 (16)0.0115 (12)0.0112 (13)0.0035 (12)
N2A0.0485 (17)0.0249 (12)0.0387 (15)0.0097 (12)0.0060 (12)0.0024 (11)
N2B0.0508 (18)0.0281 (12)0.0340 (14)0.0102 (12)0.0080 (13)0.0004 (11)
N3A0.0476 (18)0.0316 (13)0.0437 (16)0.0038 (12)0.0070 (13)0.0011 (12)
N3B0.0453 (17)0.0340 (14)0.0330 (15)0.0002 (12)0.0019 (12)0.0038 (12)
O1A0.0486 (15)0.0380 (12)0.0337 (12)0.0028 (10)0.0037 (10)0.0086 (10)
O1B0.0463 (14)0.0358 (11)0.0311 (11)0.0038 (10)0.0016 (10)0.0033 (9)
O2A0.0511 (16)0.0618 (16)0.0348 (13)0.0128 (12)0.0015 (11)0.0050 (12)
O2B0.0528 (17)0.0706 (17)0.0293 (13)0.0073 (14)0.0006 (11)0.0033 (12)
O3A0.0571 (19)0.086 (2)0.0439 (15)0.0077 (17)0.0081 (13)0.0173 (15)
O3B0.073 (2)0.086 (2)0.0369 (15)0.0040 (18)0.0013 (13)0.0106 (14)
O4A0.094 (3)0.0627 (19)0.069 (2)0.0093 (17)0.0204 (17)0.0276 (16)
O4B0.093 (3)0.0661 (19)0.0637 (19)0.0034 (17)0.0099 (17)0.0280 (15)
O5A0.392 (11)0.087 (3)0.100 (3)0.040 (4)0.049 (5)0.013 (3)
O5B0.109 (3)0.081 (2)0.074 (2)0.030 (2)0.0072 (19)0.0076 (17)
F1A0.0842 (18)0.0330 (10)0.0460 (12)0.0118 (10)0.0021 (11)0.0064 (9)
F1B0.0809 (17)0.0334 (10)0.0472 (12)0.0122 (10)0.0024 (11)0.0074 (9)
C1A0.0401 (19)0.0315 (15)0.0458 (19)0.0058 (14)0.0014 (15)0.0023 (14)
C1B0.0398 (19)0.0236 (13)0.0440 (18)0.0065 (13)0.0047 (15)0.0031 (13)
C2A0.047 (2)0.0431 (18)0.054 (2)0.0095 (16)0.0125 (17)0.0069 (17)
C2B0.044 (2)0.0427 (18)0.054 (2)0.0164 (16)0.0001 (17)0.0066 (16)
C3A0.062 (3)0.051 (2)0.049 (2)0.0182 (19)0.0073 (19)0.0047 (17)
C3B0.055 (2)0.049 (2)0.048 (2)0.0141 (18)0.0084 (18)0.0069 (17)
C4A0.074 (3)0.053 (2)0.0314 (17)0.0197 (19)0.0018 (17)0.0018 (15)
C4B0.061 (2)0.0436 (18)0.0364 (18)0.0079 (17)0.0037 (17)0.0017 (15)
C5A0.051 (2)0.0275 (14)0.0397 (18)0.0053 (14)0.0001 (16)0.0024 (13)
C5B0.0384 (19)0.0332 (15)0.0355 (17)0.0086 (13)0.0007 (14)0.0034 (13)
C6A0.072 (3)0.0367 (17)0.044 (2)0.0211 (18)0.0107 (18)0.0006 (15)
C6B0.052 (2)0.0306 (15)0.0308 (16)0.0152 (15)0.0077 (15)0.0015 (13)
C7A0.0419 (19)0.0315 (15)0.0334 (17)0.0093 (14)0.0043 (14)0.0008 (13)
C7B0.047 (2)0.0283 (14)0.0463 (19)0.0105 (14)0.0052 (15)0.0022 (14)
C8A0.0331 (17)0.0338 (15)0.0341 (17)0.0060 (13)0.0028 (14)0.0037 (13)
C8B0.0291 (17)0.0317 (15)0.0354 (17)0.0060 (13)0.0002 (13)0.0000 (13)
C9A0.0346 (18)0.0341 (15)0.0333 (17)0.0059 (13)0.0010 (13)0.0051 (13)
C9B0.0353 (18)0.0329 (14)0.0274 (15)0.0042 (13)0.0000 (13)0.0024 (12)
C10A0.0303 (18)0.0340 (15)0.0418 (18)0.0024 (13)0.0017 (14)0.0022 (14)
C10B0.0289 (17)0.0330 (15)0.0356 (17)0.0026 (13)0.0004 (13)0.0034 (13)
C11A0.041 (2)0.0447 (18)0.047 (2)0.0008 (15)0.0072 (16)0.0087 (16)
C11B0.045 (2)0.0395 (17)0.047 (2)0.0039 (15)0.0018 (16)0.0113 (16)
C12A0.0372 (19)0.0518 (19)0.0419 (19)0.0102 (16)0.0069 (15)0.0109 (16)
C12B0.0377 (19)0.054 (2)0.0360 (18)0.0064 (16)0.0007 (15)0.0099 (16)
C13A0.0297 (18)0.0510 (19)0.0372 (19)0.0076 (15)0.0010 (14)0.0010 (16)
C13B0.0273 (17)0.0559 (19)0.0346 (18)0.0078 (15)0.0024 (14)0.0033 (16)
C14A0.0284 (17)0.0424 (17)0.0330 (17)0.0106 (14)0.0013 (13)0.0000 (14)
C14B0.0264 (16)0.0459 (17)0.0283 (16)0.0057 (14)0.0002 (13)0.0016 (14)
C15A0.0331 (18)0.0418 (17)0.0382 (18)0.0097 (14)0.0028 (14)0.0091 (14)
C15B0.0300 (17)0.0460 (17)0.0345 (17)0.0089 (14)0.0011 (13)0.0059 (14)
C16A0.0382 (18)0.0317 (15)0.0404 (19)0.0094 (14)0.0037 (15)0.0008 (14)
C16B0.041 (2)0.0312 (15)0.0366 (17)0.0085 (14)0.0039 (15)0.0078 (14)
C17A0.061 (3)0.097 (3)0.054 (2)0.013 (2)0.014 (2)0.015 (2)
C17B0.047 (2)0.096 (3)0.056 (2)0.008 (2)0.0145 (19)0.029 (2)
C18A0.068 (3)0.0351 (17)0.048 (2)0.0037 (17)0.0059 (18)0.0054 (16)
C18B0.074 (3)0.0315 (16)0.0413 (19)0.0017 (17)0.0035 (19)0.0043 (15)
C19A0.069 (3)0.047 (2)0.053 (2)0.0155 (19)0.016 (2)0.0062 (18)
C19B0.070 (3)0.051 (2)0.049 (2)0.022 (2)0.0089 (19)0.0047 (17)
C20A0.111 (4)0.048 (2)0.066 (3)0.038 (3)0.021 (3)0.002 (2)
C20B0.127 (5)0.053 (2)0.055 (3)0.045 (3)0.012 (3)0.003 (2)
C21A0.042 (2)0.073 (3)0.047 (2)0.011 (2)0.0078 (17)0.015 (2)
C21B0.044 (2)0.071 (3)0.047 (2)0.006 (2)0.0006 (18)0.016 (2)
Geometric parameters (Å, º) top
N1A—C4A1.487 (5)C4B—H41B0.9700
N1A—C5A1.503 (4)C4B—H42B0.9700
N1A—H12A0.9000C5A—C6A1.511 (5)
N1A—H13A0.9000C5A—H5A0.9800
N1B—C5B1.495 (4)C5B—C6B1.523 (4)
N1B—C4B1.499 (5)C5B—H5B0.9800
N1B—H12B0.9000C6A—H61A0.9700
N1B—H13B0.9000C6A—H62A0.9700
N2A—C8A1.388 (4)C6B—H61B0.9700
N2A—C6A1.468 (4)C6B—H62B0.9700
N2A—C7A1.479 (4)C7A—H7A10.9700
N2B—C8B1.378 (4)C7A—H7A20.9700
N2B—C6B1.467 (4)C7B—H7B10.9700
N2B—C7B1.476 (4)C7B—H7B20.9700
N3A—C11A1.346 (4)C8A—C9A1.403 (4)
N3A—C10A1.404 (4)C8A—C16A1.413 (4)
N3A—C18A1.470 (5)C8B—C16B1.406 (4)
N3B—C11B1.347 (4)C8B—C9B1.410 (4)
N3B—C10B1.406 (4)C9A—C10A1.410 (5)
N3B—C18B1.469 (5)C9B—C10B1.408 (4)
O1A—C9A1.377 (4)C10A—C14A1.409 (4)
O1A—C17A1.428 (5)C10B—C14B1.399 (4)
O1B—C9B1.375 (3)C11A—C12A1.361 (5)
O1B—C17B1.436 (5)C11A—H11A0.9300
O2A—C13A1.260 (4)C11B—C12B1.351 (5)
O2B—C13B1.264 (4)C11B—H11B0.9300
O3A—C21A1.327 (5)C12A—C13A1.433 (5)
O3A—H3A0.8200C12A—C21A1.491 (5)
O3B—C21B1.325 (5)C12B—C13B1.435 (5)
O3B—H3B0.8200C12B—C21B1.484 (5)
O4A—C21A1.201 (5)C13A—C14A1.447 (5)
O4B—C21B1.211 (5)C13B—C14B1.450 (4)
O5A—H51A0.8204C14A—C15A1.400 (4)
O5A—H52A0.8195C14B—C15B1.397 (5)
O5B—H51B0.8202C15A—C16A1.358 (5)
O5B—H52B0.8204C15A—H15A0.9300
F1A—C16A1.359 (3)C15B—C16B1.364 (5)
F1B—C16B1.356 (3)C15B—H15B0.9300
C1A—C5A1.512 (5)C17A—H17D0.9600
C1A—C2A1.531 (5)C17A—H17E0.9600
C1A—C7A1.534 (4)C17A—H17F0.9600
C1A—H1A0.9800C17B—H17A0.9600
C1B—C7B1.510 (5)C17B—H17B0.9600
C1B—C5B1.523 (4)C17B—H17C0.9600
C1B—C2B1.528 (5)C18A—C19A1.473 (6)
C1B—H1B0.9800C18A—C20A1.503 (6)
C2A—C3A1.513 (6)C18A—H18A0.9800
C2A—H21A0.9700C18B—C19B1.483 (6)
C2A—H22A0.9700C18B—C20B1.487 (6)
C2B—C3B1.511 (5)C18B—H18B0.9800
C2B—H21B0.9700C19A—C20A1.489 (6)
C2B—H22B0.9700C19A—H19C0.9700
C3A—C4A1.504 (5)C19A—H19D0.9700
C3A—H31A0.9700C19B—C20B1.495 (6)
C3A—H32A0.9700C19B—H19A0.9700
C3B—C4B1.517 (5)C19B—H19B0.9700
C3B—H31B0.9700C20A—H20A0.9700
C3B—H32B0.9700C20A—H20B0.9700
C4A—H41A0.9700C20B—H20C0.9700
C4A—H42A0.9700C20B—H20D0.9700
C4A—N1A—C5A111.6 (3)N2B—C7B—H7B2111.1
C4A—N1A—H12A109.3C1B—C7B—H7B2111.1
C5A—N1A—H12A109.3H7B1—C7B—H7B2109.1
C4A—N1A—H13A109.3N2A—C8A—C9A121.1 (3)
C5A—N1A—H13A109.3N2A—C8A—C16A123.1 (3)
H12A—N1A—H13A108.0C9A—C8A—C16A115.8 (3)
C5B—N1B—C4B115.2 (3)N2B—C8B—C16B123.9 (3)
C5B—N1B—H12B108.5N2B—C8B—C9B120.4 (3)
C4B—N1B—H12B108.5C16B—C8B—C9B115.7 (3)
C5B—N1B—H13B108.5O1A—C9A—C8A118.4 (3)
C4B—N1B—H13B108.5O1A—C9A—C10A119.7 (3)
H12B—N1B—H13B107.5C8A—C9A—C10A121.7 (3)
C8A—N2A—C6A124.6 (3)O1B—C9B—C10B119.3 (3)
C8A—N2A—C7A122.3 (2)O1B—C9B—C8B119.2 (3)
C6A—N2A—C7A111.1 (3)C10B—C9B—C8B121.4 (3)
C8B—N2B—C6B122.2 (2)N3A—C10A—C14A118.3 (3)
C8B—N2B—C7B124.3 (3)N3A—C10A—C9A122.4 (3)
C6B—N2B—C7B110.9 (2)C14A—C10A—C9A119.3 (3)
C11A—N3A—C10A119.5 (3)C14B—C10B—N3B119.0 (3)
C11A—N3A—C18A117.3 (3)C14B—C10B—C9B119.5 (3)
C10A—N3A—C18A122.6 (3)N3B—C10B—C9B121.5 (3)
C11B—N3B—C10B118.8 (3)N3A—C11A—C12A124.4 (3)
C11B—N3B—C18B117.5 (3)N3A—C11A—H11A117.8
C10B—N3B—C18B123.0 (3)C12A—C11A—H11A117.8
C9A—O1A—C17A112.1 (3)N3B—C11B—C12B124.6 (3)
C9B—O1B—C17B112.3 (3)N3B—C11B—H11B117.7
C21A—O3A—H3A109.5C12B—C11B—H11B117.7
C21B—O3B—H3B109.5C11A—C12A—C13A119.7 (3)
H51A—O5A—H52A103.2C11A—C12A—C21A118.5 (3)
H51B—O5B—H52B111.0C13A—C12A—C21A121.6 (3)
C5A—C1A—C2A114.4 (3)C11B—C12B—C13B119.9 (3)
C5A—C1A—C7A102.2 (3)C11B—C12B—C21B118.6 (3)
C2A—C1A—C7A117.2 (3)C13B—C12B—C21B121.4 (3)
C5A—C1A—H1A107.5O2A—C13A—C12A122.6 (3)
C2A—C1A—H1A107.5O2A—C13A—C14A121.8 (3)
C7A—C1A—H1A107.5C12A—C13A—C14A115.7 (3)
C7B—C1B—C5B100.3 (2)O2B—C13B—C12B122.6 (3)
C7B—C1B—C2B113.2 (3)O2B—C13B—C14B121.7 (3)
C5B—C1B—C2B112.2 (3)C12B—C13B—C14B115.7 (3)
C7B—C1B—H1B110.3C15A—C14A—C10A118.7 (3)
C5B—C1B—H1B110.3C15A—C14A—C13A119.6 (3)
C2B—C1B—H1B110.3C10A—C14A—C13A121.7 (3)
C3A—C2A—C1A113.3 (3)C15B—C14B—C10B118.9 (3)
C3A—C2A—H21A108.9C15B—C14B—C13B119.9 (3)
C1A—C2A—H21A108.9C10B—C14B—C13B121.1 (3)
C3A—C2A—H22A108.9C16A—C15A—C14A120.3 (3)
C1A—C2A—H22A108.9C16A—C15A—H15A119.8
H21A—C2A—H22A107.7C14A—C15A—H15A119.8
C3B—C2B—C1B111.5 (3)C16B—C15B—C14B120.2 (3)
C3B—C2B—H21B109.3C16B—C15B—H15B119.9
C1B—C2B—H21B109.3C14B—C15B—H15B119.9
C3B—C2B—H22B109.3C15A—C16A—F1A117.2 (3)
C1B—C2B—H22B109.3C15A—C16A—C8A123.4 (3)
H21B—C2B—H22B108.0F1A—C16A—C8A119.4 (3)
C4A—C3A—C2A111.7 (3)F1B—C16B—C15B117.1 (3)
C4A—C3A—H31A109.3F1B—C16B—C8B119.5 (3)
C2A—C3A—H31A109.3C15B—C16B—C8B123.3 (3)
C4A—C3A—H32A109.3O1A—C17A—H17D109.5
C2A—C3A—H32A109.3O1A—C17A—H17E109.5
H31A—C3A—H32A107.9H17D—C17A—H17E109.5
C2B—C3B—C4B111.0 (3)O1A—C17A—H17F109.5
C2B—C3B—H31B109.4H17D—C17A—H17F109.5
C4B—C3B—H31B109.4H17E—C17A—H17F109.5
C2B—C3B—H32B109.4O1B—C17B—H17A109.5
C4B—C3B—H32B109.4O1B—C17B—H17B109.5
H31B—C3B—H32B108.0H17A—C17B—H17B109.5
N1A—C4A—C3A109.7 (3)O1B—C17B—H17C109.5
N1A—C4A—H41A109.7H17A—C17B—H17C109.5
C3A—C4A—H41A109.7H17B—C17B—H17C109.5
N1A—C4A—H42A109.7N3A—C18A—C19A118.4 (3)
C3A—C4A—H42A109.7N3A—C18A—C20A115.7 (3)
H41A—C4A—H42A108.2C19A—C18A—C20A60.0 (3)
N1B—C4B—C3B109.8 (3)N3A—C18A—H18A116.9
N1B—C4B—H41B109.7C19A—C18A—H18A116.9
C3B—C4B—H41B109.7C20A—C18A—H18A116.9
N1B—C4B—H42B109.7N3B—C18B—C19B118.0 (3)
C3B—C4B—H42B109.7N3B—C18B—C20B116.7 (3)
H41B—C4B—H42B108.2C19B—C18B—C20B60.4 (3)
N1A—C5A—C6A112.8 (3)N3B—C18B—H18B116.6
N1A—C5A—C1A110.6 (3)C19B—C18B—H18B116.6
C6A—C5A—C1A103.9 (3)C20B—C18B—H18B116.6
N1A—C5A—H5A109.8C18A—C19A—C20A61.0 (3)
C6A—C5A—H5A109.8C18A—C19A—H19C117.7
C1A—C5A—H5A109.8C20A—C19A—H19C117.7
N1B—C5B—C6B114.2 (2)C18A—C19A—H19D117.7
N1B—C5B—C1B112.9 (2)C20A—C19A—H19D117.7
C6B—C5B—C1B104.4 (3)H19C—C19A—H19D114.8
N1B—C5B—H5B108.4C18B—C19B—C20B59.9 (3)
C6B—C5B—H5B108.4C18B—C19B—H19A117.8
C1B—C5B—H5B108.4C20B—C19B—H19A117.8
N2A—C6A—C5A103.5 (3)C18B—C19B—H19B117.8
N2A—C6A—H61A111.1C20B—C19B—H19B117.8
C5A—C6A—H61A111.1H19A—C19B—H19B114.9
N2A—C6A—H62A111.1C19A—C20A—C18A58.9 (3)
C5A—C6A—H62A111.1C19A—C20A—H20A117.9
H61A—C6A—H62A109.0C18A—C20A—H20A117.9
N2B—C6B—C5B102.5 (2)C19A—C20A—H20B117.9
N2B—C6B—H61B111.3C18A—C20A—H20B117.9
C5B—C6B—H61B111.3H20A—C20A—H20B115.0
N2B—C6B—H62B111.3C18B—C20B—C19B59.6 (3)
C5B—C6B—H62B111.3C18B—C20B—H20C117.8
H61B—C6B—H62B109.2C19B—C20B—H20C117.8
N2A—C7A—C1A103.1 (2)C18B—C20B—H20D117.8
N2A—C7A—H7A1111.1C19B—C20B—H20D117.8
C1A—C7A—H7A1111.1H20C—C20B—H20D114.9
N2A—C7A—H7A2111.1O4A—C21A—O3A121.4 (4)
C1A—C7A—H7A2111.2O4A—C21A—C12A124.4 (4)
H7A1—C7A—H7A2109.1O3A—C21A—C12A114.1 (4)
N2B—C7B—C1B103.4 (2)O4B—C21B—O3B121.8 (4)
N2B—C7B—H7B1111.1O4B—C21B—C12B123.6 (4)
C1B—C7B—H7B1111.1O3B—C21B—C12B114.5 (4)
C5A—C1A—C2A—C3A43.5 (4)C8B—C9B—C10B—C14B10.7 (5)
C7A—C1A—C2A—C3A76.1 (4)O1B—C9B—C10B—N3B15.1 (5)
C7B—C1B—C2B—C3B164.7 (3)C8B—C9B—C10B—N3B169.0 (3)
C5B—C1B—C2B—C3B52.1 (4)C10A—N3A—C11A—C12A4.8 (5)
C1A—C2A—C3A—C4A48.2 (4)C18A—N3A—C11A—C12A166.2 (4)
C1B—C2B—C3B—C4B57.9 (4)C10B—N3B—C11B—C12B5.8 (5)
C5A—N1A—C4A—C3A62.9 (4)C18B—N3B—C11B—C12B165.0 (4)
C2A—C3A—C4A—N1A57.7 (5)N3A—C11A—C12A—C13A3.1 (6)
C5B—N1B—C4B—C3B53.3 (3)N3A—C11A—C12A—C21A178.2 (3)
C2B—C3B—C4B—N1B57.2 (4)N3B—C11B—C12B—C13B2.4 (5)
C4A—N1A—C5A—C6A173.1 (3)N3B—C11B—C12B—C21B178.0 (4)
C4A—N1A—C5A—C1A57.2 (3)C11A—C12A—C13A—O2A173.9 (3)
C2A—C1A—C5A—N1A47.1 (4)C21A—C12A—C13A—O2A1.1 (5)
C7A—C1A—C5A—N1A80.7 (3)C11A—C12A—C13A—C14A6.4 (5)
C2A—C1A—C5A—C6A168.4 (3)C21A—C12A—C13A—C14A178.7 (3)
C7A—C1A—C5A—C6A40.7 (3)C11B—C12B—C13B—O2B174.0 (3)
C4B—N1B—C5B—C6B70.6 (4)C21B—C12B—C13B—O2B1.5 (5)
C4B—N1B—C5B—C1B48.5 (4)C11B—C12B—C13B—C14B5.5 (5)
C7B—C1B—C5B—N1B167.1 (3)C21B—C12B—C13B—C14B179.0 (3)
C2B—C1B—C5B—N1B46.7 (4)N3A—C10A—C14A—C15A176.0 (3)
C7B—C1B—C5B—C6B42.5 (3)C9A—C10A—C14A—C15A5.7 (4)
C2B—C1B—C5B—C6B78.0 (3)N3A—C10A—C14A—C13A5.3 (5)
C8A—N2A—C6A—C5A175.1 (3)C9A—C10A—C14A—C13A173.1 (3)
C7A—N2A—C6A—C5A11.3 (4)O2A—C13A—C14A—C15A3.2 (5)
N1A—C5A—C6A—N2A87.7 (3)C12A—C13A—C14A—C15A176.5 (3)
C1A—C5A—C6A—N2A32.2 (4)O2A—C13A—C14A—C10A178.0 (3)
C8B—N2B—C6B—C5B157.2 (3)C12A—C13A—C14A—C10A2.2 (5)
C7B—N2B—C6B—C5B5.5 (3)N3B—C10B—C14B—C15B175.7 (3)
N1B—C5B—C6B—N2B153.7 (3)C9B—C10B—C14B—C15B4.0 (5)
C1B—C5B—C6B—N2B29.9 (3)N3B—C10B—C14B—C13B7.0 (4)
C8A—N2A—C7A—C1A150.5 (3)C9B—C10B—C14B—C13B173.3 (3)
C6A—N2A—C7A—C1A13.7 (4)O2B—C13B—C14B—C15B4.1 (5)
C5A—C1A—C7A—N2A33.0 (3)C12B—C13B—C14B—C15B176.4 (3)
C2A—C1A—C7A—N2A158.9 (3)O2B—C13B—C14B—C10B178.7 (3)
C8B—N2B—C7B—C1B176.7 (3)C12B—C13B—C14B—C10B0.8 (4)
C6B—N2B—C7B—C1B21.1 (4)C10A—C14A—C15A—C16A1.7 (5)
C5B—C1B—C7B—N2B38.1 (3)C13A—C14A—C15A—C16A179.5 (3)
C2B—C1B—C7B—N2B81.6 (3)C10B—C14B—C15B—C16B3.7 (5)
C6A—N2A—C8A—C9A162.1 (3)C13B—C14B—C15B—C16B178.9 (3)
C7A—N2A—C8A—C9A35.9 (5)C14A—C15A—C16A—F1A176.0 (3)
C6A—N2A—C8A—C16A18.8 (5)C14A—C15A—C16A—C8A5.6 (5)
C7A—N2A—C8A—C16A143.3 (3)N2A—C8A—C16A—C15A179.1 (3)
C6B—N2B—C8B—C16B150.5 (3)C9A—C8A—C16A—C15A1.7 (5)
C7B—N2B—C8B—C16B9.8 (5)N2A—C8A—C16A—F1A0.7 (5)
C6B—N2B—C8B—C9B31.3 (5)C9A—C8A—C16A—F1A180.0 (3)
C7B—N2B—C8B—C9B168.4 (3)C14B—C15B—C16B—F1B176.7 (3)
C17A—O1A—C9A—C8A94.2 (4)C14B—C15B—C16B—C8B5.2 (5)
C17A—O1A—C9A—C10A80.8 (4)N2B—C8B—C16B—F1B1.4 (5)
N2A—C8A—C9A—O1A11.8 (5)C9B—C8B—C16B—F1B176.9 (3)
C16A—C8A—C9A—O1A168.9 (3)N2B—C8B—C16B—C15B179.4 (3)
N2A—C8A—C9A—C10A173.2 (3)C9B—C8B—C16B—C15B1.2 (5)
C16A—C8A—C9A—C10A6.0 (5)C11A—N3A—C18A—C19A118.3 (4)
C17B—O1B—C9B—C10B91.9 (4)C10A—N3A—C18A—C19A52.5 (5)
C17B—O1B—C9B—C8B84.1 (4)C11A—N3A—C18A—C20A50.0 (5)
N2B—C8B—C9B—O1B11.5 (5)C10A—N3A—C18A—C20A120.7 (4)
C16B—C8B—C9B—O1B166.8 (3)C11B—N3B—C18B—C19B117.0 (4)
N2B—C8B—C9B—C10B172.6 (3)C10B—N3B—C18B—C19B53.3 (5)
C16B—C8B—C9B—C10B9.1 (5)C11B—N3B—C18B—C20B48.0 (5)
C11A—N3A—C10A—C14A8.8 (5)C10B—N3B—C18B—C20B122.3 (4)
C18A—N3A—C10A—C14A161.8 (3)N3A—C18A—C19A—C20A104.9 (4)
C11A—N3A—C10A—C9A169.5 (3)N3B—C18B—C19B—C20B106.4 (4)
C18A—N3A—C10A—C9A19.9 (5)N3A—C18A—C20A—C19A109.4 (4)
O1A—C9A—C10A—N3A13.1 (5)N3B—C18B—C20B—C19B108.6 (4)
C8A—C9A—C10A—N3A172.0 (3)C11A—C12A—C21A—O4A3.9 (6)
O1A—C9A—C10A—C14A165.2 (3)C13A—C12A—C21A—O4A179.0 (4)
C8A—C9A—C10A—C14A9.7 (5)C11A—C12A—C21A—O3A174.5 (3)
C11B—N3B—C10B—C14B10.3 (5)C13A—C12A—C21A—O3A0.5 (5)
C18B—N3B—C10B—C14B159.9 (3)C11B—C12B—C21B—O4B4.8 (6)
C11B—N3B—C10B—C9B170.0 (3)C13B—C12B—C21B—O4B179.7 (4)
C18B—N3B—C10B—C9B19.8 (5)C11B—C12B—C21B—O3B174.5 (3)
O1B—C9B—C10B—C14B165.2 (3)C13B—C12B—C21B—O3B1.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H12A···Cl1Bi0.902.263.113 (3)158
N1A—H13A···Cl1A0.902.433.234 (3)150
N1B—H12B···Cl1Aii0.902.223.109 (3)170
N1B—H13B···Cl1B0.902.253.114 (2)162
O3A—H3A···O2A0.821.742.512 (4)156
O3B—H3B···O2B0.821.742.508 (4)155
O5A—H51A···O4A0.822.243.011 (5)157
O5A—H52A···Cl1B0.822.723.422 (5)144
O5B—H51B···O4B0.822.122.911 (5)161
O5B—H52B···Cl1Biii0.822.413.208 (4)163
C1A—H1A···O3B0.982.533.373 (4)144
C2A—H21A···Cl1Aiv0.972.803.742 (4)163
C3A—H31A···Cl1A0.972.743.518 (5)138
C3A—H32A···O1Bv0.972.593.450 (5)148
C6A—H61A···O3Bvi0.972.493.340 (6)146
C18B—H18B···O5Avii0.982.583.564 (7)179
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x1, y, z; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H25FN3O4+·Cl·H2O
Mr455.91
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.7280 (3), 10.6406 (5), 15.3127 (7)
α, β, γ (°)91.7293 (14), 91.1313 (13), 100.8823 (13)
V3)1075.67 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.49 × 0.37 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.898, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
10677, 8038, 5933
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.10
No. of reflections8038
No. of parameters563
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29
Absolute structureFlack (1983), 3107 Friedel pairs
Absolute structure parameter0.00 (6)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H12A···Cl1Bi0.902.263.113 (3)158
N1A—H13A···Cl1A0.902.433.234 (3)150
N1B—H12B···Cl1Aii0.902.223.109 (3)170
N1B—H13B···Cl1B0.902.253.114 (2)162
O3A—H3A···O2A0.821.742.512 (4)156
O3B—H3B···O2B0.821.742.508 (4)155
O5A—H51A···O4A0.822.243.011 (5)157
O5A—H52A···Cl1B0.822.723.422 (5)144
O5B—H51B···O4B0.822.122.911 (5)161
O5B—H52B···Cl1Biii0.822.413.208 (4)163
C1A—H1A···O3B0.982.533.373 (4)144
C2A—H21A···Cl1Aiv0.972.803.742 (4)163
C3A—H31A···Cl1A0.972.743.518 (5)138
C3A—H32A···O1Bv0.972.593.450 (5)148
C6A—H61A···O3Bvi0.972.493.340 (6)146
C18B—H18B···O5Avii0.982.583.564 (7)179
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x1, y, z; (vii) x+1, y+1, z.
 

Acknowledgements

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).

References

First citationCulley, C. M., Lacy, M. K., Klutman, N. & Edwards, B. (2001). Am. J. Health Syst. Pharm. 58, 379–388.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, H. & Sun, F. G. (2008). Adverse Drug React. J. 10, 141–142.  Google Scholar
First citationNoel, A. R., Bowker, K. E. & MacGowan, A. P. (2005). Antimicrob. Agents Chemother. 49, 4234–4239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavikumar, K. & Sridhar, B. (2006). Acta Cryst. C62, o478–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.  Google Scholar
First citationSeidel, D., Conrad, M., Brehmer, P., Mohrs, K. & Petersen, U. (2000). J. Labelled Compd Radiopharm. 43, 795–805.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStass, H., Dalhoff, A., Kubitza, D. & Schuhly, U. (1998). Antimicrob. Agents Chemother. 42, 2060–2065.  CAS PubMed Google Scholar
First citationTalib, S. H., Arshad, M., Chauhan, H., Jain, R. & Vaya, L. (2002). J. Indian Acad. Clin. Med. 3, 360–366.  Google Scholar
First citationVaranda, F., Pratas de Melo, M. J., Cac\,o, A. I., Dohrn, R., Makrydaki, F. A., Voutsas, E., Tassios, D. & Marrucho, I. M. (2006). Ind. Eng. Chem. Res. 45, 6368–6374.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds