metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[4-(1H-pyrazol-3-yl)pyridine-κN1]zinc

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bThe People's Hospital of Xiangtan County, Xiangtan 411104, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 11 September 2011; accepted 14 September 2011; online 30 September 2011)

In the title compound, [ZnCl2(C8H7N3)2], the ZnII cation is coordinated by two Cl anions and two 4-(1H-pyrazol-3-yl)pyridine ligands in a distorted tetra­hedral geometry. In the two 4-(1H-pyrazol-3-yl)pyridine ligands, the dihedral angles between the pyrazole and pyridine rings are 3.3 (3) and 13.3 (3)°. Inter­molecular N—H⋯N and N—H⋯Cl hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003[Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550-1553.]). For a related complex, see: Davies et al. (2005[Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485-m487.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C8H7N3)2]

  • Mr = 426.60

  • Monoclinic, P 21 /n

  • a = 12.306 (3) Å

  • b = 7.8827 (16) Å

  • c = 18.883 (4) Å

  • β = 94.82 (3)°

  • V = 1825.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.02 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.693, Tmax = 0.971

  • 14854 measured reflections

  • 3283 independent reflections

  • 2052 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.138

  • S = 1.11

  • 3283 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.041 (4)
Zn1—N2 2.032 (4)
Zn1—Cl1 2.2395 (17)
Zn1—Cl2 2.2241 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N5i 0.86 2.23 2.945 (8) 140
N6—H6⋯Cl1ii 0.86 2.46 3.266 (5) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine derivatives are an important class of ligand for constructing metal–organic frameworks. From the structural point of view, 4-(1H-pyrazol-3-yl)-pyridine can be used as pyridines ligand in building coordination compounds. In the present paper, we present the structure of the complex ZnCl2(C8H7N3)2.

As shown in Fig. 1, the ZnII atom exhibits a tetrahedral coordination sphere, defined by two Cl atoms and two N atoms from two different 4-(1H-pyrazol-3-yl)-pyridine ligands. Intermolecular N—H···N and N—H···Cl hydrogen bonds can be seen in the three-dimensional supramolecular network of the compound (Fig. 2).

Related literature top

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003). For a related complex, see: Davies et al. (2005).

Experimental top

4-(1H-Pyrazol-3-yl)-pyridine was prepared according to the published method of Davies et al. (2003). The aqueous solution (20 ml) containing ZnCl2(0.1 mmol, 14 mg) and 4-(1H-pyrazol-3-yl)-pyridine (0.2 mmol, 29 mg) was stirred for a few minutes in air, and left to stand at room temperature for a few weeks, then the colorless crystals were obtained.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Pyridine derivatives are an important class of ligand for constructing metal–organic frameworks. From the structural point of view, 4-(1H-pyrazol-3-yl)-pyridine can be used as pyridines ligand in building coordination compounds. In the present paper, we present the structure of the complex ZnCl2(C8H7N3)2.

As shown in Fig. 1, the ZnII atom exhibits a tetrahedral coordination sphere, defined by two Cl atoms and two N atoms from two different 4-(1H-pyrazol-3-yl)-pyridine ligands. Intermolecular N—H···N and N—H···Cl hydrogen bonds can be seen in the three-dimensional supramolecular network of the compound (Fig. 2).

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003). For a related complex, see: Davies et al. (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the three-dimensional network. Hydrogen bonds are shown as dashed lines.
Dichloridobis[4-(1H-pyrazol-3-yl)pyridine-κN1]zinc top
Crystal data top
[ZnCl2(C8H7N3)2]F(000) = 864
Mr = 426.60Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13142 reflections
a = 12.306 (3) Åθ = 3.1–27.7°
b = 7.8827 (16) ŵ = 1.65 mm1
c = 18.883 (4) ÅT = 293 K
β = 94.82 (3)°Platelet, colourless
V = 1825.3 (6) Å30.24 × 0.21 × 0.02 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3283 independent reflections
Radiation source: fine-focus sealed tube2052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.693, Tmax = 0.971k = 99
14854 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[ZnCl2(C8H7N3)2]V = 1825.3 (6) Å3
Mr = 426.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.306 (3) ŵ = 1.65 mm1
b = 7.8827 (16) ÅT = 293 K
c = 18.883 (4) Å0.24 × 0.21 × 0.02 mm
β = 94.82 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3283 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2052 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.971Rint = 0.122
14854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.11Δρmax = 0.42 e Å3
3283 reflectionsΔρmin = 0.30 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46511 (6)0.48942 (8)0.20777 (3)0.0476 (3)
Cl10.31124 (13)0.34083 (19)0.21462 (8)0.0543 (5)
Cl20.61580 (14)0.3545 (2)0.18253 (9)0.0761 (6)
N30.3040 (4)1.2186 (7)0.0109 (3)0.0555 (14)
C50.4365 (5)0.6564 (7)0.0659 (3)0.0502 (16)
H50.46090.55270.04990.060*
N10.4321 (4)0.6807 (6)0.1363 (2)0.0435 (12)
C30.3709 (4)0.9364 (7)0.0374 (3)0.0421 (15)
C60.3357 (4)1.0691 (8)0.0137 (3)0.0454 (15)
C40.4062 (4)0.7799 (7)0.0171 (3)0.0448 (16)
H40.40960.75710.03100.054*
C20.3689 (5)0.9619 (8)0.1100 (3)0.0578 (18)
H20.34721.06630.12690.069*
C80.2886 (6)1.2202 (10)0.1081 (4)0.072 (2)
H80.27391.25880.15440.087*
N40.2750 (4)1.3070 (7)0.0484 (3)0.0653 (16)
H4A0.25021.40900.04820.078*
C10.3987 (5)0.8344 (8)0.1565 (3)0.0545 (17)
H10.39570.85480.20480.065*
C70.3281 (5)1.0644 (8)0.0878 (3)0.0590 (18)
H70.34590.97510.11690.071*
C140.5765 (5)0.8133 (7)0.5098 (3)0.0460 (16)
N60.6657 (5)0.9532 (7)0.5901 (3)0.0718 (18)
H60.71401.01820.61150.086*
N50.6636 (4)0.9156 (7)0.5209 (3)0.0592 (15)
C160.5854 (7)0.8797 (9)0.6228 (4)0.071 (2)
H160.57270.88960.67050.086*
C150.5263 (6)0.7882 (8)0.5724 (3)0.0578 (18)
H150.46500.72240.57840.069*
N20.4966 (4)0.6034 (6)0.3038 (2)0.0433 (12)
C120.4504 (5)0.6635 (7)0.4214 (3)0.0456 (15)
H120.39910.65540.45470.055*
C110.5491 (5)0.7416 (7)0.4388 (3)0.0414 (15)
C130.4283 (5)0.5978 (7)0.3545 (3)0.0463 (15)
H130.36100.54590.34400.056*
C90.5921 (5)0.6814 (8)0.3215 (3)0.0617 (19)
H90.64190.68860.28730.074*
C100.6208 (5)0.7512 (8)0.3870 (3)0.0574 (18)
H100.68800.80430.39630.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0574 (5)0.0463 (5)0.0385 (4)0.0042 (4)0.0010 (3)0.0037 (4)
Cl10.0668 (11)0.0519 (10)0.0422 (9)0.0083 (8)0.0073 (8)0.0009 (8)
Cl20.0715 (14)0.0823 (13)0.0752 (13)0.0279 (10)0.0113 (10)0.0140 (11)
N30.055 (4)0.059 (4)0.053 (3)0.013 (3)0.007 (3)0.018 (3)
C50.060 (4)0.041 (4)0.050 (4)0.009 (3)0.008 (3)0.012 (3)
N10.046 (3)0.043 (3)0.042 (3)0.003 (2)0.008 (2)0.000 (2)
C30.030 (4)0.041 (4)0.056 (4)0.005 (3)0.010 (3)0.003 (3)
C60.034 (4)0.048 (4)0.055 (4)0.002 (3)0.007 (3)0.005 (3)
C40.054 (4)0.051 (4)0.029 (3)0.001 (3)0.003 (3)0.000 (3)
C20.070 (5)0.047 (4)0.058 (4)0.014 (3)0.018 (4)0.004 (4)
C80.078 (6)0.078 (6)0.060 (5)0.004 (4)0.000 (4)0.013 (5)
N40.070 (4)0.057 (4)0.070 (4)0.016 (3)0.007 (3)0.019 (3)
C10.068 (5)0.051 (4)0.045 (4)0.007 (4)0.013 (3)0.005 (4)
C70.071 (5)0.056 (5)0.050 (4)0.006 (4)0.006 (4)0.005 (4)
C140.049 (4)0.042 (4)0.044 (4)0.014 (3)0.011 (3)0.004 (3)
N60.066 (4)0.068 (4)0.075 (5)0.022 (3)0.032 (3)0.032 (4)
N50.058 (4)0.061 (4)0.056 (4)0.002 (3)0.011 (3)0.021 (3)
C160.106 (7)0.066 (5)0.042 (4)0.030 (5)0.005 (5)0.003 (4)
C150.082 (5)0.046 (4)0.044 (4)0.003 (4)0.003 (4)0.005 (3)
N20.046 (3)0.045 (3)0.038 (3)0.004 (3)0.004 (2)0.005 (2)
C120.051 (4)0.043 (4)0.045 (4)0.001 (3)0.012 (3)0.001 (3)
C110.033 (4)0.038 (4)0.051 (4)0.002 (3)0.005 (3)0.003 (3)
C130.039 (4)0.048 (4)0.051 (4)0.003 (3)0.002 (3)0.007 (3)
C90.059 (5)0.074 (5)0.054 (4)0.011 (4)0.015 (4)0.020 (4)
C100.042 (4)0.068 (5)0.061 (5)0.014 (3)0.001 (4)0.016 (4)
Geometric parameters (Å, º) top
Zn1—N12.041 (4)C1—H10.9300
Zn1—N22.032 (4)C7—H70.9300
Zn1—Cl12.2395 (17)C14—N51.344 (7)
Zn1—Cl22.2241 (18)C14—C151.394 (8)
N3—C61.337 (7)C14—C111.468 (7)
N3—N41.342 (6)N6—N51.337 (6)
C5—N11.349 (6)N6—C161.341 (8)
C5—C41.370 (7)N6—H60.8600
C5—H50.9300C16—C151.357 (8)
N1—C11.345 (7)C16—H160.9300
C3—C41.374 (7)C15—H150.9300
C3—C21.387 (8)N2—C131.326 (6)
C3—C61.464 (7)N2—C91.344 (7)
C6—C71.395 (8)C12—C131.371 (7)
C4—H40.9300C12—C111.376 (7)
C2—C11.366 (7)C12—H120.9300
C2—H20.9300C11—C101.372 (8)
C8—N41.341 (8)C13—H130.9300
C8—C71.363 (8)C9—C101.372 (8)
C8—H80.9300C9—H90.9300
N4—H4A0.8600C10—H100.9300
N2—Zn1—N1106.01 (19)C8—C7—C6104.5 (6)
N2—Zn1—Cl2107.64 (15)C8—C7—H7127.8
N1—Zn1—Cl2109.55 (14)C6—C7—H7127.8
N2—Zn1—Cl1106.16 (15)N5—C14—C15110.9 (6)
N1—Zn1—Cl1107.60 (13)N5—C14—C11119.6 (6)
Cl2—Zn1—Cl1119.11 (7)C15—C14—C11129.5 (6)
C6—N3—N4103.4 (5)N5—N6—C16113.6 (6)
N1—C5—C4122.1 (5)N5—N6—H6123.2
N1—C5—H5119.0C16—N6—H6123.2
C4—C5—H5119.0N6—N5—C14103.6 (5)
C1—N1—C5116.5 (5)N6—C16—C15106.2 (6)
C1—N1—Zn1121.7 (4)N6—C16—H16126.9
C5—N1—Zn1121.7 (4)C15—C16—H16126.9
C4—C3—C2116.0 (5)C16—C15—C14105.7 (6)
C4—C3—C6122.7 (6)C16—C15—H15127.2
C2—C3—C6121.2 (6)C14—C15—H15127.2
N3—C6—C7112.0 (5)C13—N2—C9115.4 (5)
N3—C6—C3118.7 (6)C13—N2—Zn1123.0 (4)
C7—C6—C3129.3 (6)C9—N2—Zn1121.5 (4)
C5—C4—C3121.6 (5)C13—C12—C11119.4 (6)
C5—C4—H4119.2C13—C12—H12120.3
C3—C4—H4119.2C11—C12—H12120.3
C1—C2—C3120.2 (6)C10—C11—C12117.6 (6)
C1—C2—H2119.9C10—C11—C14121.1 (6)
C3—C2—H2119.9C12—C11—C14121.4 (6)
N4—C8—C7106.9 (6)N2—C13—C12124.3 (6)
N4—C8—H8126.5N2—C13—H13117.8
C7—C8—H8126.5C12—C13—H13117.8
C8—N4—N3113.2 (5)N2—C9—C10124.2 (6)
C8—N4—H4A123.4N2—C9—H9117.9
N3—N4—H4A123.4C10—C9—H9117.9
N1—C1—C2123.5 (6)C9—C10—C11119.1 (6)
N1—C1—H1118.2C9—C10—H10120.4
C2—C1—H1118.2C11—C10—H10120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N5i0.862.232.945 (8)140
N6—H6···Cl1ii0.862.463.266 (5)156
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C8H7N3)2]
Mr426.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.306 (3), 7.8827 (16), 18.883 (4)
β (°) 94.82 (3)
V3)1825.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.24 × 0.21 × 0.02
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.693, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14854, 3283, 2052
Rint0.122
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.138, 1.11
No. of reflections3283
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Zn1—N12.041 (4)Zn1—Cl12.2395 (17)
Zn1—N22.032 (4)Zn1—Cl22.2241 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N5i0.862.232.945 (8)140.2
N6—H6···Cl1ii0.862.463.266 (5)155.7
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge Hunan Provincial Department of Education for the Foundation of Xiang Norimichi (grant No. 2010 243).

References

First citationDavies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485–m487.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDavies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds