metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­tetra­kis­­[μ3-5-(pyridine-4-carboxamido)­isophthalato]cobalt(II)digadolinium(III)] tetra­hydrate]

aKey Laboratory of Functional Organometallic Materials, Hengyang Normal University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: cmsniu@163.com, zhangchunhua668@163.com

(Received 16 September 2011; accepted 18 September 2011; online 30 September 2011)

In the centrosymmetric polymeric title compound, {[CoGd2(C14H8N2O5)4(H2O)4]·4H2O}n, the GdIII cation is coordinated by one water mol­ecule and four pyridine-4-carboxamido­isophthalate (L) anions in a distorted square-anti­prismatic arrangement, while the CoII cation, located on an inversion center, is coordinated by two pyridyl-N atoms, two carboxyl­ate-O atoms and two water mol­ecules in a distorted octa­hedral geometry. The asymmetric unit contains two anionic L ligands: one bridges two Gd cations and one Co cation through two carboxyl groups and one pyridine-N atom; the other bridges two Gd cations and one Co cation through two carboxyl groups and the uncoordinated pyridine-N atom is hydrogen-bonded to the adjacent coordinated water mol­ecule. Extensive O—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related hetero-metallic complexes, see: Chen et al. (2011[Chen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117-124.]); Gu & Xue (2006[Gu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257-9261.]); Liang et al. (2000[Liang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.]); Prasad et al. (2007[Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.], 2004[Zhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]).

[Scheme 1]

Experimental

Crystal data
  • [CoGd2(C14H8N2O5)4(H2O)4]·4H2O

  • Mr = 1654.45

  • Triclinic, [P \overline 1]

  • a = 10.1457 (14) Å

  • b = 10.8728 (15) Å

  • c = 13.7552 (19) Å

  • α = 79.123 (2)°

  • β = 78.844 (3)°

  • γ = 86.317 (2)°

  • V = 1461.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 0.779

  • 7307 measured reflections

  • 5053 independent reflections

  • 4462 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 1.00

  • 5053 reflections

  • 430 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.083 (3)
Co1—O1W 2.178 (4)
Co1—N4i 2.159 (4)
Gd1—O2 2.246 (3)
Gd1—O2W 2.365 (3)
Gd1—O3ii 2.436 (3)
Gd1—O4ii 2.420 (3)
Gd1—O6 2.487 (3)
Gd1—O7 2.408 (3)
Gd1—O8iii 2.475 (3)
Gd1—O9iii 2.382 (3)
Symmetry codes: (i) x, y, z-1; (ii) x, y-1, z; (iii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4Wiv 0.86 2.16 2.999 (6) 166
N3—H3⋯O4v 0.86 2.15 2.942 (6) 152
O1W—H1WA⋯O6vi 0.82 2.25 2.992 (5) 151
O1W—H1WB⋯O3Wvii 0.85 2.03 2.753 (6) 143
O2W—H2WA⋯O3Wviii 0.85 2.40 3.130 (6) 144
O2W—H2WB⋯N2i 0.85 1.92 2.676 (6) 147
O3W—H3WA⋯O3vii 0.85 1.91 2.737 (6) 163
O3W—H3WB⋯O8iii 0.85 1.97 2.781 (6) 160
O4W—H4WA⋯O9ix 0.85 2.26 3.097 (6) 170
O4W—H4WB⋯O9v 0.85 2.18 3.028 (6) 172
Symmetry codes: (i) x, y, z-1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+2; (v) -x+2, -y+1, -z+2; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z+1; (ix) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational synthesis and investigation of 3d-4f or 4d-4f hetero-metallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing 3d-4f metal ions in conjunction with ligands often result in formation of a mixture of homometallic assemblies rather than hetero-metallic analogous (Liang et al., 2000; Zhao et al., 2003; Zhao et al., 2004; Gu et al., 2006; Prasad et al., 2007). So we have recently prepared a new lanthanide(III)-transition metal(II) coordination polymer, [GdCo0.5(H2O)2(L)2]n.2nH2O, (I) through hydrothermal condition.

In the title compound, the central GdIII ion is eight-coordinated by seven O atoms from four ligands and one water molecule, which forming a distorted square antiprismatic geometry(Fig. 1). It is interesting that the carboxyl groups of two unique L2- ligands exhibit the different coordination modes: one coordinated to two GdIII and one CoII atoms using its two carboxylate groups with µ1-η1:η1-chelate and µ2-η1:η1-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinated to two GdIII through the carboxylate groups with µ1-η1:η1-chelate coordination mode and one CoII via the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups of L2- ligands, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complex {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen, et al. 2011).

Related literature top

For related hetero-metallic complexes, see: Chen et al. (2011); Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004).

Experimental top

A mixture of 0.05 mmol Gd(NO3)3.6H2O (21.8 mg. 0.05 mmol), H2L (28.6 mg, 0.1 mmol), Co(OAc)2.4H2O (13.1 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (4 ml) and H2O (6 ml) was heated in a 16 mL capacity Teflon-lined reaction vessel at 433 K for 4 days, the reaction mixture was cooled to room temperature over a period of 40 h. The product was collected by filtration, washed with H2O and air-dried.

Refinement top

H atoms bonded to C atoms were placed geometrically and refined as riding atoms. The pyridyl N atoms were found from a difference Fourier maps and refined as riding, with N—H = 0.86 Å, and the water H atoms were found from Fourier difference maps and refined with restraints for O—H distances (0.82–0.8515 Å) with Uiso(H) = 1.2Ueq(O).

Structure description top

The rational synthesis and investigation of 3d-4f or 4d-4f hetero-metallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing 3d-4f metal ions in conjunction with ligands often result in formation of a mixture of homometallic assemblies rather than hetero-metallic analogous (Liang et al., 2000; Zhao et al., 2003; Zhao et al., 2004; Gu et al., 2006; Prasad et al., 2007). So we have recently prepared a new lanthanide(III)-transition metal(II) coordination polymer, [GdCo0.5(H2O)2(L)2]n.2nH2O, (I) through hydrothermal condition.

In the title compound, the central GdIII ion is eight-coordinated by seven O atoms from four ligands and one water molecule, which forming a distorted square antiprismatic geometry(Fig. 1). It is interesting that the carboxyl groups of two unique L2- ligands exhibit the different coordination modes: one coordinated to two GdIII and one CoII atoms using its two carboxylate groups with µ1-η1:η1-chelate and µ2-η1:η1-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinated to two GdIII through the carboxylate groups with µ1-η1:η1-chelate coordination mode and one CoII via the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups of L2- ligands, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complex {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen, et al. 2011).

For related hetero-metallic complexes, see: Chen et al. (2011); Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z (ii) 2 - x, 1 - y, 2 - z (iii) x, y, -1 + z (iv) x,-1 + y, z (v)-1 + x, y, z.]
[Figure 2] Fig. 2. Projection showing the three-dimensional structure of the compound.
Poly[[tetraaquatetrakis[µ3-5-(pyridine-4- carboxamido)isophthalato]cobalt(II)digadolinium(III)] tetrahydrate] top
Crystal data top
[CoGd2(C14H8N2O5)4(H2O)4]·4H2OZ = 1
Mr = 1654.45F(000) = 819
Triclinic, P1Dx = 1.880 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1457 (14) ÅCell parameters from 5652 reflections
b = 10.8728 (15) Åθ = 2.7–28.2°
c = 13.7552 (19) ŵ = 2.62 mm1
α = 79.123 (2)°T = 293 K
β = 78.844 (3)°Block, pink
γ = 86.317 (2)°0.20 × 0.16 × 0.10 mm
V = 1461.3 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5053 independent reflections
Radiation source: fine-focus sealed tube4462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.622, Tmax = 0.779k = 1212
7307 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
5053 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 1.23 e Å3
1 restraintΔρmin = 0.88 e Å3
Crystal data top
[CoGd2(C14H8N2O5)4(H2O)4]·4H2Oγ = 86.317 (2)°
Mr = 1654.45V = 1461.3 (3) Å3
Triclinic, P1Z = 1
a = 10.1457 (14) ÅMo Kα radiation
b = 10.8728 (15) ŵ = 2.62 mm1
c = 13.7552 (19) ÅT = 293 K
α = 79.123 (2)°0.20 × 0.16 × 0.10 mm
β = 78.844 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4462 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.779Rint = 0.045
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.070H-atom parameters constrained
S = 1.00Δρmax = 1.23 e Å3
5053 reflectionsΔρmin = 0.88 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.50000.0225 (2)
Gd10.68073 (2)0.07754 (2)0.702891 (17)0.01596 (9)
C10.7021 (5)0.4733 (4)0.7262 (4)0.0203 (11)
C20.6789 (5)0.4174 (5)0.8277 (3)0.0204 (11)
H20.67360.33080.84580.024*
C30.6639 (4)0.4907 (4)0.9019 (3)0.0193 (11)
C40.6653 (4)0.6204 (4)0.8743 (4)0.0197 (11)
H40.65390.67030.92350.024*
C50.6838 (5)0.6749 (4)0.7734 (3)0.0173 (11)
C60.7035 (5)0.6027 (4)0.6993 (4)0.0209 (11)
H60.71760.64050.63170.025*
C70.6865 (5)0.8143 (4)0.7469 (4)0.0193 (11)
C80.7333 (5)0.3940 (5)0.6454 (4)0.0221 (11)
C90.6653 (5)0.4830 (5)1.0810 (4)0.0290 (13)
C100.6520 (5)0.4000 (5)1.1831 (4)0.0254 (12)
C110.6510 (5)0.2702 (5)1.2015 (4)0.0302 (13)
H110.65360.22691.14890.036*
C120.6462 (5)0.2065 (5)1.2977 (4)0.0354 (14)
H120.64630.11951.30830.042*
C130.6398 (6)0.3854 (6)1.3606 (4)0.0395 (15)
H130.63470.42561.41520.047*
C140.6451 (6)0.4584 (6)1.2657 (4)0.0356 (14)
H140.64420.54541.25740.043*
C151.0257 (5)0.1207 (4)0.8319 (4)0.0196 (11)
C161.1577 (5)0.1051 (4)0.7839 (4)0.0224 (11)
H161.17550.08840.71860.027*
C171.2619 (5)0.1141 (5)0.8325 (4)0.0205 (11)
C181.2342 (5)0.1428 (4)0.9300 (4)0.0219 (11)
H181.30430.14850.96340.026*
C191.1033 (5)0.1625 (5)0.9764 (4)0.0222 (11)
C200.9992 (5)0.1483 (5)0.9280 (4)0.0218 (11)
H200.91070.15740.96030.026*
C210.9089 (5)0.1090 (4)0.7833 (4)0.0209 (11)
C221.4062 (5)0.0983 (5)0.7846 (4)0.0230 (12)
C230.9939 (5)0.2964 (5)1.0919 (4)0.0265 (12)
C240.9909 (5)0.3393 (5)1.1902 (4)0.0257 (12)
C250.9824 (5)0.2572 (5)1.2814 (4)0.0269 (12)
H250.98170.17111.28460.032*
C260.9752 (5)0.3078 (5)1.3671 (4)0.0277 (13)
H260.96700.25321.42860.033*
C270.9848 (5)0.5065 (5)1.2779 (4)0.0281 (13)
H270.98610.59231.27610.034*
C280.9885 (5)0.4655 (5)1.1898 (4)0.0271 (12)
H280.98950.52251.13010.033*
N10.6472 (4)0.4306 (4)1.0036 (3)0.0218 (10)
H10.62330.35391.01730.026*
N20.6415 (5)0.2612 (5)1.3771 (3)0.0371 (12)
N31.0794 (4)0.2000 (4)1.0720 (3)0.0239 (10)
H31.12040.16041.11830.029*
N40.9793 (4)0.4299 (4)1.3671 (3)0.0246 (10)
O10.8077 (3)0.4368 (3)0.5644 (2)0.0302 (9)
O20.6813 (4)0.2877 (3)0.6641 (3)0.0322 (9)
O30.6714 (4)0.8704 (3)0.6616 (3)0.0351 (10)
O40.7066 (4)0.8773 (3)0.8103 (3)0.0358 (10)
O50.6911 (5)0.5913 (4)1.0738 (3)0.0564 (13)
O60.9267 (3)0.0946 (3)0.6916 (3)0.0312 (9)
O70.7925 (3)0.1148 (3)0.8335 (2)0.0242 (8)
O81.4396 (3)0.0994 (4)0.6915 (3)0.0301 (9)
O91.4954 (3)0.0854 (4)0.8378 (3)0.0413 (11)
O100.9241 (4)0.3512 (4)1.0332 (3)0.0392 (10)
O1W0.9258 (4)0.6827 (3)0.4333 (3)0.0329 (9)
H1WB0.86530.71960.47040.039*
H1WA0.98880.72430.39930.039*
O2W0.7218 (4)0.0952 (3)0.5257 (3)0.0404 (10)
H2WA0.67820.03650.51480.048*
H2WB0.68680.16270.49820.048*
O3W0.3006 (4)0.1662 (5)0.5329 (3)0.0747 (16)
H3WA0.32480.14720.47460.090*
H3WB0.35760.13890.57030.090*
O4W0.4138 (5)0.8385 (4)0.9854 (3)0.0680 (15)
H4WA0.43280.90190.93900.082*
H4WB0.43840.85261.03790.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0265 (6)0.0248 (6)0.0171 (5)0.0039 (4)0.0018 (4)0.0071 (4)
Gd10.01600 (14)0.01569 (14)0.01703 (14)0.00071 (9)0.00433 (10)0.00367 (9)
C10.021 (3)0.020 (3)0.020 (3)0.001 (2)0.004 (2)0.002 (2)
C20.021 (3)0.017 (3)0.020 (3)0.002 (2)0.001 (2)0.000 (2)
C30.013 (3)0.025 (3)0.018 (3)0.001 (2)0.001 (2)0.001 (2)
C40.016 (3)0.022 (3)0.022 (3)0.001 (2)0.006 (2)0.004 (2)
C50.015 (3)0.015 (3)0.020 (3)0.003 (2)0.003 (2)0.001 (2)
C60.020 (3)0.021 (3)0.019 (3)0.002 (2)0.002 (2)0.001 (2)
C70.017 (3)0.019 (3)0.023 (3)0.001 (2)0.006 (2)0.006 (2)
C80.021 (3)0.020 (3)0.025 (3)0.003 (2)0.009 (2)0.002 (2)
C90.028 (3)0.033 (3)0.025 (3)0.002 (3)0.002 (2)0.002 (2)
C100.018 (3)0.033 (3)0.024 (3)0.002 (2)0.005 (2)0.001 (2)
C110.036 (3)0.030 (3)0.026 (3)0.006 (3)0.009 (3)0.001 (2)
C120.039 (4)0.032 (3)0.034 (3)0.011 (3)0.011 (3)0.004 (3)
C130.047 (4)0.054 (4)0.020 (3)0.004 (3)0.009 (3)0.012 (3)
C140.040 (4)0.037 (4)0.030 (3)0.002 (3)0.009 (3)0.004 (3)
C150.017 (3)0.021 (3)0.022 (3)0.002 (2)0.006 (2)0.005 (2)
C160.024 (3)0.026 (3)0.017 (3)0.001 (2)0.004 (2)0.006 (2)
C170.014 (3)0.027 (3)0.021 (3)0.000 (2)0.005 (2)0.003 (2)
C180.018 (3)0.025 (3)0.026 (3)0.002 (2)0.010 (2)0.008 (2)
C190.021 (3)0.026 (3)0.022 (3)0.001 (2)0.003 (2)0.011 (2)
C200.017 (3)0.026 (3)0.024 (3)0.001 (2)0.003 (2)0.010 (2)
C210.023 (3)0.018 (3)0.024 (3)0.001 (2)0.007 (2)0.007 (2)
C220.024 (3)0.020 (3)0.026 (3)0.000 (2)0.005 (2)0.004 (2)
C230.021 (3)0.035 (3)0.026 (3)0.004 (2)0.003 (2)0.013 (3)
C240.016 (3)0.042 (4)0.022 (3)0.000 (2)0.004 (2)0.011 (2)
C250.026 (3)0.034 (3)0.024 (3)0.001 (2)0.006 (2)0.012 (2)
C260.029 (3)0.032 (3)0.021 (3)0.009 (2)0.003 (2)0.002 (2)
C270.029 (3)0.027 (3)0.028 (3)0.003 (2)0.002 (3)0.007 (2)
C280.031 (3)0.033 (3)0.018 (3)0.001 (2)0.005 (2)0.006 (2)
N10.025 (2)0.018 (2)0.019 (2)0.0009 (18)0.0032 (19)0.0015 (18)
N20.043 (3)0.042 (3)0.026 (3)0.009 (2)0.010 (2)0.003 (2)
N30.022 (2)0.033 (3)0.017 (2)0.0036 (19)0.0085 (19)0.0049 (19)
N40.021 (2)0.035 (3)0.020 (2)0.004 (2)0.0025 (19)0.010 (2)
O10.030 (2)0.039 (2)0.021 (2)0.0097 (18)0.0009 (17)0.0097 (17)
O20.048 (2)0.016 (2)0.033 (2)0.0053 (17)0.0041 (19)0.0062 (16)
O30.070 (3)0.016 (2)0.022 (2)0.0008 (18)0.015 (2)0.0015 (15)
O40.068 (3)0.018 (2)0.030 (2)0.0048 (18)0.028 (2)0.0074 (16)
O50.113 (4)0.028 (3)0.034 (2)0.024 (3)0.023 (3)0.0009 (19)
O60.021 (2)0.052 (3)0.026 (2)0.0032 (17)0.0058 (17)0.0170 (18)
O70.0140 (19)0.036 (2)0.026 (2)0.0013 (15)0.0043 (16)0.0138 (16)
O80.0164 (19)0.054 (3)0.024 (2)0.0013 (17)0.0044 (16)0.0168 (18)
O90.015 (2)0.087 (3)0.022 (2)0.005 (2)0.0068 (17)0.010 (2)
O100.039 (2)0.054 (3)0.032 (2)0.021 (2)0.016 (2)0.023 (2)
O1W0.036 (2)0.034 (2)0.026 (2)0.0018 (17)0.0009 (17)0.0072 (17)
O2W0.066 (3)0.031 (2)0.024 (2)0.005 (2)0.013 (2)0.0016 (17)
O3W0.060 (3)0.132 (5)0.031 (3)0.028 (3)0.015 (2)0.014 (3)
O4W0.139 (5)0.037 (3)0.030 (2)0.031 (3)0.015 (3)0.003 (2)
Geometric parameters (Å, º) top
Co1—O1i2.083 (3)C15—C161.389 (6)
Co1—O12.083 (3)C15—C211.492 (6)
Co1—O1W2.178 (4)C16—C171.374 (6)
Co1—O1Wi2.178 (4)C16—H160.9300
Co1—N4ii2.159 (4)C17—C181.406 (6)
Co1—N4iii2.159 (4)C17—C221.498 (7)
Gd1—O22.246 (3)C18—C191.380 (6)
Gd1—O2W2.365 (3)C18—H180.9300
Gd1—O3iv2.436 (3)C19—C201.384 (7)
Gd1—O4iv2.420 (3)C19—N31.421 (6)
Gd1—O62.487 (3)C20—H200.9300
Gd1—O72.408 (3)C21—O71.252 (5)
Gd1—O8v2.475 (3)C21—O61.277 (5)
Gd1—O9v2.382 (3)C22—O91.256 (6)
C1—C61.386 (6)C22—O81.257 (6)
C1—C21.395 (6)C23—O101.223 (6)
C1—C81.505 (7)C23—N31.352 (6)
C2—C31.389 (7)C23—C241.506 (7)
C2—H20.9300C24—C281.369 (7)
C3—C41.390 (6)C24—C251.387 (7)
C3—N11.410 (6)C25—C261.380 (7)
C4—C51.385 (6)C25—H250.9300
C4—H40.9300C26—N41.331 (6)
C5—C61.378 (7)C26—H260.9300
C5—C71.491 (6)C27—N41.340 (6)
C6—H60.9300C27—C281.361 (7)
C7—O31.250 (6)C27—H270.9300
C7—O41.257 (5)C28—H280.9300
C8—O11.246 (5)N1—H10.8600
C8—O21.263 (6)N3—H30.8600
C9—O51.204 (6)N4—Co1vi2.159 (4)
C9—N11.345 (6)O3—Gd1vii2.436 (3)
C9—C101.507 (7)O4—Gd1vii2.420 (3)
C10—C111.387 (7)O8—Gd1viii2.475 (3)
C10—C141.390 (7)O9—Gd1viii2.382 (3)
C11—C121.365 (7)O1W—H1WB0.8501
C11—H110.9300O1W—H1WA0.8200
C12—N21.331 (7)O2W—H2WA0.8500
C12—H120.9300O2W—H2WB0.8499
C13—N21.326 (7)O3W—H3WA0.8515
C13—C141.387 (7)O3W—H3WB0.8500
C13—H130.9300O4W—H4WA0.8501
C14—H140.9300O4W—H4WB0.8501
C15—C201.382 (6)
O1i—Co1—O1180.00 (19)O5—C9—C10118.3 (5)
O1i—Co1—N4ii87.68 (14)N1—C9—C10117.4 (5)
O1—Co1—N4ii92.32 (14)C11—C10—C14117.2 (5)
O1i—Co1—N4iii92.32 (14)C11—C10—C9125.6 (5)
O1—Co1—N4iii87.68 (14)C14—C10—C9117.2 (5)
N4ii—Co1—N4iii180.000 (1)C12—C11—C10119.3 (5)
O1i—Co1—O1W86.75 (14)C12—C11—H11120.3
O1—Co1—O1W93.25 (14)C10—C11—H11120.3
N4ii—Co1—O1W90.98 (15)N2—C12—C11124.1 (5)
N4iii—Co1—O1W89.02 (15)N2—C12—H12117.9
O1i—Co1—O1Wi93.25 (14)C11—C12—H12117.9
O1—Co1—O1Wi86.75 (14)N2—C13—C14123.2 (5)
N4ii—Co1—O1Wi89.02 (15)N2—C13—H13118.4
N4iii—Co1—O1Wi90.98 (15)C14—C13—H13118.4
O1W—Co1—O1Wi180.000 (1)C13—C14—C10119.2 (6)
O2—Gd1—O2W82.58 (12)C13—C14—H14120.4
O2—Gd1—O9v91.01 (14)C10—C14—H14120.4
O2W—Gd1—O9v138.94 (13)C20—C15—C16119.9 (4)
O2—Gd1—O781.95 (12)C20—C15—C21117.8 (4)
O2W—Gd1—O7139.26 (12)C16—C15—C21122.2 (4)
O9v—Gd1—O778.76 (11)C17—C16—C15120.2 (4)
O2—Gd1—O4iv154.21 (12)C17—C16—H16119.9
O2W—Gd1—O4iv120.60 (12)C15—C16—H16119.9
O9v—Gd1—O4iv78.54 (13)C16—C17—C18119.5 (4)
O7—Gd1—O4iv72.97 (12)C16—C17—C22122.6 (4)
O2—Gd1—O3iv152.78 (12)C18—C17—C22117.9 (4)
O2W—Gd1—O3iv71.09 (12)C19—C18—C17120.3 (4)
O9v—Gd1—O3iv104.19 (13)C19—C18—H18119.9
O7—Gd1—O3iv122.72 (12)C17—C18—H18119.9
O4iv—Gd1—O3iv52.79 (11)C18—C19—C20119.4 (4)
O2—Gd1—O8v85.71 (13)C18—C19—N3118.8 (4)
O2W—Gd1—O8v85.98 (12)C20—C19—N3121.8 (4)
O9v—Gd1—O8v53.03 (11)C15—C20—C19120.6 (4)
O7—Gd1—O8v129.89 (11)C15—C20—H20119.7
O4iv—Gd1—O8v105.71 (13)C19—C20—H20119.7
O3iv—Gd1—O8v85.72 (13)O7—C21—O6120.2 (4)
O2—Gd1—O684.41 (13)O7—C21—C15119.0 (4)
O2W—Gd1—O687.95 (12)O6—C21—C15120.8 (4)
O9v—Gd1—O6131.92 (11)O9—C22—O8119.4 (5)
O7—Gd1—O653.19 (11)O9—C22—C17119.6 (4)
O4iv—Gd1—O685.28 (13)O8—C22—C17121.0 (5)
O3iv—Gd1—O6100.97 (13)O9—C22—Gd1viii57.6 (3)
O8v—Gd1—O6169.00 (12)O8—C22—Gd1viii61.8 (3)
O2—Gd1—C22v87.78 (13)C17—C22—Gd1viii176.5 (3)
O2W—Gd1—C22v112.54 (14)O10—C23—N3123.3 (5)
O9v—Gd1—C22v26.43 (13)O10—C23—C24119.8 (5)
O7—Gd1—C22v104.25 (13)N3—C23—C24116.9 (5)
O4iv—Gd1—C22v92.60 (14)C28—C24—C25118.8 (5)
O3iv—Gd1—C22v95.88 (14)C28—C24—C23118.2 (5)
O8v—Gd1—C22v26.61 (12)C25—C24—C23122.9 (5)
O6—Gd1—C22v156.94 (13)C24—C25—C26117.7 (5)
O2—Gd1—C7iv178.34 (13)C24—C25—H25121.2
O2W—Gd1—C7iv96.19 (13)C26—C25—H25121.2
O9v—Gd1—C7iv90.65 (14)N4—C26—C25124.0 (5)
O7—Gd1—C7iv98.34 (13)N4—C26—H26118.0
O4iv—Gd1—C7iv26.48 (12)C25—C26—H26118.0
O3iv—Gd1—C7iv26.34 (12)N4—C27—C28123.6 (5)
O8v—Gd1—C7iv95.32 (13)N4—C27—H27118.2
O6—Gd1—C7iv94.44 (13)C28—C27—H27118.2
C22v—Gd1—C7iv93.72 (14)C27—C28—C24119.2 (5)
C6—C1—C2119.9 (4)C27—C28—H28120.4
C6—C1—C8119.6 (4)C24—C28—H28120.4
C2—C1—C8120.5 (4)C9—N1—C3125.7 (4)
C3—C2—C1120.2 (5)C9—N1—H1117.2
C3—C2—H2119.9C3—N1—H1117.2
C1—C2—H2119.9C12—N2—C13117.0 (5)
C2—C3—C4119.5 (4)C23—N3—C19121.6 (4)
C2—C3—N1118.7 (4)C23—N3—H3119.2
C4—C3—N1121.8 (4)C19—N3—H3119.2
C5—C4—C3119.7 (4)C26—N4—C27116.6 (4)
C5—C4—H4120.2C26—N4—Co1vi121.8 (3)
C3—C4—H4120.2C27—N4—Co1vi121.3 (3)
C6—C5—C4121.2 (4)C8—O1—Co1144.0 (3)
C6—C5—C7120.8 (4)C8—O2—Gd1155.3 (3)
C4—C5—C7118.0 (4)C7—O3—Gd1vii93.8 (3)
C5—C6—C1119.5 (5)C7—O4—Gd1vii94.4 (3)
C5—C6—H6120.3C21—O6—Gd191.1 (3)
C1—C6—H6120.3C21—O7—Gd195.4 (3)
O3—C7—O4118.8 (4)C22—O8—Gd1viii91.5 (3)
O3—C7—C5121.0 (4)C22—O9—Gd1viii96.0 (3)
O4—C7—C5120.1 (4)Co1—O1W—H1WB117.3
O3—C7—Gd1vii59.9 (2)Co1—O1W—H1WA109.9
O4—C7—Gd1vii59.1 (3)H1WB—O1W—H1WA117.8
C5—C7—Gd1vii177.5 (3)Gd1—O2W—H2WA105.0
O1—C8—O2123.9 (5)Gd1—O2W—H2WB110.8
O1—C8—C1118.6 (4)H2WA—O2W—H2WB105.6
O2—C8—C1117.5 (4)H3WA—O3W—H3WB111.2
O5—C9—N1124.3 (5)H4WA—O4W—H4WB107.9
C6—C1—C2—C33.2 (7)O5—C9—N1—C34.4 (9)
C8—C1—C2—C3173.3 (4)C10—C9—N1—C3175.7 (4)
C1—C2—C3—C43.2 (7)C2—C3—N1—C9162.1 (5)
C1—C2—C3—N1176.9 (4)C4—C3—N1—C918.1 (7)
C2—C3—C4—C51.0 (7)C11—C12—N2—C130.8 (9)
N1—C3—C4—C5179.2 (4)C14—C13—N2—C121.2 (9)
C3—C4—C5—C61.3 (7)O10—C23—N3—C195.8 (8)
C3—C4—C5—C7179.2 (4)C24—C23—N3—C19171.8 (4)
C4—C5—C6—C11.3 (7)C18—C19—N3—C23132.4 (5)
C7—C5—C6—C1179.2 (4)C20—C19—N3—C2345.9 (7)
C2—C1—C6—C50.9 (7)C25—C26—N4—C273.1 (7)
C8—C1—C6—C5175.7 (4)C25—C26—N4—Co1vi169.8 (4)
C6—C5—C7—O318.9 (7)C28—C27—N4—C261.1 (8)
C4—C5—C7—O3163.2 (5)C28—C27—N4—Co1vi171.8 (4)
C6—C5—C7—O4159.9 (5)O2—C8—O1—Co1118.9 (5)
C4—C5—C7—O418.0 (7)C1—C8—O1—Co161.6 (7)
C6—C1—C8—O127.7 (7)N4ii—Co1—O1—C831.5 (6)
C2—C1—C8—O1148.9 (5)N4iii—Co1—O1—C8148.5 (6)
C6—C1—C8—O2151.9 (5)O1W—Co1—O1—C8122.6 (6)
C2—C1—C8—O231.5 (7)O1Wi—Co1—O1—C857.4 (6)
O5—C9—C10—C11165.6 (5)O1—C8—O2—Gd175.0 (10)
N1—C9—C10—C1114.5 (8)C1—C8—O2—Gd1105.4 (8)
O5—C9—C10—C1411.8 (8)O2W—Gd1—O2—C892.6 (8)
N1—C9—C10—C14168.1 (5)O9v—Gd1—O2—C8128.1 (8)
C14—C10—C11—C121.3 (8)O7—Gd1—O2—C849.6 (8)
C9—C10—C11—C12176.1 (5)O4iv—Gd1—O2—C862.9 (9)
C10—C11—C12—N20.4 (9)O3iv—Gd1—O2—C8107.1 (8)
N2—C13—C14—C100.4 (9)O8v—Gd1—O2—C8179.1 (8)
C11—C10—C14—C130.9 (8)O6—Gd1—O2—C84.0 (8)
C9—C10—C14—C13176.7 (5)C22v—Gd1—O2—C8154.3 (8)
C20—C15—C16—C171.5 (7)O4—C7—O3—Gd1vii4.0 (5)
C21—C15—C16—C17178.6 (5)C5—C7—O3—Gd1vii177.2 (4)
C15—C16—C17—C181.8 (7)O3—C7—O4—Gd1vii4.0 (5)
C15—C16—C17—C22179.9 (4)C5—C7—O4—Gd1vii177.2 (4)
C16—C17—C18—C190.4 (7)O7—C21—O6—Gd13.4 (5)
C22—C17—C18—C19177.8 (4)C15—C21—O6—Gd1177.4 (4)
C17—C18—C19—C202.8 (7)O2—Gd1—O6—C2186.0 (3)
C17—C18—C19—N3175.6 (4)O2W—Gd1—O6—C21168.7 (3)
C16—C15—C20—C191.0 (7)O9v—Gd1—O6—C210.3 (4)
C21—C15—C20—C19178.9 (5)O7—Gd1—O6—C211.9 (3)
C18—C19—C20—C153.2 (8)O4iv—Gd1—O6—C2170.3 (3)
N3—C19—C20—C15175.2 (4)O3iv—Gd1—O6—C21121.0 (3)
C20—C15—C21—O75.5 (7)O8v—Gd1—O6—C21112.2 (6)
C16—C15—C21—O7174.6 (4)C22v—Gd1—O6—C2115.2 (5)
C20—C15—C21—O6173.8 (4)C7iv—Gd1—O6—C2195.2 (3)
C16—C15—C21—O66.1 (7)O6—C21—O7—Gd13.5 (5)
C16—C17—C22—O9167.4 (5)C15—C21—O7—Gd1177.2 (4)
C18—C17—C22—O914.5 (7)O2—Gd1—O7—C2191.0 (3)
C16—C17—C22—O813.5 (7)O2W—Gd1—O7—C2122.3 (4)
C18—C17—C22—O8164.7 (5)O9v—Gd1—O7—C21176.4 (3)
O10—C23—C24—C2841.3 (7)O4iv—Gd1—O7—C2195.1 (3)
N3—C23—C24—C28136.4 (5)O3iv—Gd1—O7—C2176.6 (3)
O10—C23—C24—C25134.8 (6)O8v—Gd1—O7—C21168.4 (3)
N3—C23—C24—C2547.5 (7)O6—Gd1—O7—C211.9 (3)
C28—C24—C25—C261.5 (7)C22v—Gd1—O7—C21176.6 (3)
C23—C24—C25—C26177.5 (5)C7iv—Gd1—O7—C2187.4 (3)
C24—C25—C26—N41.8 (8)O9—C22—O8—Gd1viii1.6 (5)
N4—C27—C28—C242.0 (8)C17—C22—O8—Gd1viii177.6 (4)
C25—C24—C28—C273.3 (8)O8—C22—O9—Gd1viii1.6 (5)
C23—C24—C28—C27179.5 (5)C17—C22—O9—Gd1viii177.5 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x, y, z1; (iv) x, y1, z; (v) x1, y, z; (vi) x, y, z+1; (vii) x, y+1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wix0.862.162.999 (6)166
N3—H3···O4ii0.862.152.942 (6)152
O1W—H1WA···O6i0.822.252.992 (5)151
O1W—H1WB···O3Wx0.852.032.753 (6)143
O2W—H2WA···O3Wxi0.852.403.130 (6)144
O2W—H2WB···N2iii0.851.922.676 (6)147
O3W—H3WA···O3x0.851.912.737 (6)163
O3W—H3WB···O8v0.851.972.781 (6)160
O4W—H4WA···O9xii0.852.263.097 (6)170
O4W—H4WB···O9ii0.852.183.028 (6)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x, y, z1; (v) x1, y, z; (ix) x+1, y+1, z+2; (x) x+1, y+1, z+1; (xi) x+1, y, z+1; (xii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[CoGd2(C14H8N2O5)4(H2O)4]·4H2O
Mr1654.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1457 (14), 10.8728 (15), 13.7552 (19)
α, β, γ (°)79.123 (2), 78.844 (3), 86.317 (2)
V3)1461.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.622, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
7307, 5053, 4462
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.00
No. of reflections5053
No. of parameters430
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.88

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.083 (3)Gd1—O4ii2.420 (3)
Co1—O1W2.178 (4)Gd1—O62.487 (3)
Co1—N4i2.159 (4)Gd1—O72.408 (3)
Gd1—O22.246 (3)Gd1—O8iii2.475 (3)
Gd1—O2W2.365 (3)Gd1—O9iii2.382 (3)
Gd1—O3ii2.436 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wiv0.862.162.999 (6)166
N3—H3···O4v0.862.152.942 (6)152
O1W—H1WA···O6vi0.822.252.992 (5)151
O1W—H1WB···O3Wvii0.852.032.753 (6)143
O2W—H2WA···O3Wviii0.852.403.130 (6)144
O2W—H2WB···N2i0.851.922.676 (6)147
O3W—H3WA···O3vii0.851.912.737 (6)163
O3W—H3WB···O8iii0.851.972.781 (6)160
O4W—H4WA···O9ix0.852.263.097 (6)170
O4W—H4WB···O9v0.852.183.028 (6)172
Symmetry codes: (i) x, y, z1; (iii) x1, y, z; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+2; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x1, y+1, z.
 

Acknowledgements

This work was supported by the Open Fund Project of Key Laboratories in Hunan Universities (11 K009) and the Science Foundation of Hengyang Normal University of China (10B67).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257–9261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds