metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-phenyl­acetato-κ2O:O)bis­­[(2,2′-bi­pyridyl-κ2N,N′)(2-phenyl­acetato-κO)copper(II)] dihydrate

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 16 June 2011; accepted 31 August 2011; online 14 September 2011)

The mol­ecule of the binuclear title complex, [Cu2(C8H7O2)4(C10H8N2)2]·2H2O, is located on an inversion centre. The Cu atoms are bridged by two O atoms of the monodentate phenyl­acetate groups [Cu—O = 1.9808 (14) and 2.3668 (14) Å]. The longer of the two bridging Cu—O bonds takes the apical position of the distorted square-pyramidal environment of the Cu atom, which is completed by two N atoms of the chelate 2,2′-bipyridine ligand [Cu—N = 2.0107 (17) and 2.0234 (16) Å]. The mol­ecules are assembled into stacks along [100] through ππ inter­actions with inter­planar distances of 3.630 (4) and 3.407 (3) Å; the resulting stacks are further connected into a three-dimensional supra­molecular architecture by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For applications of inorganic–organic hybrid materials, see: Pan et al. (2003[Pan, L., Liu, H. M., Lei, X., Huang, X., Olson, D. H., Turro, N. J. & Li, J. (2003). Angew. Chem. Int. Ed. 42, 542-546.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.]). For related structures, see: Addison & Rao (1984[Addison, A. W. & Rao, T. N. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Antolini et al. (1985[Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219-1222.]); Zhang et al. (2006[Zhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326-m2327.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(C10H8N2)2]·2H2O

  • Mr = 1016.02

  • Monoclinic, P 21 /n

  • a = 10.213 (2) Å

  • b = 16.058 (3) Å

  • c = 14.633 (3) Å

  • β = 100.75 (3)°

  • V = 2357.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.17 × 0.14 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.678, Tmax = 0.784

  • 22348 measured reflections

  • 5356 independent reflections

  • 4268 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.10

  • 5356 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4 0.85 2.05 2.781 (3) 143
O5—H52⋯O2i 0.86 2.08 2.931 (3) 174
C20—H20A⋯O4ii 0.93 2.38 3.245 (3) 156
C24—H24A⋯O2iii 0.93 2.48 3.172 (3) 131
C25—H25A⋯O5iv 0.93 2.50 3.201 (3) 132
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The use of metal centers for organizing of molecular building blocks into inorganic–organic hybrid materials have been studied for potential applications in catalysis, gas storage, and in molecular–based magnetic materials (Pan et al., 2003; Shibasaki & Yoshikawa, 2002). As part of our investigations of self-assemblies of Cu2+ ions and bipy with phenylacetic acid, we prepared the title complex, [Cu2(C8H7O2)4(C10H8N2)2].2H2O.

The molecule of the complex occupies a special position in the inversion centre (Fig. 1). The square pyramidal coordination environment of the Cu atom is formed by the N atoms of 2,2'-bipyridine ligands (Cu—N1 2.0108 (17) Å and Cu—N2 2.0234 (16) Å), the O atom of terminal phenylacetato ligand (Cu—O3 1.9557 (16) Å), and two O atoms of bridging phenylacetato groups, the O1i atom [symmetry code (i): 1 - x, -y, -z] takes one of the equatorial positions, whereas the O1 atom occupies the apical site. As one would expect (Antolini et al., 1985; Zhang et al., 2006), the apical bond Cu—O1 2.3669 (14) Å is substantially longer than the equatorial Cu—O1i distance of 1.9807 (14) Å. The Cu atom is displaced by 0.078 (1) Å towards the apical vertex from the mean plane of the equatorial ligands [τ = 0.04 according to Addison & Rao (1984)].

The molecules are assembled into stacks along [100] through π···π stacking interactions with the mean interplanar distance of 3.407 (3) Å between adjacent bipy ligands and 3.630 (4) Å between bipy ligands and phenylacetato groups, and the stacks are further stabilized by the weak C—H···O hydrogen bonding interactions from the phenyl CH groups to the uncoordinating carboxylate O2 and O4 atoms (Table 1), as well O—H···O bonds involving water molecule (Fig. 2). As a result, three-dimensional network is formed.

Related literature top

For applications of inorganic–organic hybrid materials , see: Pan et al. (2003); Shibasaki & Yoshikawa (2002). For related structures, see: Addison & Rao (1984); Antolini et al. (1985); Zhang et al. (2006).

Experimental top

Phenylacetic acid(0.2726 g, 2.000 mmol) was completely dissolved in a mixture of 10 ml of ethanol, 10 ml of water, and bipy (0.1561 g, 1.000 mmol). 0.2602 g (1.084 mmol) of Cu(NO3)2.3H2O were then added, and after dropwise addition of 2.0 ml (1M) NaOH to the resulting solution under continuous stirring for 1 h, the blue suspension was produced. The suspension was filtered and the filtrate (pH = 6.51) was allowed to stand at room temperature for several weeks; the precipitation of blue block crystals was observed.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions (C—H 0.93 Å and 0.97 Å for aromatic and methylene H atoms respectively) and were included in the refinement in a riding model approximation, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were also included in the riding model approximation, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Structure description top

The use of metal centers for organizing of molecular building blocks into inorganic–organic hybrid materials have been studied for potential applications in catalysis, gas storage, and in molecular–based magnetic materials (Pan et al., 2003; Shibasaki & Yoshikawa, 2002). As part of our investigations of self-assemblies of Cu2+ ions and bipy with phenylacetic acid, we prepared the title complex, [Cu2(C8H7O2)4(C10H8N2)2].2H2O.

The molecule of the complex occupies a special position in the inversion centre (Fig. 1). The square pyramidal coordination environment of the Cu atom is formed by the N atoms of 2,2'-bipyridine ligands (Cu—N1 2.0108 (17) Å and Cu—N2 2.0234 (16) Å), the O atom of terminal phenylacetato ligand (Cu—O3 1.9557 (16) Å), and two O atoms of bridging phenylacetato groups, the O1i atom [symmetry code (i): 1 - x, -y, -z] takes one of the equatorial positions, whereas the O1 atom occupies the apical site. As one would expect (Antolini et al., 1985; Zhang et al., 2006), the apical bond Cu—O1 2.3669 (14) Å is substantially longer than the equatorial Cu—O1i distance of 1.9807 (14) Å. The Cu atom is displaced by 0.078 (1) Å towards the apical vertex from the mean plane of the equatorial ligands [τ = 0.04 according to Addison & Rao (1984)].

The molecules are assembled into stacks along [100] through π···π stacking interactions with the mean interplanar distance of 3.407 (3) Å between adjacent bipy ligands and 3.630 (4) Å between bipy ligands and phenylacetato groups, and the stacks are further stabilized by the weak C—H···O hydrogen bonding interactions from the phenyl CH groups to the uncoordinating carboxylate O2 and O4 atoms (Table 1), as well O—H···O bonds involving water molecule (Fig. 2). As a result, three-dimensional network is formed.

For applications of inorganic–organic hybrid materials , see: Pan et al. (2003); Shibasaki & Yoshikawa (2002). For related structures, see: Addison & Rao (1984); Antolini et al. (1985); Zhang et al. (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at 45% probability level; hydrogen atoms bonded to carbon were omitted.
[Figure 2] Fig. 2. Crystal packing of the title complex viewed down the c axis. Hydrogen bonds are shown as dashed lines.
Bis(µ-2-phenylacetato-κ2O:O)bis[(2,2'- bipyridyl-κ2N,N')(2-phenylacetato-κO)copper(II)] dihydrate top
Crystal data top
[Cu2(C8H7O2)4(C10H8N2)2]·2H2OF(000) = 1052
Mr = 1016.02Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22348 reflections
a = 10.213 (2) Åθ = 3.1–27.4°
b = 16.058 (3) ŵ = 0.97 mm1
c = 14.633 (3) ÅT = 295 K
β = 100.75 (3)°Block, blue
V = 2357.7 (8) Å30.17 × 0.14 × 0.11 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5356 independent reflections
Radiation source: fine-focus sealed tube4268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2020
Tmin = 0.678, Tmax = 0.784l = 1818
22348 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.1037P]
where P = (Fo2 + 2Fc2)/3
5356 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu2(C8H7O2)4(C10H8N2)2]·2H2OV = 2357.7 (8) Å3
Mr = 1016.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.213 (2) ŵ = 0.97 mm1
b = 16.058 (3) ÅT = 295 K
c = 14.633 (3) Å0.17 × 0.14 × 0.11 mm
β = 100.75 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5356 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4268 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.784Rint = 0.033
22348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
5356 reflectionsΔρmin = 0.56 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.34936 (2)0.003603 (15)0.032956 (16)0.03079 (8)
O10.51708 (12)0.08258 (8)0.01885 (10)0.0349 (3)
O20.65975 (14)0.18355 (10)0.03382 (12)0.0509 (4)
C10.54722 (19)0.15958 (13)0.02762 (13)0.0335 (4)
C20.4344 (2)0.22176 (13)0.03118 (15)0.0390 (5)
H2A0.39040.21160.02110.047*
H2B0.47160.27750.02440.047*
C30.33151 (19)0.21773 (12)0.12042 (15)0.0371 (4)
C40.3645 (3)0.18987 (17)0.20253 (17)0.0583 (7)
H4A0.45070.17140.20290.070*
C50.2707 (3)0.1891 (2)0.2844 (2)0.0775 (9)
H5A0.29430.17040.33930.093*
C60.1426 (3)0.2159 (2)0.2846 (2)0.0747 (9)
H6A0.07960.21490.33940.090*
C70.1079 (2)0.24395 (17)0.2039 (2)0.0633 (8)
H7A0.02130.26200.20390.076*
C80.2023 (2)0.24547 (14)0.12211 (17)0.0467 (5)
H8A0.17860.26540.06780.056*
O30.43667 (14)0.02350 (11)0.16182 (10)0.0444 (4)
O40.28773 (16)0.06110 (11)0.20372 (11)0.0555 (4)
C90.3872 (2)0.01680 (15)0.22212 (14)0.0411 (5)
C100.4592 (2)0.00598 (19)0.32311 (16)0.0596 (7)
H10A0.51280.05500.34200.071*
H10B0.51880.04140.32690.071*
C110.3641 (2)0.00710 (15)0.38924 (15)0.0456 (5)
C120.3061 (3)0.05839 (18)0.42846 (19)0.0650 (7)
H12A0.32740.11280.41520.078*
C130.2172 (3)0.0439 (2)0.4869 (2)0.0742 (8)
H13A0.17950.08870.51290.089*
C140.1839 (3)0.0353 (2)0.50716 (18)0.0636 (7)
H14A0.12380.04470.54670.076*
C150.2394 (3)0.10011 (19)0.46888 (19)0.0631 (7)
H15A0.21700.15430.48210.076*
C160.3284 (3)0.08655 (17)0.41081 (18)0.0563 (6)
H16A0.36550.13190.38540.068*
N10.23495 (15)0.01459 (10)0.09298 (11)0.0314 (3)
N20.19920 (15)0.08350 (10)0.04221 (11)0.0325 (3)
C170.2643 (2)0.06336 (14)0.16069 (14)0.0391 (5)
H17A0.34610.09060.15110.047*
C180.1775 (2)0.07459 (15)0.24405 (15)0.0466 (5)
H18A0.20030.10900.28980.056*
C190.0565 (2)0.03411 (16)0.25860 (16)0.0495 (6)
H19A0.00370.04130.31410.059*
C200.0255 (2)0.01729 (14)0.18992 (15)0.0427 (5)
H20A0.05530.04560.19880.051*
C210.11684 (18)0.02584 (12)0.10760 (13)0.0312 (4)
C220.09470 (17)0.07952 (12)0.02961 (13)0.0306 (4)
C230.02197 (19)0.12337 (13)0.02906 (15)0.0383 (5)
H23A0.09400.11830.07810.046*
C240.0295 (2)0.17477 (14)0.04555 (16)0.0440 (5)
H24A0.10700.20470.04730.053*
C250.0786 (2)0.18136 (14)0.11732 (16)0.0452 (5)
H25A0.07630.21700.16710.054*
C260.1906 (2)0.13390 (14)0.11387 (15)0.0405 (5)
H26A0.26260.13710.16310.049*
O50.2460 (2)0.23227 (13)0.20341 (15)0.0773 (6)
H510.24850.18390.22720.116*
H520.27110.22150.15200.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02265 (12)0.03791 (15)0.03088 (13)0.00331 (9)0.00258 (8)0.00214 (10)
O10.0285 (6)0.0323 (7)0.0433 (8)0.0024 (5)0.0051 (6)0.0023 (6)
O20.0342 (8)0.0455 (9)0.0739 (11)0.0039 (7)0.0121 (7)0.0069 (8)
C10.0320 (10)0.0356 (11)0.0312 (10)0.0014 (8)0.0019 (8)0.0005 (8)
C20.0400 (11)0.0334 (11)0.0426 (11)0.0032 (9)0.0055 (9)0.0029 (9)
C30.0351 (10)0.0321 (10)0.0428 (11)0.0030 (8)0.0039 (8)0.0058 (9)
C40.0551 (14)0.0698 (18)0.0468 (14)0.0191 (13)0.0007 (11)0.0008 (13)
C50.090 (2)0.090 (2)0.0448 (15)0.0176 (18)0.0081 (14)0.0041 (15)
C60.0710 (19)0.075 (2)0.0636 (19)0.0014 (16)0.0254 (15)0.0121 (15)
C70.0376 (12)0.0606 (17)0.086 (2)0.0029 (11)0.0042 (13)0.0222 (15)
C80.0377 (11)0.0428 (12)0.0599 (14)0.0023 (9)0.0099 (10)0.0093 (11)
O30.0309 (7)0.0674 (10)0.0337 (8)0.0018 (7)0.0031 (6)0.0036 (7)
O40.0500 (9)0.0661 (11)0.0491 (10)0.0099 (8)0.0062 (7)0.0053 (8)
C90.0315 (10)0.0574 (14)0.0335 (11)0.0116 (10)0.0037 (8)0.0074 (10)
C100.0410 (12)0.100 (2)0.0355 (12)0.0106 (13)0.0012 (9)0.0053 (13)
C110.0457 (12)0.0607 (15)0.0286 (10)0.0041 (11)0.0024 (9)0.0002 (10)
C120.090 (2)0.0494 (15)0.0579 (16)0.0079 (14)0.0187 (15)0.0018 (13)
C130.096 (2)0.071 (2)0.0629 (18)0.0154 (18)0.0345 (16)0.0074 (16)
C140.0631 (16)0.085 (2)0.0467 (15)0.0023 (15)0.0211 (12)0.0068 (15)
C150.0716 (18)0.0637 (17)0.0549 (16)0.0097 (14)0.0144 (13)0.0113 (13)
C160.0660 (16)0.0532 (15)0.0509 (14)0.0050 (12)0.0140 (12)0.0018 (12)
N10.0259 (7)0.0354 (9)0.0325 (8)0.0004 (6)0.0044 (6)0.0008 (7)
N20.0259 (7)0.0372 (9)0.0340 (8)0.0012 (7)0.0046 (6)0.0020 (7)
C170.0321 (10)0.0462 (12)0.0395 (11)0.0043 (9)0.0080 (8)0.0070 (9)
C180.0477 (12)0.0546 (14)0.0372 (11)0.0004 (11)0.0071 (9)0.0115 (10)
C190.0462 (13)0.0617 (15)0.0358 (12)0.0001 (11)0.0044 (9)0.0055 (11)
C200.0333 (10)0.0501 (13)0.0413 (12)0.0052 (9)0.0018 (9)0.0010 (10)
C210.0260 (9)0.0332 (10)0.0341 (10)0.0011 (7)0.0048 (7)0.0023 (8)
C220.0256 (8)0.0330 (10)0.0330 (10)0.0009 (8)0.0052 (7)0.0034 (8)
C230.0282 (9)0.0416 (11)0.0440 (11)0.0037 (8)0.0040 (8)0.0025 (9)
C240.0323 (10)0.0449 (12)0.0565 (14)0.0080 (9)0.0125 (9)0.0031 (10)
C250.0416 (11)0.0467 (13)0.0492 (13)0.0034 (10)0.0135 (10)0.0125 (10)
C260.0339 (10)0.0462 (12)0.0405 (11)0.0011 (9)0.0046 (8)0.0085 (10)
O50.0807 (14)0.0718 (13)0.0769 (14)0.0005 (11)0.0082 (11)0.0222 (11)
Geometric parameters (Å, º) top
Cu—O31.9558 (15)C12—H12A0.9300
Cu—O1i1.9808 (14)C13—C141.363 (4)
Cu—N12.0107 (17)C13—H13A0.9300
Cu—N22.0234 (16)C14—C151.356 (4)
Cu—O12.3668 (14)C14—H14A0.9300
O1—C11.286 (2)C15—C161.372 (4)
O1—Cui1.9808 (14)C15—H15A0.9300
O2—C11.231 (2)C16—H16A0.9300
C1—C21.518 (3)N1—C171.340 (3)
C2—C31.517 (3)N1—C211.351 (2)
C2—H2A0.9700N2—C261.340 (3)
C2—H2B0.9700N2—C221.352 (2)
C3—C41.381 (3)C17—C181.380 (3)
C3—C81.389 (3)C17—H17A0.9300
C4—C51.388 (4)C18—C191.377 (3)
C4—H4A0.9300C18—H18A0.9300
C5—C61.377 (4)C19—C201.382 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.371 (4)C20—C211.386 (3)
C6—H6A0.9300C20—H20A0.9300
C7—C81.390 (3)C21—C221.481 (3)
C7—H7A0.9300C22—C231.385 (3)
C8—H8A0.9300C23—C241.382 (3)
O3—C91.272 (3)C23—H23A0.9300
O4—C91.228 (3)C24—C251.379 (3)
C9—C101.533 (3)C24—H24A0.9300
C10—C111.508 (3)C25—C261.383 (3)
C10—H10A0.9700C25—H25A0.9300
C10—H10B0.9700C26—H26A0.9300
C11—C161.380 (3)O5—H510.8494
C11—C121.383 (4)O5—H520.8560
C12—C131.379 (4)
O3—Cu—O1i90.90 (6)C13—C12—C11120.8 (3)
O3—Cu—N1171.79 (6)C13—C12—H12A119.6
O1i—Cu—N195.55 (6)C11—C12—H12A119.6
O3—Cu—N292.68 (7)C14—C13—C12120.8 (3)
O1i—Cu—N2174.44 (6)C14—C13—H13A119.6
N1—Cu—N280.52 (7)C12—C13—H13A119.6
O3—Cu—O189.67 (6)C15—C14—C13119.1 (3)
O1i—Cu—O177.72 (6)C15—C14—H14A120.5
N1—Cu—O196.65 (6)C13—C14—H14A120.5
N2—Cu—O1106.54 (6)C14—C15—C16120.7 (3)
C1—O1—Cui118.61 (12)C14—C15—H15A119.7
C1—O1—Cu138.41 (12)C16—C15—H15A119.7
Cui—O1—Cu102.28 (6)C15—C16—C11121.5 (3)
O2—C1—O1123.49 (18)C15—C16—H16A119.3
O2—C1—C2120.32 (19)C11—C16—H16A119.3
O1—C1—C2116.18 (17)C17—N1—C21118.68 (17)
C3—C2—C1113.63 (17)C17—N1—Cu126.20 (13)
C3—C2—H2A108.8C21—N1—Cu115.11 (13)
C1—C2—H2A108.8C26—N2—C22118.62 (16)
C3—C2—H2B108.8C26—N2—Cu126.61 (13)
C1—C2—H2B108.8C22—N2—Cu114.59 (13)
H2A—C2—H2B107.7N1—C17—C18122.32 (19)
C4—C3—C8118.3 (2)N1—C17—H17A118.8
C4—C3—C2121.36 (19)C18—C17—H17A118.8
C8—C3—C2120.3 (2)C19—C18—C17119.0 (2)
C3—C4—C5120.9 (2)C19—C18—H18A120.5
C3—C4—H4A119.6C17—C18—H18A120.5
C5—C4—H4A119.6C18—C19—C20119.4 (2)
C6—C5—C4120.1 (3)C18—C19—H19A120.3
C6—C5—H5A120.0C20—C19—H19A120.3
C4—C5—H5A120.0C19—C20—C21118.9 (2)
C7—C6—C5120.0 (2)C19—C20—H20A120.6
C7—C6—H6A120.0C21—C20—H20A120.6
C5—C6—H6A120.0N1—C21—C20121.75 (19)
C6—C7—C8119.9 (2)N1—C21—C22114.69 (16)
C6—C7—H7A120.1C20—C21—C22123.56 (18)
C8—C7—H7A120.1N2—C22—C23121.76 (18)
C3—C8—C7120.9 (2)N2—C22—C21114.49 (16)
C3—C8—H8A119.5C23—C22—C21123.75 (17)
C7—C8—H8A119.5C24—C23—C22118.88 (19)
C9—O3—Cu114.65 (14)C24—C23—H23A120.6
O4—C9—O3124.2 (2)C22—C23—H23A120.6
O4—C9—C10120.3 (2)C25—C24—C23119.50 (19)
O3—C9—C10115.5 (2)C25—C24—H24A120.3
C11—C10—C9112.61 (19)C23—C24—H24A120.3
C11—C10—H10A109.1C24—C25—C26118.7 (2)
C9—C10—H10A109.1C24—C25—H25A120.6
C11—C10—H10B109.1C26—C25—H25A120.6
C9—C10—H10B109.1N2—C26—C25122.46 (19)
H10A—C10—H10B107.8N2—C26—H26A118.8
C16—C11—C12117.1 (2)C25—C26—H26A118.8
C16—C11—C10120.3 (2)H51—O5—H52100.6
C12—C11—C10122.5 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O40.852.052.781 (3)143
O5—H52···O2i0.862.082.931 (3)174
C20—H20A···O4ii0.932.383.245 (3)156
C24—H24A···O2iii0.932.483.172 (3)131
C25—H25A···O5iv0.932.503.201 (3)132
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(C10H8N2)2]·2H2O
Mr1016.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.213 (2), 16.058 (3), 14.633 (3)
β (°) 100.75 (3)
V3)2357.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.17 × 0.14 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.678, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
22348, 5356, 4268
Rint0.033
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.10
No. of reflections5356
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.56

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O40.852.052.781 (3)143
O5—H52···O2i0.862.082.931 (3)174
C20—H20A···O4ii0.932.383.245 (3)156
C24—H24A···O2iii0.932.483.172 (3)131
C25—H25A···O5iv0.932.503.201 (3)132
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the K. C. Wong Magna Fund in Ningbo University.

References

First citationAddison, A. W. & Rao, T. N. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAntolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPan, L., Liu, H. M., Lei, X., Huang, X., Olson, D. H., Turro, N. J. & Li, J. (2003). Angew. Chem. Int. Ed. 42, 542–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326–m2327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds