metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­benzoato)-κ2O,O′;κO-(2,2′-bi­pyridine-κ2N,N′)zinc

aDepartment of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 24 September 2011; accepted 26 September 2011; online 30 September 2011)

In the title complex, [Zn(C7H6NO2)2(C10H8N2)], the ZnII cation is coordinated by two amino­benzoate anions and one 2,2′-bipyridine ligand in a distorted trigonal–bipyramidal geometry. The carboxyl­ate group of one aminobenzoate anion coordinates to the ZnII cation in a monodentate manner, whereas the carboxyl­ate group of the other amino­benzoate anion chelates the Zn cation with different Zn—O bond lengths. Inter­molecular N—H⋯N and N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of Zn complexes, see: Chohan & Naseer (2007[Chohan, Z. H. & Naseer, M. M. (2007). Appl. Organomet. Chem. 21, 728-738.]); Huang et al. (2006[Huang, Q.-M., Pan, Z.-Q. & Wang, P. (2006). Bioorg. Med. Chem. Lett. 16, 3030-3033.]); Ispir et al. (2006[Ispir, E., Kurtoglu, M. & Toroglu, S. (2006). Synth. React. Inorg. Met. Org. Chem. 36, 627-631.]); Lo et al. (2007[Lo, P.-C., Zhao, B.-Z. & Duan, W.-B. (2007). Bioorg. Med. Chem. Lett. 17, 1073-1077.]); Maria et al. (1996[Maria, A. Z., Roberto, D. & Stefano, M. (1996). Polyhedron, pp. 277-283.]). For a related structure, see: Wang et al. (2005[Wang, R.-H., Jiang, F.-L., Zhou, Y.-F., Han, L. & Hong, M.-C. (2005). Inorg. Chim. Acta, 358, 545-554.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H6NO2)2(C10H8N2)]

  • Mr = 493.81

  • Triclinic, [P \overline 1]

  • a = 7.9499 (14) Å

  • b = 10.7281 (19) Å

  • c = 13.905 (2) Å

  • α = 80.499 (2)°

  • β = 80.921 (2)°

  • γ = 70.538 (2)°

  • V = 1096.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 K

  • 0.42 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.914

  • 8223 measured reflections

  • 4058 independent reflections

  • 3419 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.07

  • 4058 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9269 (18)
Zn1—O3 1.9704 (18)
Zn1—O4 2.395 (2)
Zn1—N3 2.124 (2)
Zn1—N4 2.088 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯N2i 0.88 2.33 3.202 (4) 169
N1—H1E⋯O2ii 0.88 2.36 3.181 (4) 155
N2—H2E⋯O2iii 0.88 2.28 3.116 (4) 159
Symmetry codes: (i) x-2, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent decades, zinc complexes have received much attention because of their interesting with biological ligands to generate stable mixed coordinated complexes, which play a key role in life process such as anti-cancer, antiseptic and anti-inflammatory (Ispir et al., 2006; Chohan & Naseer, 2007; Huang et al., 2006; Lo et al., 2007). 4-Aminobenzoic acid as an important part in the folic acid, which is a constituent of the vitamin B complex and is found in animal and plant tissues, has been shown to be a growth factor in certain microorganisms (Maria et al., 1996). In order to extend further the study of 4-aminobenzoic acid ligand coordinate to zinc ion, we synthesized the title complex and determined the crystal structure.

The asymmetric unit of 1 contains one zinc cation, two 4-aminobenzoic ion, and one 2,2'-bipyridine molecule. The Zn(II) atom is five-coordinated, forming a distorted trigonal-bipyramidal (Table 1). In the coordination polyhedron, the equatorial plane is occupied by two O(O1,O3) atoms from different 4-aba and one N(N4) atom from 2,2'-bipyridine, at the apex is situated one O(O4) atom from 4-aba and one N(N3) atom from 2,2'-bipyridine (Fig 1). The Zn(II) center is coordinated by two types of 4-aba: one behaves in an unsymmetrical chelating mode [Zn—O(3) 1.9704 (18) and Zn—O(4) 2.395 (2) Å]; the other acts as a monodentate ligand through one carboxylate oxygen atom [Zn—O(1) 1.9269 (18) and Zn—O(2) 2.841 Å], which is similar to previously reported complex {[Zn2(4,4'-bipy)2(4-aba)4](H2O)5} (Wang et al., 2005). The dihedral angle between phenyl rings of the two 4-aba is 81.83 (7)°.

Hydrogen bonds are observed between the molecules in the crystal structure (Table 2).

Related literature top

For applications of Zn complexes, see: Chohan & Naseer (2007); Huang et al. (2006); Ispir et al. (2006); Lo et al. (2007); Maria et al. (1996). For a related structure, see: Wang et al. (2005).

Experimental top

An aqueous solution (5 ml) of ZnC4H6O4.2H2O (1 mmol) was added slowly to a mixed solution of 4-aminobenzoic acid (1.5 mmol) in H2O (5 ml) and 2,2'-bipyridine (1 mmol) in ethanol (95%, 5 ml). After refluxing for 3 h, the mixture was filtered off while hot. The colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature after a month.

Refinement top

H atoms were placed geometrically and treated as riding, C—H = 0.93 and N—H = 0.88 Å, Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Structure description top

In recent decades, zinc complexes have received much attention because of their interesting with biological ligands to generate stable mixed coordinated complexes, which play a key role in life process such as anti-cancer, antiseptic and anti-inflammatory (Ispir et al., 2006; Chohan & Naseer, 2007; Huang et al., 2006; Lo et al., 2007). 4-Aminobenzoic acid as an important part in the folic acid, which is a constituent of the vitamin B complex and is found in animal and plant tissues, has been shown to be a growth factor in certain microorganisms (Maria et al., 1996). In order to extend further the study of 4-aminobenzoic acid ligand coordinate to zinc ion, we synthesized the title complex and determined the crystal structure.

The asymmetric unit of 1 contains one zinc cation, two 4-aminobenzoic ion, and one 2,2'-bipyridine molecule. The Zn(II) atom is five-coordinated, forming a distorted trigonal-bipyramidal (Table 1). In the coordination polyhedron, the equatorial plane is occupied by two O(O1,O3) atoms from different 4-aba and one N(N4) atom from 2,2'-bipyridine, at the apex is situated one O(O4) atom from 4-aba and one N(N3) atom from 2,2'-bipyridine (Fig 1). The Zn(II) center is coordinated by two types of 4-aba: one behaves in an unsymmetrical chelating mode [Zn—O(3) 1.9704 (18) and Zn—O(4) 2.395 (2) Å]; the other acts as a monodentate ligand through one carboxylate oxygen atom [Zn—O(1) 1.9269 (18) and Zn—O(2) 2.841 Å], which is similar to previously reported complex {[Zn2(4,4'-bipy)2(4-aba)4](H2O)5} (Wang et al., 2005). The dihedral angle between phenyl rings of the two 4-aba is 81.83 (7)°.

Hydrogen bonds are observed between the molecules in the crystal structure (Table 2).

For applications of Zn complexes, see: Chohan & Naseer (2007); Huang et al. (2006); Ispir et al. (2006); Lo et al. (2007); Maria et al. (1996). For a related structure, see: Wang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Projection showing the two-dimensional structure formed by H-bonding interaction of the compound (I).
Bis(4-aminobenzoato)-κ2O,O';κO- (2,2'-bipyridine-κ2N,N')zinc top
Crystal data top
[Zn(C7H6NO2)2(C10H8N2)]Z = 2
Mr = 493.81F(000) = 508
Triclinic, P1Dx = 1.496 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9499 (14) ÅCell parameters from 2868 reflections
b = 10.7281 (19) Åθ = 2.4–24.9°
c = 13.905 (2) ŵ = 1.16 mm1
α = 80.499 (2)°T = 295 K
β = 80.921 (2)°Block, colourless
γ = 70.538 (2)°0.42 × 0.23 × 0.08 mm
V = 1096.1 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed tube3419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.643, Tmax = 0.914k = 1212
8223 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.2825P]
where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C7H6NO2)2(C10H8N2)]γ = 70.538 (2)°
Mr = 493.81V = 1096.1 (3) Å3
Triclinic, P1Z = 2
a = 7.9499 (14) ÅMo Kα radiation
b = 10.7281 (19) ŵ = 1.16 mm1
c = 13.905 (2) ÅT = 295 K
α = 80.499 (2)°0.42 × 0.23 × 0.08 mm
β = 80.921 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3419 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.914Rint = 0.024
8223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
4058 reflectionsΔρmin = 0.31 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.14918 (4)0.12380 (3)0.19516 (2)0.04021 (12)
O10.1044 (2)0.2151 (2)0.21855 (14)0.0528 (5)
O20.0311 (3)0.3661 (2)0.27669 (18)0.0732 (7)
O30.3785 (3)0.10054 (19)0.24420 (15)0.0558 (5)
O40.2405 (3)0.0296 (2)0.33755 (15)0.0663 (6)
N10.8907 (3)0.5767 (3)0.3483 (2)0.0678 (7)
H1D0.92910.62590.39710.102*
H1E0.96110.53230.33890.102*
N21.0034 (4)0.2214 (3)0.5101 (2)0.0788 (9)
H2D1.05480.16040.51010.118*
H2E0.98100.26100.56930.118*
N30.2165 (3)0.1976 (2)0.04781 (16)0.0502 (6)
N40.1805 (3)0.0382 (2)0.12124 (15)0.0419 (5)
C10.3406 (3)0.3914 (2)0.28122 (17)0.0362 (5)
C20.4024 (4)0.4919 (3)0.3417 (2)0.0488 (7)
H20.32010.51850.36700.059*
C30.5831 (4)0.5529 (3)0.3648 (2)0.0537 (7)
H30.62110.61960.40570.064*
C40.7100 (3)0.5157 (3)0.3275 (2)0.0444 (6)
C50.6484 (3)0.4166 (2)0.26597 (19)0.0417 (6)
H50.73030.39140.23910.050*
C60.4677 (3)0.3554 (2)0.24420 (18)0.0375 (5)
H60.42970.28820.20360.045*
C70.1451 (3)0.3227 (3)0.25832 (18)0.0423 (6)
C80.5359 (3)0.0506 (2)0.36920 (17)0.0368 (5)
C90.5508 (4)0.1572 (3)0.44177 (19)0.0479 (7)
H90.45600.19190.45890.058*
C100.7028 (4)0.2133 (3)0.4894 (2)0.0560 (8)
H100.71050.28610.53720.067*
C110.8444 (4)0.1614 (3)0.4663 (2)0.0495 (7)
C120.8290 (3)0.0533 (3)0.3952 (2)0.0474 (6)
H120.92220.01670.37960.057*
C130.6791 (3)0.0007 (3)0.34731 (18)0.0416 (6)
H130.67230.07300.29920.050*
C140.3746 (3)0.0096 (3)0.3162 (2)0.0456 (6)
C150.2298 (5)0.3190 (3)0.0162 (3)0.0771 (10)
H150.20110.38090.06070.093*
C160.2848 (7)0.3549 (4)0.0801 (3)0.1001 (14)
H160.29200.44020.10060.120*
C170.3286 (6)0.2642 (5)0.1448 (3)0.0988 (14)
H170.36780.28650.21000.119*
C180.3146 (5)0.1395 (4)0.1135 (2)0.0714 (9)
H180.34370.07650.15710.086*
C190.2563 (3)0.1089 (3)0.01574 (19)0.0479 (7)
C200.2330 (3)0.0219 (3)0.02410 (19)0.0461 (6)
C210.2580 (5)0.1217 (3)0.0330 (2)0.0702 (9)
H210.29290.10970.10000.084*
C220.2307 (6)0.2389 (4)0.0103 (3)0.0783 (10)
H220.24700.30690.02740.094*
C230.1794 (5)0.2557 (3)0.1088 (2)0.0673 (9)
H230.16070.33480.13900.081*
C240.1561 (4)0.1535 (3)0.1622 (2)0.0534 (7)
H240.12210.16480.22930.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03267 (17)0.04633 (19)0.03920 (18)0.00652 (13)0.00538 (12)0.00961 (13)
O10.0335 (9)0.0589 (12)0.0619 (12)0.0044 (9)0.0064 (8)0.0168 (10)
O20.0385 (11)0.0841 (16)0.1075 (19)0.0255 (11)0.0096 (11)0.0263 (14)
O30.0480 (11)0.0515 (12)0.0688 (13)0.0078 (9)0.0261 (10)0.0074 (10)
O40.0385 (11)0.1067 (18)0.0642 (13)0.0291 (11)0.0019 (9)0.0299 (12)
N10.0407 (13)0.0650 (17)0.092 (2)0.0066 (12)0.0100 (13)0.0317 (15)
N20.0660 (18)0.0786 (19)0.0765 (19)0.0202 (15)0.0384 (15)0.0286 (15)
N30.0525 (14)0.0509 (14)0.0436 (13)0.0125 (11)0.0062 (11)0.0024 (11)
N40.0386 (11)0.0477 (13)0.0367 (12)0.0080 (10)0.0058 (9)0.0080 (10)
C10.0333 (12)0.0379 (13)0.0360 (13)0.0109 (10)0.0050 (10)0.0006 (11)
C20.0466 (16)0.0530 (17)0.0544 (17)0.0212 (13)0.0054 (13)0.0165 (13)
C30.0538 (17)0.0496 (17)0.0607 (18)0.0152 (14)0.0040 (14)0.0272 (14)
C40.0370 (13)0.0389 (14)0.0521 (16)0.0087 (11)0.0046 (12)0.0069 (12)
C50.0346 (13)0.0412 (14)0.0519 (15)0.0135 (11)0.0053 (11)0.0092 (12)
C60.0361 (13)0.0355 (13)0.0392 (13)0.0078 (10)0.0030 (10)0.0089 (11)
C70.0371 (14)0.0484 (16)0.0369 (14)0.0096 (12)0.0068 (11)0.0012 (12)
C80.0330 (12)0.0403 (14)0.0373 (13)0.0090 (10)0.0007 (10)0.0133 (11)
C90.0513 (16)0.0508 (16)0.0463 (15)0.0246 (13)0.0056 (13)0.0115 (13)
C100.074 (2)0.0433 (16)0.0413 (15)0.0070 (15)0.0095 (14)0.0011 (12)
C110.0436 (15)0.0522 (16)0.0433 (15)0.0072 (13)0.0117 (12)0.0200 (13)
C120.0339 (13)0.0607 (18)0.0493 (16)0.0137 (13)0.0017 (12)0.0166 (14)
C130.0380 (14)0.0432 (14)0.0421 (14)0.0116 (11)0.0056 (11)0.0025 (11)
C140.0349 (14)0.0535 (17)0.0504 (16)0.0071 (12)0.0044 (12)0.0270 (14)
C150.111 (3)0.059 (2)0.064 (2)0.034 (2)0.013 (2)0.0027 (17)
C160.150 (4)0.081 (3)0.072 (3)0.056 (3)0.009 (3)0.021 (2)
C170.128 (4)0.107 (3)0.055 (2)0.048 (3)0.008 (2)0.013 (2)
C180.083 (2)0.077 (2)0.0436 (17)0.0196 (19)0.0055 (16)0.0039 (16)
C190.0380 (14)0.0542 (17)0.0414 (15)0.0035 (12)0.0025 (11)0.0029 (13)
C200.0405 (14)0.0507 (16)0.0413 (15)0.0034 (12)0.0083 (11)0.0093 (12)
C210.095 (3)0.065 (2)0.0431 (17)0.0107 (19)0.0063 (17)0.0166 (15)
C220.114 (3)0.058 (2)0.063 (2)0.017 (2)0.016 (2)0.0232 (17)
C230.090 (2)0.0486 (18)0.066 (2)0.0206 (17)0.0171 (18)0.0092 (16)
C240.0610 (18)0.0525 (17)0.0464 (16)0.0170 (14)0.0079 (13)0.0054 (13)
Geometric parameters (Å, º) top
Zn1—O11.9269 (18)C6—H60.9300
Zn1—O31.9704 (18)C8—C91.381 (4)
Zn1—O42.395 (2)C8—C131.394 (3)
Zn1—N32.124 (2)C8—C141.481 (4)
Zn1—N42.088 (2)C9—C101.377 (4)
Zn1—C142.521 (3)C9—H90.9300
O1—C71.284 (3)C10—C111.387 (4)
O2—C71.223 (3)C10—H100.9300
O3—C141.282 (3)C11—C121.380 (4)
O4—C141.249 (3)C12—C131.364 (3)
N1—C41.372 (3)C12—H120.9300
N1—H1D0.8818C13—H130.9300
N1—H1E0.8820C15—C161.375 (5)
N2—C111.397 (3)C15—H150.9300
N2—H2D0.8798C16—C171.358 (6)
N2—H2E0.8825C16—H160.9300
N3—C191.332 (4)C17—C181.372 (5)
N3—C151.338 (4)C17—H170.9300
N4—C241.335 (3)C18—C191.388 (4)
N4—C201.350 (3)C18—H180.9300
C1—C21.388 (4)C19—C201.481 (4)
C1—C61.388 (3)C20—C211.381 (4)
C1—C71.490 (3)C21—C221.371 (5)
C2—C31.375 (4)C21—H210.9300
C2—H20.9300C22—C231.367 (5)
C3—C41.396 (4)C22—H220.9300
C3—H30.9300C23—C241.371 (4)
C4—C51.386 (4)C23—H230.9300
C5—C61.373 (3)C24—H240.9300
C5—H50.9300
O1—Zn1—O3141.27 (9)C13—C8—C14120.3 (2)
O1—Zn1—N4107.51 (8)C10—C9—C8121.5 (3)
O3—Zn1—N4108.58 (8)C10—C9—H9119.2
O1—Zn1—N3103.23 (9)C8—C9—H9119.2
O3—Zn1—N397.43 (9)C9—C10—C11120.2 (3)
N4—Zn1—N378.22 (9)C9—C10—H10119.9
O1—Zn1—O4108.31 (8)C11—C10—H10119.9
O3—Zn1—O459.37 (8)C12—C11—C10118.6 (2)
N4—Zn1—O488.61 (8)C12—C11—N2120.4 (3)
N3—Zn1—O4148.23 (8)C10—C11—N2120.9 (3)
O1—Zn1—C14129.59 (8)C13—C12—C11121.0 (3)
O3—Zn1—C1430.11 (8)C13—C12—H12119.5
N4—Zn1—C1498.66 (8)C11—C12—H12119.5
N3—Zn1—C14124.19 (9)C12—C13—C8121.2 (2)
O4—Zn1—C1429.29 (8)C12—C13—H13119.4
C7—O1—Zn1114.85 (16)C8—C13—H13119.4
C14—O3—Zn199.43 (16)O4—C14—O3120.2 (3)
C14—O4—Zn180.92 (18)O4—C14—C8121.8 (3)
C4—N1—H1D119.3O3—C14—C8118.0 (2)
C4—N1—H1E115.8O4—C14—Zn169.79 (16)
H1D—N1—H1E115.8O3—C14—Zn150.46 (12)
C11—N2—H2D108.4C8—C14—Zn1167.2 (2)
C11—N2—H2E110.2N3—C15—C16121.9 (4)
H2D—N2—H2E113.1N3—C15—H15119.1
C19—N3—C15119.3 (3)C16—C15—H15119.1
C19—N3—Zn1114.43 (18)C17—C16—C15119.1 (4)
C15—N3—Zn1126.2 (2)C17—C16—H16120.5
C24—N4—C20119.2 (2)C15—C16—H16120.5
C24—N4—Zn1125.67 (18)C16—C17—C18119.6 (3)
C20—N4—Zn1115.14 (18)C16—C17—H17120.2
C2—C1—C6117.6 (2)C18—C17—H17120.2
C2—C1—C7121.3 (2)C17—C18—C19118.9 (3)
C6—C1—C7121.1 (2)C17—C18—H18120.5
C3—C2—C1121.3 (2)C19—C18—H18120.5
C3—C2—H2119.4N3—C19—C18121.2 (3)
C1—C2—H2119.4N3—C19—C20116.1 (2)
C2—C3—C4120.8 (2)C18—C19—C20122.7 (3)
C2—C3—H3119.6N4—C20—C21120.7 (3)
C4—C3—H3119.6N4—C20—C19115.9 (2)
N1—C4—C5120.3 (3)C21—C20—C19123.4 (3)
N1—C4—C3121.7 (3)C22—C21—C20119.3 (3)
C5—C4—C3118.0 (2)C22—C21—H21120.4
C6—C5—C4120.8 (2)C20—C21—H21120.4
C6—C5—H5119.6C23—C22—C21119.9 (3)
C4—C5—H5119.6C23—C22—H22120.0
C5—C6—C1121.6 (2)C21—C22—H22120.0
C5—C6—H6119.2C22—C23—C24118.5 (3)
C1—C6—H6119.2C22—C23—H23120.7
O2—C7—O1122.4 (2)C24—C23—H23120.7
O2—C7—C1122.0 (3)N4—C24—C23122.4 (3)
O1—C7—C1115.6 (2)N4—C24—H24118.8
C9—C8—C13117.5 (2)C23—C24—H24118.8
C9—C8—C14122.2 (2)
O3—Zn1—O1—C726.2 (3)C10—C11—C12—C130.9 (4)
N4—Zn1—O1—C7175.82 (17)N2—C11—C12—C13175.6 (2)
N3—Zn1—O1—C794.20 (19)C11—C12—C13—C80.6 (4)
O4—Zn1—O1—C789.73 (19)C9—C8—C13—C120.6 (4)
C14—Zn1—O1—C766.4 (2)C14—C8—C13—C12179.9 (2)
O1—Zn1—O3—C1483.1 (2)Zn1—O4—C14—O33.2 (2)
N4—Zn1—O3—C1474.76 (17)Zn1—O4—C14—C8173.9 (2)
N3—Zn1—O3—C14154.77 (16)Zn1—O3—C14—O43.9 (3)
O4—Zn1—O3—C142.02 (14)Zn1—O3—C14—C8173.36 (18)
O1—Zn1—O4—C14141.45 (15)C9—C8—C14—O43.2 (4)
O3—Zn1—O4—C142.07 (15)C13—C8—C14—O4176.3 (2)
N4—Zn1—O4—C14110.56 (16)C9—C8—C14—O3174.0 (2)
N3—Zn1—O4—C1445.8 (2)C13—C8—C14—O36.5 (3)
O1—Zn1—N3—C19109.74 (19)C9—C8—C14—Zn1150.2 (7)
O3—Zn1—N3—C19103.24 (19)C13—C8—C14—Zn130.3 (9)
N4—Zn1—N3—C194.28 (19)O1—Zn1—C14—O450.15 (19)
O4—Zn1—N3—C1963.2 (3)O3—Zn1—C14—O4176.4 (3)
C14—Zn1—N3—C1988.3 (2)N4—Zn1—C14—O471.23 (16)
O1—Zn1—N3—C1573.6 (3)N3—Zn1—C14—O4152.83 (15)
O3—Zn1—N3—C1573.4 (3)O1—Zn1—C14—O3126.29 (17)
N4—Zn1—N3—C15179.1 (3)N4—Zn1—C14—O3112.32 (16)
O4—Zn1—N3—C15113.5 (3)N3—Zn1—C14—O330.7 (2)
C14—Zn1—N3—C1588.4 (3)O4—Zn1—C14—O3176.4 (3)
O1—Zn1—N4—C2477.9 (2)O1—Zn1—C14—C8153.8 (8)
O3—Zn1—N4—C2487.8 (2)O3—Zn1—C14—C827.5 (8)
N3—Zn1—N4—C24178.2 (2)N4—Zn1—C14—C884.8 (8)
O4—Zn1—N4—C2430.9 (2)N3—Zn1—C14—C83.2 (9)
C14—Zn1—N4—C2458.5 (2)O4—Zn1—C14—C8156.1 (9)
O1—Zn1—N4—C20103.27 (18)C19—N3—C15—C160.5 (5)
O3—Zn1—N4—C2091.02 (18)Zn1—N3—C15—C16176.0 (3)
N3—Zn1—N4—C202.95 (17)N3—C15—C16—C170.7 (7)
O4—Zn1—N4—C20147.95 (18)C15—C16—C17—C181.0 (7)
C14—Zn1—N4—C20120.34 (18)C16—C17—C18—C190.2 (6)
C6—C1—C2—C30.6 (4)C15—N3—C19—C181.3 (4)
C7—C1—C2—C3178.3 (2)Zn1—N3—C19—C18175.6 (2)
C1—C2—C3—C40.3 (4)C15—N3—C19—C20178.2 (3)
C2—C3—C4—N1178.9 (3)Zn1—N3—C19—C204.9 (3)
C2—C3—C4—C50.6 (4)C17—C18—C19—N30.9 (5)
N1—C4—C5—C6179.6 (2)C17—C18—C19—C20178.5 (3)
C3—C4—C5—C61.3 (4)C24—N4—C20—C211.3 (4)
C4—C5—C6—C11.1 (4)Zn1—N4—C20—C21179.8 (2)
C2—C1—C6—C50.1 (4)C24—N4—C20—C19179.7 (2)
C7—C1—C6—C5179.0 (2)Zn1—N4—C20—C191.4 (3)
Zn1—O1—C7—O22.4 (3)N3—C19—C20—N42.4 (3)
Zn1—O1—C7—C1177.28 (15)C18—C19—C20—N4178.1 (3)
C2—C1—C7—O213.1 (4)N3—C19—C20—C21176.0 (3)
C6—C1—C7—O2168.1 (3)C18—C19—C20—C213.5 (4)
C2—C1—C7—O1166.6 (2)N4—C20—C21—C220.7 (5)
C6—C1—C7—O112.2 (3)C19—C20—C21—C22179.0 (3)
C13—C8—C9—C101.5 (4)C20—C21—C22—C230.0 (6)
C14—C8—C9—C10179.0 (2)C21—C22—C23—C240.1 (6)
C8—C9—C10—C111.2 (4)C20—N4—C24—C231.2 (4)
C9—C10—C11—C120.0 (4)Zn1—N4—C24—C23180.0 (2)
C9—C10—C11—N2176.5 (2)C22—C23—C24—N40.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N2i0.882.333.202 (4)169
N1—H1E···O2ii0.882.363.181 (4)155
N2—H2E···O2iii0.882.283.116 (4)159
Symmetry codes: (i) x2, y+1, z; (ii) x1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H6NO2)2(C10H8N2)]
Mr493.81
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.9499 (14), 10.7281 (19), 13.905 (2)
α, β, γ (°)80.499 (2), 80.921 (2), 70.538 (2)
V3)1096.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.42 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.643, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
8223, 4058, 3419
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.07
No. of reflections4058
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9269 (18)Zn1—N32.124 (2)
Zn1—O31.9704 (18)Zn1—N42.088 (2)
Zn1—O42.395 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···N2i0.882.333.202 (4)169.3
N1—H1E···O2ii0.882.363.181 (4)155.3
N2—H2E···O2iii0.882.283.116 (4)158.5
Symmetry codes: (i) x2, y+1, z; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant No. JK2011042).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Naseer, M. M. (2007). Appl. Organomet. Chem. 21, 728–738.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Q.-M., Pan, Z.-Q. & Wang, P. (2006). Bioorg. Med. Chem. Lett. 16, 3030–3033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIspir, E., Kurtoglu, M. & Toroglu, S. (2006). Synth. React. Inorg. Met. Org. Chem. 36, 627–631.  CrossRef CAS Google Scholar
First citationLo, P.-C., Zhao, B.-Z. & Duan, W.-B. (2007). Bioorg. Med. Chem. Lett. 17, 1073–1077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaria, A. Z., Roberto, D. & Stefano, M. (1996). Polyhedron, pp. 277–283.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R.-H., Jiang, F.-L., Zhou, Y.-F., Han, L. & Hong, M.-C. (2005). Inorg. Chim. Acta, 358, 545–554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds