organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-4-fluoro­phen­yl)-2,2-di­phenyl­acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 June 2011; accepted 5 September 2011; online 14 September 2011)

In the title compound, C20H15ClFNO, the dihedral angles between the mean planes of the acetamide group and the chloro­fluoro-substituted benzene ring and the two phenyl rings are 10.8 (8), 81.9 (7) and 85.8 (5)°, respectively. The crystal packing is stabilized by N—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions, forming infinite chains along the c axis.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945- 950.]). For their coordination abilities, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207- 2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Davis & Healy (2010[Davis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.]); Li et al. (2010[Li, W.-S., Luo, X.-F., Wang, Y. & Hu, A.-X. (2010). Acta Cryst. E66, o1460.]); Li & Wu (2010[Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.]); Wang et al. (2010[Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.]); Xiao et al. (2010[Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15ClFNO

  • Mr = 339.78

  • Monoclinic, P c

  • a = 9.3665 (17) Å

  • b = 10.2069 (12) Å

  • c = 9.7774 (16) Å

  • β = 114.42 (2)°

  • V = 851.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.35 × 0.12 × 0.12 mm

Data collection
  • Oxford Diffractio Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.921, Tmax = 0.972

  • 7456 measured reflections

  • 3794 independent reflections

  • 3265 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.01

  • 3794 reflections

  • 220 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1668 Friedel pairs

  • Flack parameter: −0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.49 3.256 (3) 138
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.895 (2) 158 (2)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amides are extensively used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). N-Substituted 2-arylacetamides are especially remarkable due to their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis & Healy, 2010), 2-(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yloxy)-N- (o-tolyl)acetamide (Li et al., 2010), N-benzyl-2-(2-bromophenyl)-2- (2-nitrophenoxy)acetamide (Li & Wu, 2010) and N-(4-chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate (Wang et al., 2010) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, C20H15ClFNO.

In the title compound, the dihedral angles between the mean planes of the acetamide group 01/N1/C6/C7/C8 and the chloro, fluoro substituted benzene ring C1-C6 and two phenyl rings C9-C14 and C15-C20 are 10.8 (8)°, 81.9 (7)° and 85.8 (5)°, respectively (Fig. 2). Crystal packing is stabilized by N1—H1N···O1i hydrogen bonds and weak C1—H1A···O1i (symmetry code i: x, 1-y, z+1/2) intermolecular interactions forming infinite one-dimensional chains along the c axis (Fig. 3, Table 1).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); Li et al. (2010); Li & Wu (2010); Wang et al. (2010); Xiao et al. (2010).

Experimental top

Diphenylacetyl chloride (0.230 g, 1 mmol) and 3-chloro-4-fluoroaniline (0.145 g, 1 mmol) were dissolved in dichloromethane (20 mL). The mixture was stirred in the presence of triethylamine at 273 K for about 3 h (Fig. 1). The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted three times with dichloromethane. The organic layer was washed with saturated NaHCO3 and brine solutions, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from toluene by the slow evaporation method (M.P.: 427 K).

Refinement top

The N–H atom bonded to N1 was located in the diference Fourier map and refined isotropically with N-H distance constrained to 0.86 (2) Å. All C-bound H atoms were placed in their calculated positions and included in the refinement in the riding model approximation with C–H lengths of 0.95 Å for aromatic and 1.00 Å for methyne H atoms and temperature factors set to 1.2 times Ueq of the parent atom. 1668 Friedel pairs were measured.

Structure description top

Amides are extensively used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). N-Substituted 2-arylacetamides are especially remarkable due to their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis & Healy, 2010), 2-(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yloxy)-N- (o-tolyl)acetamide (Li et al., 2010), N-benzyl-2-(2-bromophenyl)-2- (2-nitrophenoxy)acetamide (Li & Wu, 2010) and N-(4-chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate (Wang et al., 2010) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, C20H15ClFNO.

In the title compound, the dihedral angles between the mean planes of the acetamide group 01/N1/C6/C7/C8 and the chloro, fluoro substituted benzene ring C1-C6 and two phenyl rings C9-C14 and C15-C20 are 10.8 (8)°, 81.9 (7)° and 85.8 (5)°, respectively (Fig. 2). Crystal packing is stabilized by N1—H1N···O1i hydrogen bonds and weak C1—H1A···O1i (symmetry code i: x, 1-y, z+1/2) intermolecular interactions forming infinite one-dimensional chains along the c axis (Fig. 3, Table 1).

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); Li et al. (2010); Li & Wu (2010); Wang et al. (2010); Xiao et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound; reaction scheme.
[Figure 2] Fig. 2. Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 50° probability level.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the b axis. Dashed lines represent N—H···O hydrogen bonds forming infinite one-dimensional chains along the c axis; weak C-H···O interactions are not shown.
N-(3-Chloro-4-fluorophenyl)-2,2-diphenylacetamide top
Crystal data top
C20H15ClFNOF(000) = 352
Mr = 339.78Dx = 1.326 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3667 reflections
a = 9.3665 (17) Åθ = 3.0–32.4°
b = 10.2069 (12) ŵ = 0.24 mm1
c = 9.7774 (16) ÅT = 173 K
β = 114.42 (2)°Block, colorless
V = 851.1 (2) Å30.35 × 0.12 × 0.12 mm
Z = 2
Data collection top
Oxford Diffractio Xcalibur Eos Gemini
diffractometer
3794 independent reflections
Radiation source: Enhance (Mo) X-ray Source3265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1500 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.921, Tmax = 0.972l = 1213
7456 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3794 reflectionsΔρmax = 0.17 e Å3
220 parametersΔρmin = 0.17 e Å3
3 restraintsAbsolute structure: Flack (1983), 1668 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C20H15ClFNOV = 851.1 (2) Å3
Mr = 339.78Z = 2
Monoclinic, PcMo Kα radiation
a = 9.3665 (17) ŵ = 0.24 mm1
b = 10.2069 (12) ÅT = 173 K
c = 9.7774 (16) Å0.35 × 0.12 × 0.12 mm
β = 114.42 (2)°
Data collection top
Oxford Diffractio Xcalibur Eos Gemini
diffractometer
3794 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3265 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.972Rint = 0.031
7456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.17 e Å3
3794 reflectionsAbsolute structure: Flack (1983), 1668 Friedel pairs
220 parametersAbsolute structure parameter: 0.06 (6)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25355 (8)0.11734 (7)0.82272 (8)0.0727 (2)
F10.15076 (18)0.07394 (14)0.50254 (19)0.0658 (4)
O10.6516 (2)0.52072 (16)0.54006 (16)0.0550 (4)
N10.6367 (2)0.42807 (16)0.74325 (18)0.0431 (4)
H1N0.665 (3)0.433 (2)0.837 (2)0.052*
C10.4496 (3)0.28097 (19)0.7678 (2)0.0446 (4)
H1A0.49150.30220.87160.053*
C20.3294 (3)0.19290 (18)0.7097 (3)0.0454 (5)
C30.2684 (2)0.16238 (19)0.5588 (3)0.0461 (5)
C40.3265 (3)0.2195 (2)0.4665 (3)0.0543 (5)
H4A0.28360.19760.36280.065*
C50.4470 (3)0.3086 (2)0.5227 (2)0.0506 (5)
H5A0.48650.34890.45790.061*
C60.5107 (2)0.33973 (18)0.6746 (2)0.0387 (4)
C70.6985 (2)0.51195 (18)0.6763 (2)0.0390 (4)
C80.8312 (2)0.59755 (18)0.7841 (2)0.0393 (4)
H8A0.88970.54460.87650.047*
C90.7663 (3)0.71731 (18)0.8311 (2)0.0433 (4)
C100.8448 (3)0.7672 (2)0.9741 (3)0.0582 (6)
H10A0.93650.72451.04310.070*
C110.7909 (4)0.8791 (3)1.0177 (4)0.0751 (8)
H11A0.84600.91241.11650.090*
C120.6600 (4)0.9418 (3)0.9208 (4)0.0796 (9)
H12A0.62451.01890.95150.096*
C130.5799 (4)0.8935 (3)0.7795 (4)0.0767 (8)
H13A0.48820.93700.71170.092*
C140.6317 (3)0.7811 (3)0.7341 (3)0.0628 (6)
H14A0.57450.74760.63570.075*
C150.9445 (2)0.62793 (18)0.7125 (2)0.0416 (4)
C161.0589 (3)0.5378 (2)0.7245 (3)0.0532 (5)
H16A1.06880.46000.78100.064*
C171.1594 (3)0.5589 (3)0.6554 (3)0.0649 (6)
H17A1.23720.49560.66450.078*
C181.1470 (3)0.6703 (3)0.5742 (3)0.0662 (7)
H18A1.21670.68540.52770.079*
C191.0328 (3)0.7606 (3)0.5601 (3)0.0662 (7)
H19A1.02290.83770.50240.079*
C200.9324 (3)0.7403 (2)0.6290 (3)0.0570 (6)
H20A0.85450.80380.61910.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0985 (5)0.0717 (4)0.0713 (4)0.0219 (4)0.0586 (4)0.0035 (3)
F10.0645 (8)0.0659 (8)0.0738 (10)0.0204 (7)0.0356 (7)0.0198 (7)
O10.0727 (10)0.0649 (9)0.0269 (7)0.0149 (8)0.0200 (7)0.0038 (6)
N10.0602 (10)0.0470 (8)0.0244 (7)0.0089 (8)0.0197 (8)0.0019 (7)
C10.0650 (12)0.0413 (9)0.0328 (10)0.0007 (9)0.0257 (9)0.0003 (7)
C20.0594 (12)0.0392 (9)0.0494 (12)0.0018 (9)0.0342 (10)0.0011 (8)
C30.0482 (11)0.0405 (9)0.0520 (13)0.0027 (8)0.0232 (10)0.0059 (9)
C40.0603 (13)0.0646 (13)0.0345 (10)0.0093 (10)0.0161 (10)0.0079 (9)
C50.0651 (13)0.0580 (11)0.0328 (10)0.0110 (10)0.0242 (10)0.0025 (9)
C60.0514 (10)0.0391 (8)0.0298 (9)0.0015 (8)0.0208 (8)0.0004 (7)
C70.0512 (10)0.0387 (9)0.0299 (9)0.0038 (7)0.0196 (8)0.0012 (7)
C80.0477 (10)0.0413 (9)0.0305 (9)0.0021 (8)0.0177 (8)0.0030 (7)
C90.0516 (10)0.0440 (9)0.0401 (10)0.0048 (9)0.0248 (9)0.0031 (8)
C100.0589 (14)0.0617 (13)0.0506 (13)0.0039 (11)0.0193 (11)0.0142 (11)
C110.0766 (17)0.0792 (17)0.0691 (19)0.0120 (15)0.0299 (15)0.0369 (14)
C120.088 (2)0.0621 (14)0.101 (3)0.0039 (15)0.0507 (19)0.0263 (16)
C130.0832 (18)0.0728 (17)0.076 (2)0.0251 (15)0.0355 (16)0.0065 (15)
C140.0691 (15)0.0664 (13)0.0487 (13)0.0169 (12)0.0202 (12)0.0032 (11)
C150.0491 (10)0.0435 (10)0.0333 (10)0.0019 (8)0.0181 (8)0.0004 (7)
C160.0645 (13)0.0484 (11)0.0518 (13)0.0084 (10)0.0293 (11)0.0037 (9)
C170.0640 (14)0.0715 (15)0.0666 (17)0.0085 (12)0.0344 (13)0.0051 (13)
C180.0688 (15)0.0879 (18)0.0563 (16)0.0157 (14)0.0403 (14)0.0130 (13)
C190.0809 (17)0.0669 (14)0.0597 (16)0.0054 (13)0.0381 (14)0.0155 (12)
C200.0653 (14)0.0548 (12)0.0586 (15)0.0061 (11)0.0332 (12)0.0135 (10)
Geometric parameters (Å, º) top
Cl1—C21.723 (2)C10—C111.385 (4)
F1—C31.353 (3)C10—H10A0.9500
O1—C71.221 (2)C11—C121.360 (5)
N1—C71.346 (3)C11—H11A0.9500
N1—C61.414 (3)C12—C131.363 (5)
N1—H1N0.847 (17)C12—H12A0.9500
C1—C21.367 (3)C13—C141.388 (4)
C1—C61.396 (3)C13—H13A0.9500
C1—H1A0.9500C14—H14A0.9500
C2—C31.379 (3)C15—C161.380 (3)
C3—C41.363 (3)C15—C201.385 (3)
C4—C51.374 (3)C16—C171.384 (4)
C4—H4A0.9500C16—H16A0.9500
C5—C61.389 (3)C17—C181.364 (4)
C5—H5A0.9500C17—H17A0.9500
C7—C81.528 (3)C18—C191.375 (4)
C8—C91.519 (3)C18—H18A0.9500
C8—C151.526 (3)C19—C201.380 (4)
C8—H8A1.0000C19—H19A0.9500
C9—C101.380 (3)C20—H20A0.9500
C9—C141.387 (3)
C7—N1—C6128.12 (17)C9—C10—C11120.4 (3)
C7—N1—H1N118.9 (18)C9—C10—H10A119.8
C6—N1—H1N112.4 (18)C11—C10—H10A119.8
C2—C1—C6120.06 (19)C12—C11—C10120.8 (3)
C2—C1—H1A120.0C12—C11—H11A119.6
C6—C1—H1A120.0C10—C11—H11A119.6
C1—C2—C3119.92 (19)C11—C12—C13119.7 (3)
C1—C2—Cl1120.96 (17)C11—C12—H12A120.1
C3—C2—Cl1119.12 (17)C13—C12—H12A120.1
F1—C3—C4119.8 (2)C12—C13—C14120.3 (3)
F1—C3—C2119.5 (2)C12—C13—H13A119.9
C4—C3—C2120.61 (19)C14—C13—H13A119.9
C3—C4—C5120.3 (2)C9—C14—C13120.6 (3)
C3—C4—H4A119.8C9—C14—H14A119.7
C5—C4—H4A119.8C13—C14—H14A119.7
C4—C5—C6119.8 (2)C16—C15—C20118.3 (2)
C4—C5—H5A120.1C16—C15—C8119.25 (18)
C6—C5—H5A120.1C20—C15—C8122.37 (19)
C5—C6—C1119.23 (19)C15—C16—C17121.1 (2)
C5—C6—N1123.94 (18)C15—C16—H16A119.5
C1—C6—N1116.83 (17)C17—C16—H16A119.5
O1—C7—N1122.95 (18)C18—C17—C16120.2 (2)
O1—C7—C8122.26 (17)C18—C17—H17A119.9
N1—C7—C8114.79 (17)C16—C17—H17A119.9
C9—C8—C15114.64 (16)C17—C18—C19119.5 (3)
C9—C8—C7110.86 (16)C17—C18—H18A120.2
C15—C8—C7108.75 (16)C19—C18—H18A120.2
C9—C8—H8A107.4C18—C19—C20120.6 (2)
C15—C8—H8A107.4C18—C19—H19A119.7
C7—C8—H8A107.4C20—C19—H19A119.7
C10—C9—C14118.2 (2)C19—C20—C15120.4 (2)
C10—C9—C8119.4 (2)C19—C20—H20A119.8
C14—C9—C8122.4 (2)C15—C20—H20A119.8
C6—C1—C2—C30.1 (3)C15—C8—C9—C1488.2 (3)
C6—C1—C2—Cl1179.12 (15)C7—C8—C9—C1435.4 (3)
C1—C2—C3—F1179.20 (19)C14—C9—C10—C110.9 (4)
Cl1—C2—C3—F10.1 (3)C8—C9—C10—C11177.7 (3)
C1—C2—C3—C40.2 (3)C9—C10—C11—C120.0 (5)
Cl1—C2—C3—C4179.44 (18)C10—C11—C12—C130.6 (5)
F1—C3—C4—C5179.4 (2)C11—C12—C13—C140.2 (6)
C2—C3—C4—C50.1 (3)C10—C9—C14—C131.2 (4)
C3—C4—C5—C60.6 (4)C8—C9—C14—C13177.3 (3)
C4—C5—C6—C10.9 (3)C12—C13—C14—C90.7 (5)
C4—C5—C6—N1178.7 (2)C9—C8—C15—C16152.1 (2)
C2—C1—C6—C50.7 (3)C7—C8—C15—C1683.2 (2)
C2—C1—C6—N1178.94 (18)C9—C8—C15—C2031.1 (3)
C7—N1—C6—C512.1 (3)C7—C8—C15—C2093.6 (2)
C7—N1—C6—C1168.3 (2)C20—C15—C16—C170.2 (3)
C6—N1—C7—O11.1 (3)C8—C15—C16—C17177.0 (2)
C6—N1—C7—C8177.97 (18)C15—C16—C17—C180.2 (4)
O1—C7—C8—C995.3 (2)C16—C17—C18—C190.8 (4)
N1—C7—C8—C983.8 (2)C17—C18—C19—C200.9 (4)
O1—C7—C8—C1531.6 (2)C18—C19—C20—C150.5 (4)
N1—C7—C8—C15149.28 (17)C16—C15—C20—C190.0 (4)
C15—C8—C9—C1090.3 (3)C8—C15—C20—C19176.8 (2)
C7—C8—C9—C10146.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.493.256 (3)138
N1—H1N···O1i0.85 (2)2.09 (2)2.895 (2)158 (2)
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15ClFNO
Mr339.78
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)9.3665 (17), 10.2069 (12), 9.7774 (16)
β (°) 114.42 (2)
V3)851.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.12 × 0.12
Data collection
DiffractometerOxford Diffractio Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.921, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
7456, 3794, 3265
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.01
No. of reflections3794
No. of parameters220
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983), 1668 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.493.256 (3)138.0
N1—H1N···O1i0.847 (17)2.092 (19)2.895 (2)158 (2)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

ASP thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationDavis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, W.-S., Luo, X.-F., Wang, Y. & Hu, A.-X. (2010). Acta Cryst. E66, o1460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945– 950.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207– 2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds