organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RP,RP)-Bis[(3-menthyl­oxy)(phenyl)­phosphino­yl] di­sulfide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 6 September 2011; accepted 19 September 2011; online 30 September 2011)

The molecule of the title compound, C32H48O4P2S2, has 2 symmetry, the mid-point of the S—S bond being located on a twofold rotation axis. The two tetra­hedral P units are linked by a S—S bond with a P—S—S—P torsion angle is 131.19 (6)°. The dihedral angle between two phenyl rings is 12.66 (13)°. The cyclo­hexane ring of the menthoxyl group displays a chair conformation. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to chiral phospho­rus compounds, see: Perlikowska & Daran (2004[Perlikowska, W. & Daran, I. C. (2004). Tetrahedron Asymmetry, 15, 3519-3529.]).

[Scheme 1]

Experimental

Crystal data
  • C32H48O4P2S2

  • Mr = 622.76

  • Orthorhombic, P 21 21 2

  • a = 9.9910 (9) Å

  • b = 18.9100 (17) Å

  • c = 8.9747 (7) Å

  • V = 1695.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.40 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.956

  • 7818 measured reflections

  • 2989 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.080

  • S = 0.91

  • 2989 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1736 Friedel pairs

  • Flack parameter: −0.10 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.97 2.59 3.527 (3) 162
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral phosphorus compounds have been widely used in both chemistry and biology (Perlikowska & Daran, 2004). The P-chiral title compound was synthesized by (Rp)-O-menthyl phenylphosphonothioate and sulfuryl chloride. The fully extended substituents phenyl, menthoxy link to phosphorus atom, and the two phosphorus atoms are connected by dithio bond to form two similar P-centered irregular tetrahedrons. The angle of O2—P—S1 and O1—P—S1 are 113.31 (9) ° and 95.11 (7) °. Intermolecular C6—H6···O2 hydrogen bonds is observed in the crystal structure (Table 1).

Related literature top

For general background to chiral phosphorus compounds, see: Perlikowska & Daran (2004).

Experimental top

Sulfuryl chloride (0.3 mmol) was added to a stirred ether solution of (Rp)-O-menthyl phenylphosphonothioate (0.6 mmol) in a Schlenk tube under nitrogen, and the mixture was stirred for 4 h at 273 K. After washing with water and removing solvents, the resulting residue was purified by preparative TLC on silica gel to afford optically pure product. The crystal suit for X-ray diffraction was obtained from recrystallization with ethyl ether.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 - 0.98 Å, with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.

Structure description top

Chiral phosphorus compounds have been widely used in both chemistry and biology (Perlikowska & Daran, 2004). The P-chiral title compound was synthesized by (Rp)-O-menthyl phenylphosphonothioate and sulfuryl chloride. The fully extended substituents phenyl, menthoxy link to phosphorus atom, and the two phosphorus atoms are connected by dithio bond to form two similar P-centered irregular tetrahedrons. The angle of O2—P—S1 and O1—P—S1 are 113.31 (9) ° and 95.11 (7) °. Intermolecular C6—H6···O2 hydrogen bonds is observed in the crystal structure (Table 1).

For general background to chiral phosphorus compounds, see: Perlikowska & Daran (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. H atoms have been omitted for clarity.
(RP,RP)-Bis[(2-isopropyl-5- methylcyclohexyloxy)(phenyl)phosphinoyl] disulfide top
Crystal data top
C32H48O4P2S2F(000) = 668
Mr = 622.76Dx = 1.220 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1878 reflections
a = 9.9910 (9) Åθ = 3.1–22.1°
b = 18.9100 (17) ŵ = 0.28 mm1
c = 8.9747 (7) ÅT = 298 K
V = 1695.6 (3) Å3Block, colorless
Z = 20.40 × 0.28 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2989 independent reflections
Radiation source: fine-focus sealed tube2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.895, Tmax = 0.956k = 1522
7818 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
2989 reflectionsΔρmax = 0.33 e Å3
184 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1736 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (10)
Crystal data top
C32H48O4P2S2V = 1695.6 (3) Å3
Mr = 622.76Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 9.9910 (9) ŵ = 0.28 mm1
b = 18.9100 (17) ÅT = 298 K
c = 8.9747 (7) Å0.40 × 0.28 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2141 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.956Rint = 0.043
7818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.33 e Å3
S = 0.91Δρmin = 0.16 e Å3
2989 reflectionsAbsolute structure: Flack (1983), 1736 Friedel pairs
184 parametersAbsolute structure parameter: 0.10 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.89547 (8)0.39154 (4)0.02808 (9)0.0522 (2)
S11.05009 (7)0.45208 (4)0.06827 (9)0.0569 (2)
O10.97493 (16)0.31924 (8)0.0227 (2)0.0530 (5)
O20.76990 (17)0.39533 (10)0.0544 (2)0.0674 (6)
C10.8604 (3)0.13924 (16)0.1576 (4)0.0695 (10)
H10.76410.14470.13990.083*
C20.9227 (3)0.21278 (15)0.1605 (3)0.0606 (9)
H2A0.88010.24080.23760.073*
H2B1.01710.20890.18470.073*
C30.9073 (3)0.24950 (13)0.0128 (3)0.0479 (7)
H30.81180.25720.00610.057*
C40.9659 (3)0.20881 (14)0.1165 (3)0.0494 (7)
H41.06120.20210.09530.059*
C50.9012 (3)0.13521 (15)0.1183 (4)0.0633 (9)
H5A0.80660.13990.14050.076*
H5B0.94170.10710.19660.076*
C60.9178 (3)0.09692 (14)0.0308 (4)0.0694 (9)
H6A0.87320.05140.02590.083*
H6B1.01220.08850.04900.083*
C70.8786 (5)0.10092 (19)0.3060 (5)0.1305 (18)
H7A0.83790.05500.30050.196*
H7B0.83710.12780.38410.196*
H7C0.97240.09580.32680.196*
C80.9561 (3)0.24793 (17)0.2669 (3)0.0649 (9)
H80.98460.29670.24790.078*
C90.8146 (3)0.2525 (2)0.3295 (4)0.0916 (12)
H9A0.81590.27850.42140.137*
H9B0.75770.27620.25920.137*
H9C0.78110.20570.34730.137*
C101.0536 (4)0.2180 (2)0.3807 (4)0.0975 (12)
H10A1.14260.21900.34040.146*
H10B1.05050.24610.46980.146*
H10C1.02930.17010.40370.146*
C110.8768 (3)0.41490 (14)0.2192 (3)0.0553 (8)
C120.9730 (3)0.39822 (16)0.3243 (4)0.0703 (9)
H121.05290.37740.29410.084*
C130.9515 (5)0.41225 (17)0.4747 (4)0.0896 (11)
H131.01630.40120.54540.108*
C140.8321 (5)0.4428 (2)0.5164 (5)0.0997 (13)
H140.81550.45100.61690.120*
C150.7377 (4)0.4614 (2)0.4142 (5)0.0967 (13)
H150.65920.48360.44440.116*
C160.7594 (3)0.44701 (18)0.2661 (4)0.0765 (10)
H160.69440.45900.19630.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0510 (4)0.0433 (4)0.0622 (6)0.0001 (3)0.0007 (4)0.0039 (4)
S10.0600 (5)0.0421 (4)0.0685 (6)0.0028 (4)0.0114 (4)0.0015 (4)
O10.0520 (10)0.0356 (10)0.0714 (14)0.0035 (8)0.0013 (10)0.0056 (10)
O20.0521 (12)0.0702 (13)0.0800 (17)0.0056 (10)0.0127 (11)0.0062 (14)
C10.081 (3)0.057 (2)0.070 (2)0.0237 (17)0.0024 (19)0.002 (2)
C20.069 (2)0.0560 (19)0.057 (2)0.0117 (16)0.0014 (16)0.0027 (17)
C30.0434 (14)0.0371 (14)0.063 (2)0.0067 (12)0.0046 (15)0.0061 (15)
C40.0423 (16)0.0451 (16)0.061 (2)0.0016 (14)0.0003 (15)0.0056 (15)
C50.065 (2)0.0479 (19)0.076 (2)0.0032 (16)0.0040 (19)0.0192 (18)
C60.0625 (19)0.0420 (17)0.104 (3)0.0090 (15)0.011 (2)0.003 (2)
C70.202 (5)0.096 (3)0.093 (3)0.056 (4)0.014 (3)0.035 (3)
C80.076 (2)0.060 (2)0.059 (2)0.0048 (19)0.0015 (19)0.0016 (18)
C90.082 (3)0.114 (3)0.079 (3)0.001 (2)0.016 (2)0.018 (3)
C100.092 (3)0.131 (3)0.070 (2)0.004 (2)0.025 (2)0.004 (2)
C110.059 (2)0.0455 (18)0.061 (2)0.0014 (16)0.0015 (17)0.0014 (15)
C120.088 (2)0.058 (2)0.065 (2)0.0027 (19)0.001 (2)0.0030 (19)
C130.128 (3)0.074 (2)0.066 (3)0.000 (2)0.009 (3)0.003 (2)
C140.139 (4)0.086 (3)0.074 (3)0.011 (3)0.031 (3)0.012 (3)
C150.096 (3)0.104 (3)0.090 (4)0.009 (3)0.030 (3)0.028 (3)
C160.072 (2)0.075 (2)0.082 (3)0.009 (2)0.0082 (19)0.017 (2)
Geometric parameters (Å, º) top
P1—O21.4583 (19)C7—H7A0.9600
P1—O11.5817 (17)C7—H7B0.9600
P1—C111.781 (3)C7—H7C0.9600
P1—S12.1083 (10)C8—C101.520 (4)
S1—S1i2.0703 (14)C8—C91.524 (4)
O1—C31.484 (3)C8—H80.9800
C1—C61.505 (4)C9—H9A0.9600
C1—C21.524 (4)C9—H9B0.9600
C1—C71.528 (4)C9—H9C0.9600
C1—H10.9800C10—H10A0.9600
C2—C31.505 (4)C10—H10B0.9600
C2—H2A0.9700C10—H10C0.9600
C2—H2B0.9700C11—C121.383 (4)
C3—C41.510 (4)C11—C161.387 (4)
C3—H30.9800C12—C131.392 (5)
C4—C51.535 (4)C12—H120.9300
C4—C81.542 (4)C13—C141.378 (5)
C4—H40.9800C13—H130.9300
C5—C61.530 (4)C14—C151.361 (5)
C5—H5A0.9700C14—H140.9300
C5—H5B0.9700C15—C161.374 (5)
C6—H6A0.9700C15—H150.9300
C6—H6B0.9700C16—H160.9300
O2—P1—O1117.31 (11)H6A—C6—H6B108.0
O2—P1—C11112.74 (14)C1—C7—H7A109.5
O1—P1—C11107.23 (13)C1—C7—H7B109.5
O2—P1—S1113.30 (10)H7A—C7—H7B109.5
O1—P1—S195.12 (7)C1—C7—H7C109.5
C11—P1—S1109.70 (10)H7A—C7—H7C109.5
S1i—S1—P196.96 (5)H7B—C7—H7C109.5
C3—O1—P1122.78 (15)C10—C8—C9111.6 (3)
C6—C1—C2110.0 (3)C10—C8—C4111.7 (3)
C6—C1—C7111.2 (3)C9—C8—C4114.1 (3)
C2—C1—C7111.6 (3)C10—C8—H8106.3
C6—C1—H1107.9C9—C8—H8106.3
C2—C1—H1107.9C4—C8—H8106.3
C7—C1—H1107.9C8—C9—H9A109.5
C3—C2—C1111.3 (2)C8—C9—H9B109.5
C3—C2—H2A109.4H9A—C9—H9B109.5
C1—C2—H2A109.4C8—C9—H9C109.5
C3—C2—H2B109.4H9A—C9—H9C109.5
C1—C2—H2B109.4H9B—C9—H9C109.5
H2A—C2—H2B108.0C8—C10—H10A109.5
O1—C3—C2108.1 (2)C8—C10—H10B109.5
O1—C3—C4108.8 (2)H10A—C10—H10B109.5
C2—C3—C4113.7 (2)C8—C10—H10C109.5
O1—C3—H3108.7H10A—C10—H10C109.5
C2—C3—H3108.7H10B—C10—H10C109.5
C4—C3—H3108.7C12—C11—C16118.8 (3)
C3—C4—C5107.9 (2)C12—C11—P1121.8 (2)
C3—C4—C8113.8 (2)C16—C11—P1119.3 (3)
C5—C4—C8113.5 (3)C11—C12—C13120.6 (3)
C3—C4—H4107.1C11—C12—H12119.7
C5—C4—H4107.1C13—C12—H12119.7
C8—C4—H4107.1C14—C13—C12118.5 (4)
C6—C5—C4112.0 (2)C14—C13—H13120.7
C6—C5—H5A109.2C12—C13—H13120.7
C4—C5—H5A109.2C15—C14—C13121.6 (4)
C6—C5—H5B109.2C15—C14—H14119.2
C4—C5—H5B109.2C13—C14—H14119.2
H5A—C5—H5B107.9C14—C15—C16119.5 (4)
C1—C6—C5111.6 (2)C14—C15—H15120.3
C1—C6—H6A109.3C16—C15—H15120.3
C5—C6—H6A109.3C15—C16—C11120.9 (4)
C1—C6—H6B109.3C15—C16—H16119.6
C5—C6—H6B109.3C11—C16—H16119.6
O2—P1—S1—S1i56.22 (9)C4—C5—C6—C157.2 (3)
O1—P1—S1—S1i178.92 (8)C3—C4—C8—C10161.2 (3)
C11—P1—S1—S1i70.73 (11)C5—C4—C8—C1074.9 (3)
O2—P1—O1—C333.0 (3)C3—C4—C8—C971.2 (3)
C11—P1—O1—C395.0 (2)C5—C4—C8—C952.8 (4)
S1—P1—O1—C3152.5 (2)O2—P1—C11—C12163.5 (2)
C6—C1—C2—C354.6 (4)O1—P1—C11—C1232.9 (3)
C7—C1—C2—C3178.6 (3)S1—P1—C11—C1269.2 (3)
P1—O1—C3—C2108.6 (2)O2—P1—C11—C1612.7 (3)
P1—O1—C3—C4127.4 (2)O1—P1—C11—C16143.3 (2)
C1—C2—C3—O1177.8 (2)S1—P1—C11—C16114.6 (2)
C1—C2—C3—C456.8 (3)C16—C11—C12—C131.1 (5)
O1—C3—C4—C5176.3 (2)P1—C11—C12—C13175.1 (2)
C2—C3—C4—C555.8 (3)C11—C12—C13—C140.2 (5)
O1—C3—C4—C856.8 (3)C12—C13—C14—C152.1 (6)
C2—C3—C4—C8177.3 (2)C13—C14—C15—C162.5 (7)
C3—C4—C5—C655.2 (3)C14—C15—C16—C111.0 (6)
C8—C4—C5—C6177.7 (3)C12—C11—C16—C150.8 (5)
C2—C1—C6—C555.2 (3)P1—C11—C16—C15175.5 (3)
C7—C1—C6—C5179.5 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2ii0.972.593.527 (3)162
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC32H48O4P2S2
Mr622.76
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)9.9910 (9), 18.9100 (17), 8.9747 (7)
V3)1695.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.895, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
7818, 2989, 2141
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.080, 0.91
No. of reflections2989
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.16
Absolute structureFlack (1983), 1736 Friedel pairs
Absolute structure parameter0.10 (10)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2i0.972.593.527 (3)161.6
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (No. 20772055).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerlikowska, W. & Daran, I. C. (2004). Tetrahedron Asymmetry, 15, 3519–3529.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds