organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 4-nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wxzoupei@126.com

(Received 22 September 2011; accepted 26 September 2011; online 30 September 2011)

In the mol­ecule of the title compound, C10H11NO4, the nitro group is approximately coplanar with the benzene ring [dihedral angle = 4.57 (10)°], while the carboxyl­ate group is slightly twisted, making an angle of 12.16 (8)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonding and ππ stacking inter­actions [centroid–centroid distances = 3.670 (2) and 3.665 (2) Å] are observed.

Related literature

For applications of benzoates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1990[Zhang, Z.-S., Wu, J.-G. & Deng, R.-W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69-75.], 1995[Zhang, A.-Y., Qian, B., Min, J. & Fang, Q.-X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44-47.]). For a related structure, see: Wu et al. (2009[Wu, H., Xie, M.-H., Zou, P., Liu, Y.-L. & He, Y.-J. (2009). Acta Cryst. E65, o3096.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO4

  • Mr = 209.20

  • Triclinic, [P \overline 1]

  • a = 6.729 (4) Å

  • b = 7.192 (4) Å

  • c = 10.388 (6) Å

  • α = 94.751 (9)°

  • β = 92.503 (7)°

  • γ = 95.901 (10)°

  • V = 497.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 153 K

  • 0.37 × 0.33 × 0.10 mm

Data collection
  • Rigaku SPIDER diffractometer

  • 6626 measured reflections

  • 2862 independent reflections

  • 1947 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.150

  • S = 1.00

  • 2862 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.95 2.46 3.311 (3) 149
C4—H4⋯O2ii 0.95 2.46 3.294 (3) 147
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are widely used all over the world (Zhang et al., 1995; Zhang et al., 1990). The crystal structure of methyl 4-nitrobenzoate has been reported (Wu et al., 2009). As an extension of our study, we report here the crystal structure of the title compound.

In the structure of the title compound (Fig. 1) the bond lengths and angles are within expected ranges. The nitro substituent group is nearly coplanar with the benzene ring (dihedral angle, 4.57 (10)°), while the ester group forms a dihedral angle of 12.16 (8)° with the benzene ring. In the crystal structure, adjacent molecules are linked together by weak C—H···O hydrogen bonds (Table 1). π-π stacking is observed between parallel benzene rings, centroids distances being 3.670 (2) [symmetry code -x,1-y,1-z] and 3.665 (2) Å [symmetry code 1-x,1-y,1-z].

Related literature top

For applications of benzoates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1990, 1995). For a related structure, see: Wu et al. (2009).

Experimental top

A sample of commercial isopropyl 4-nitrobenzoate was crystallized by slow evaporation of a solution in methanol, colorless platelet-shaped crystals were formed after several days.

Refinement top

Positional parameters of all the H atoms bonds to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Caromatic—H = 0.95 Å, Uiso(H) = 1.2Ueq(Caromatic); Cmethyl—H = 0.98 Å, Uiso(H) = 1.5Ueq(Cmethyl) and Cmethylidyne—H = 1.00 Å, Uiso(H) = 1.2Ueq(Cmethylidyne).

Structure description top

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are widely used all over the world (Zhang et al., 1995; Zhang et al., 1990). The crystal structure of methyl 4-nitrobenzoate has been reported (Wu et al., 2009). As an extension of our study, we report here the crystal structure of the title compound.

In the structure of the title compound (Fig. 1) the bond lengths and angles are within expected ranges. The nitro substituent group is nearly coplanar with the benzene ring (dihedral angle, 4.57 (10)°), while the ester group forms a dihedral angle of 12.16 (8)° with the benzene ring. In the crystal structure, adjacent molecules are linked together by weak C—H···O hydrogen bonds (Table 1). π-π stacking is observed between parallel benzene rings, centroids distances being 3.670 (2) [symmetry code -x,1-y,1-z] and 3.665 (2) Å [symmetry code 1-x,1-y,1-z].

For applications of benzoates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1990, 1995). For a related structure, see: Wu et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
Isopropyl 4-nitrobenzoate top
Crystal data top
C10H11NO4Z = 2
Mr = 209.20F(000) = 220
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.729 (4) ÅCell parameters from 1490 reflections
b = 7.192 (4) Åθ = 2.9–30.0°
c = 10.388 (6) ŵ = 0.11 mm1
α = 94.751 (9)°T = 153 K
β = 92.503 (7)°Platelet, colorless
γ = 95.901 (10)°0.37 × 0.33 × 0.10 mm
V = 497.6 (5) Å3
Data collection top
Rigaku SPIDER
diffractometer
1947 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
ω scansh = 99
6626 measured reflectionsk = 109
2862 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.071P)2 + 0.196P]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H11NO4γ = 95.901 (10)°
Mr = 209.20V = 497.6 (5) Å3
Triclinic, P1Z = 2
a = 6.729 (4) ÅMo Kα radiation
b = 7.192 (4) ŵ = 0.11 mm1
c = 10.388 (6) ÅT = 153 K
α = 94.751 (9)°0.37 × 0.33 × 0.10 mm
β = 92.503 (7)°
Data collection top
Rigaku SPIDER
diffractometer
1947 reflections with I > 2σ(I)
6626 measured reflectionsRint = 0.023
2862 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
2862 reflectionsΔρmin = 0.29 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24504 (18)0.35230 (15)0.12880 (10)0.0258 (3)
O20.3016 (2)0.12996 (17)0.26213 (12)0.0375 (3)
O30.2023 (2)0.79014 (18)0.77175 (11)0.0381 (3)
O40.2382 (3)1.00939 (19)0.64283 (13)0.0513 (4)
N10.2278 (2)0.8444 (2)0.66434 (13)0.0288 (3)
C10.2535 (2)0.3845 (2)0.47750 (14)0.0226 (3)
H10.25400.25590.49220.027*
C20.2421 (2)0.5176 (2)0.58075 (14)0.0233 (3)
H20.23250.48180.66650.028*
C30.2450 (2)0.7032 (2)0.55569 (14)0.0221 (3)
C40.2586 (2)0.7627 (2)0.43241 (14)0.0234 (3)
H40.26180.89190.41860.028*
C50.2672 (2)0.6275 (2)0.32976 (14)0.0223 (3)
H50.27520.66380.24410.027*
C60.2642 (2)0.4393 (2)0.35198 (14)0.0207 (3)
C70.2732 (2)0.2890 (2)0.24432 (14)0.0225 (3)
C80.2391 (2)0.2167 (2)0.01385 (15)0.0252 (3)
H80.20270.08700.03920.030*
C90.4432 (3)0.2293 (3)0.04028 (18)0.0374 (4)
H9A0.47660.35510.06820.056*
H9B0.44350.13580.11450.056*
H9C0.54240.20520.02650.056*
C100.0769 (3)0.2689 (3)0.07652 (17)0.0376 (4)
H10A0.04970.26380.03310.056*
H10B0.06240.18060.15430.056*
H10C0.11250.39630.10100.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (7)0.0214 (5)0.0164 (5)0.0043 (4)0.0039 (4)0.0014 (4)
O20.0614 (9)0.0256 (6)0.0276 (6)0.0129 (6)0.0017 (6)0.0047 (5)
O30.0533 (8)0.0423 (7)0.0184 (6)0.0022 (6)0.0076 (5)0.0014 (5)
O40.0989 (13)0.0302 (7)0.0272 (7)0.0169 (7)0.0103 (7)0.0003 (5)
N10.0359 (8)0.0324 (7)0.0185 (6)0.0060 (6)0.0028 (5)0.0004 (5)
C10.0229 (7)0.0240 (7)0.0218 (7)0.0027 (6)0.0012 (5)0.0071 (5)
C20.0234 (7)0.0296 (8)0.0174 (6)0.0024 (6)0.0014 (5)0.0061 (5)
C30.0223 (7)0.0275 (7)0.0165 (6)0.0035 (6)0.0021 (5)0.0006 (5)
C40.0290 (8)0.0229 (7)0.0191 (7)0.0046 (6)0.0025 (6)0.0035 (5)
C50.0265 (8)0.0257 (7)0.0158 (6)0.0043 (6)0.0036 (5)0.0047 (5)
C60.0197 (7)0.0245 (7)0.0183 (6)0.0030 (5)0.0021 (5)0.0034 (5)
C70.0245 (7)0.0234 (7)0.0201 (7)0.0030 (6)0.0030 (5)0.0041 (5)
C80.0341 (9)0.0198 (7)0.0209 (7)0.0016 (6)0.0039 (6)0.0021 (5)
C90.0406 (10)0.0350 (9)0.0352 (9)0.0023 (7)0.0103 (8)0.0087 (7)
C100.0462 (11)0.0389 (10)0.0276 (8)0.0134 (8)0.0034 (7)0.0064 (7)
Geometric parameters (Å, º) top
O1—C71.3309 (18)C4—H40.9500
O1—C81.4741 (18)C5—C61.390 (2)
O2—C71.2067 (19)C5—H50.9500
O3—N11.2255 (18)C6—C71.497 (2)
O4—N11.221 (2)C8—C91.503 (2)
N1—C31.471 (2)C8—C101.506 (2)
C1—C21.387 (2)C8—H81.0000
C1—C61.396 (2)C9—H9A0.9800
C1—H10.9500C9—H9B0.9800
C2—C31.380 (2)C9—H9C0.9800
C2—H20.9500C10—H10A0.9800
C3—C41.387 (2)C10—H10B0.9800
C4—C51.390 (2)C10—H10C0.9800
C7—O1—C8117.82 (12)O2—C7—O1124.91 (14)
O4—N1—O3123.35 (14)O2—C7—C6123.18 (14)
O4—N1—C3118.42 (13)O1—C7—C6111.91 (13)
O3—N1—C3118.23 (14)O1—C8—C9108.43 (13)
C2—C1—C6120.08 (14)O1—C8—C10105.50 (13)
C2—C1—H1120.0C9—C8—C10114.14 (15)
C6—C1—H1120.0O1—C8—H8109.5
C3—C2—C1118.24 (14)C9—C8—H8109.5
C3—C2—H2120.9C10—C8—H8109.5
C1—C2—H2120.9C8—C9—H9A109.5
C2—C3—C4123.15 (14)C8—C9—H9B109.5
C2—C3—N1118.50 (13)H9A—C9—H9B109.5
C4—C3—N1118.34 (14)C8—C9—H9C109.5
C3—C4—C5117.92 (14)H9A—C9—H9C109.5
C3—C4—H4121.0H9B—C9—H9C109.5
C5—C4—H4121.0C8—C10—H10A109.5
C4—C5—C6120.24 (13)C8—C10—H10B109.5
C4—C5—H5119.9H10A—C10—H10B109.5
C6—C5—H5119.9C8—C10—H10C109.5
C5—C6—C1120.35 (13)H10A—C10—H10C109.5
C5—C6—C7122.02 (13)H10B—C10—H10C109.5
C1—C6—C7117.62 (14)
C6—C1—C2—C31.0 (2)C4—C5—C6—C7179.97 (14)
C1—C2—C3—C40.1 (2)C2—C1—C6—C51.2 (2)
C1—C2—C3—N1178.46 (13)C2—C1—C6—C7179.10 (14)
O4—N1—C3—C2177.20 (16)C8—O1—C7—O22.8 (2)
O3—N1—C3—C23.3 (2)C8—O1—C7—C6176.78 (12)
O4—N1—C3—C44.3 (2)C5—C6—C7—O2168.27 (16)
O3—N1—C3—C4175.17 (15)C1—C6—C7—O211.5 (2)
C2—C3—C4—C50.8 (2)C5—C6—C7—O112.1 (2)
N1—C3—C4—C5177.64 (14)C1—C6—C7—O1168.17 (13)
C3—C4—C5—C60.6 (2)C7—O1—C8—C996.71 (16)
C4—C5—C6—C10.3 (2)C7—O1—C8—C10140.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.952.463.311 (3)149
C4—H4···O2ii0.952.463.294 (3)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H11NO4
Mr209.20
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)6.729 (4), 7.192 (4), 10.388 (6)
α, β, γ (°)94.751 (9), 92.503 (7), 95.901 (10)
V3)497.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.37 × 0.33 × 0.10
Data collection
DiffractometerRigaku SPIDER
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6626, 2862, 1947
Rint0.023
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.150, 1.00
No. of reflections2862
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.29

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.952.463.311 (3)149
C4—H4···O2ii0.952.463.294 (3)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine, China.

References

First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Xie, M.-H., Zou, P., Liu, Y.-L. & He, Y.-J. (2009). Acta Cryst. E65, o3096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, A.-Y., Qian, B., Min, J. & Fang, Q.-X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44–47.  CAS Google Scholar
First citationZhang, Z.-S., Wu, J.-G. & Deng, R.-W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69–75.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds