metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Pyrid­yl)pyridinium (2,2′-bi­pyridine-κ2N,N′)tetra­kis­(nitrato-κ2O,O′)bis­­muthate(III)

aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
*Correspondence e-mail: nysymzh@126.com

(Received 10 August 2011; accepted 15 September 2011; online 20 September 2011)

The structure of the title compound, (C10H9N2)[Bi(NO3)4(C10H8N2)], consists of 2-(2-pyrid­yl)pyridinium cations and anions [Bi(NO3)4(C10H8N2)]. The Bi3+ ion lies on the twofold axis. It is coordinated by two nitro­gen atoms from one 2,2′-bipyridine ligand and eight oxygen atoms from four NO3 anions. The disordered cation is positioned at the inversion centre. The [Bi(NO3)4(C10H8N2)] anions and 2-(2-pyrid­yl)pyridinium cations are connected via N—H⋯O hydrogen bonds into chains. Moreover, these chains are further linked into a two-dimensional layered structure through ππ stacking inter­actions between bipyridine ligands along the c axis [centroid–centroid distance = 2.868 (4) Å].

Related literature

For potential applications of bis­muth(III) coordination compounds in medical chemistry, see: Sun & Szeto (2003[Sun, H. Z. & Szeto, K. Y. (2003). J. Inorg. Biochem. 94, 114-120.]); Sun et al. (2004[Sun, H. Z., Zhang, L. & Szeto, K. Y. (2004). Met. Ions Biol. Syst. 41, 333-378.]). For reported bis­muth(III) coordination compounds, see: Andrews et al. (2006[Andrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852-4858.]); Boitrel et al. (2003[Boitrel, B., Halime, Z., Michaudet, L., Lachkar, M. & Toupet, L. (2003). Chem. Commun. pp. 2670-2671.]); Marsh (2002[Marsh, R. E. (2002). Acta Cryst. B58, 893-899.]); Wullens et al. (1998[Wullens, H., Devillers, M., Tinant, B. & Declercq, J.-P. (1998). Acta Cryst. C54, 770-773.]); Yang et al. (2006[Yang, J.-Y., Fu, Y.-L., Chu, J. & Ng, S. W. (2006). Acta Cryst. E62, m2310-m2312.], 2007[Yang, N., Tanner, J. A., Wang, Z., Huang, J. D., Zheng, B. J., Zhu, N. Y. & Sun, H. Z. (2007). Chem. Commun. pp. 4413-4415.]). For the structure of disordered protonated 2,2′-bipyridine, see: Bowmaker et al. (1998[Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 293-309.]). For the bond-strength calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)[Bi(NO3)4(C10H8N2)]

  • Mr = 770.40

  • Monoclinic, C 2/c

  • a = 14.711 (5) Å

  • b = 10.169 (3) Å

  • c = 16.832 (5) Å

  • β = 97.275 (6)°

  • V = 2497.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.14 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.258, Tmax = 0.360

  • 5998 measured reflections

  • 2224 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.02

  • 2224 reflections

  • 194 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.43 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—N3 2.444 (5)
Bi1—O5 2.470 (6)
Bi1—O2 2.564 (6)
Bi1—O4 2.626 (6)
Bi1—O1 2.703 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H7⋯O4 0.93 2.31 3.145 (10) 149

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bismuth (III) coordination compounds have attracted considerable attention in recent years due to their fascinating structural architectures and potential applications in chemical industry, bioengineering, medical chemistry and so on. Up to now, a large number of bismuth (III) coordination compounds with various structural motifs and dimensionalities have been reported. As an expansion of such class of compounds, we have successfully isolated a novel bismuth (III) compound (C10H9N2)[Bi(C10H8N2)(NO3)4] which exhibits a two-dimensional layered structure built up from monoprotonated 2,2-bipyridines and [Bi(C10H8N2)(NO3)4]-coordination anions, connected through hydrogen bonds and ππ stacking interactions.

The formula unit of the title compound consists of one coordination anion, [Bi(C10H8N2)(NO3)4]-, which has a crystallographic twofold axis symmetry, and one disordered monoprotonated 2,2-bipyridine (Fig. 1). The disordered protonated 2,2-bipyridine in the structure of title compound is similar to that found in the compound (C10H9N2)(BiI4). In the coordination anion, the Bi(III) center is coordinated by two nitrogen atoms from one C10H8N2 ligand and eight oxygen atoms from four NO3- anions with two Bi—N equal distances of 2.444 (5) Å and Bi—O distances ranging from 2.470 (6) to 2.703 (8) Å. On the basis of bond strength calculations, the bond valence sum (BVS) for Bi1 is 3.30 which suggests that Bi has the +3 oxidation state.

Besides electrostatic interactions, the coordination anions [Bi(C10H8N2)(NO3)4]-and protonated 2,2-bipyridines are connected via N—H···O hydrogen bonds [N4—H7···O4, 3.145 (10) Å, 149°] into chains. These chains are further linked into two-dimensional layered structure through the ππ stacking interactions between bipy ligands along the c axis (Fig. 2). Interacting aromatic rings of bipy ligands in these stacks are parallel to each other with the interplanar distance of 2.868 (4) Å.

Related literature top

For potential applications of bismuth(III) coordination compounds in medical chemistry, see: Sun & Szeto (2003); Sun et al. (2004). For reported bismuth(III) coordination compounds, see: Andrews et al. (2006); Boitrel et al. (2003); Marsh (2002); Wullens et al. (1998); Yang et al. (2006, 2007). For [the structure of?] disordered protonated 2,2'-bipyridine, see: Bowmaker et al. (1998). For the bond-strength calculations, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The 10 ml portions of ethanol solutions of C10H8N2 (0.16 g, 1 mmol) and 2,6-pyridinedicarboxylic acid (1 mmol, 0.17 g) were mixed, then 12 ml of ethanol solution of Bi(NO3)3.5H2O (0.49 g, 1 mmol) was added. After stirring for half an hour, the solution was filtered and left for slowly evaporation at room temperature to obtain colorless block crystals suitable for X-ray structure determination. Yield: 70% (based on Bi). Anal. calcd. (%) for C20H17BiN8O12: C, 31.18; H, 2.22; N, 14.55. Found (%): C, 31.26; H, 2.09; N, 14.71.

Refinement top

The H8 and H10 atoms were located from Fourier difference maps and refined with distance restraints of 0.93 Å, other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C). The occupancy for C7/N4 and C11/N5 sites is 50% C and 50% N. In addition, the O1, N1 and O1, Bi1 atoms were refined with restraints (delu 0.01, isor 0.001 for O1).

Structure description top

The bismuth (III) coordination compounds have attracted considerable attention in recent years due to their fascinating structural architectures and potential applications in chemical industry, bioengineering, medical chemistry and so on. Up to now, a large number of bismuth (III) coordination compounds with various structural motifs and dimensionalities have been reported. As an expansion of such class of compounds, we have successfully isolated a novel bismuth (III) compound (C10H9N2)[Bi(C10H8N2)(NO3)4] which exhibits a two-dimensional layered structure built up from monoprotonated 2,2-bipyridines and [Bi(C10H8N2)(NO3)4]-coordination anions, connected through hydrogen bonds and ππ stacking interactions.

The formula unit of the title compound consists of one coordination anion, [Bi(C10H8N2)(NO3)4]-, which has a crystallographic twofold axis symmetry, and one disordered monoprotonated 2,2-bipyridine (Fig. 1). The disordered protonated 2,2-bipyridine in the structure of title compound is similar to that found in the compound (C10H9N2)(BiI4). In the coordination anion, the Bi(III) center is coordinated by two nitrogen atoms from one C10H8N2 ligand and eight oxygen atoms from four NO3- anions with two Bi—N equal distances of 2.444 (5) Å and Bi—O distances ranging from 2.470 (6) to 2.703 (8) Å. On the basis of bond strength calculations, the bond valence sum (BVS) for Bi1 is 3.30 which suggests that Bi has the +3 oxidation state.

Besides electrostatic interactions, the coordination anions [Bi(C10H8N2)(NO3)4]-and protonated 2,2-bipyridines are connected via N—H···O hydrogen bonds [N4—H7···O4, 3.145 (10) Å, 149°] into chains. These chains are further linked into two-dimensional layered structure through the ππ stacking interactions between bipy ligands along the c axis (Fig. 2). Interacting aromatic rings of bipy ligands in these stacks are parallel to each other with the interplanar distance of 2.868 (4) Å.

For potential applications of bismuth(III) coordination compounds in medical chemistry, see: Sun & Szeto (2003); Sun et al. (2004). For reported bismuth(III) coordination compounds, see: Andrews et al. (2006); Boitrel et al. (2003); Marsh (2002); Wullens et al. (1998); Yang et al. (2006, 2007). For [the structure of?] disordered protonated 2,2'-bipyridine, see: Bowmaker et al. (1998). For the bond-strength calculations, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 30% probability level (symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, -y, -z).
[Figure 2] Fig. 2. Crystal packing viewed along the c axis. For clarity, H atoms bound to C atoms are omitted, and only H atoms bound to N atoms are shown.
2-(2-Pyridyl)pyridinium (2,2'-bipyridine-κ2N,N')tetrakis(nitrato- κ2O,O')bismuthate(III) top
Crystal data top
(C10H9N2)[Bi(NO3)4(C10H8N2)]F(000) = 1488
Mr = 770.40Dx = 2.049 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2470 reflections
a = 14.711 (5) Åθ = 2.4–22.5°
b = 10.169 (3) ŵ = 7.14 mm1
c = 16.832 (5) ÅT = 293 K
β = 97.275 (6)°Block, colorless
V = 2497.7 (13) Å30.26 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2224 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1317
Tmin = 0.258, Tmax = 0.360k = 1212
5998 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 9.2649P]
where P = (Fo2 + 2Fc2)/3
2224 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 1.13 e Å3
11 restraintsΔρmin = 1.43 e Å3
Crystal data top
(C10H9N2)[Bi(NO3)4(C10H8N2)]V = 2497.7 (13) Å3
Mr = 770.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.711 (5) ŵ = 7.14 mm1
b = 10.169 (3) ÅT = 293 K
c = 16.832 (5) Å0.26 × 0.24 × 0.18 mm
β = 97.275 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1895 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.360Rint = 0.036
5998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03511 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.13 e Å3
2224 reflectionsΔρmin = 1.43 e Å3
194 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.00000.43500 (3)0.25000.03845 (15)
C10.1200 (5)0.6312 (8)0.3579 (4)0.0481 (18)
H10.13380.55040.37940.058*
C20.1652 (5)0.7417 (7)0.3805 (4)0.0487 (18)
H20.20720.73580.41730.058*
C30.1466 (5)0.8595 (7)0.3475 (4)0.0508 (19)
H30.17850.93480.35890.061*
C40.0802 (5)0.8654 (7)0.2972 (4)0.0437 (17)
H40.06500.94620.27670.052*
C50.0351 (4)0.7518 (6)0.2764 (4)0.0335 (14)
C60.0361 (5)0.0371 (7)0.0162 (4)0.0473 (18)
C70.0484 (6)0.1654 (8)0.0057 (4)0.063 (2)0.50
H4A0.01310.20450.04130.075*0.25
H70.01320.20450.04130.075*0.50
C80.1149 (10)0.2352 (12)0.0267 (8)0.094 (4)
H80.100 (6)0.315 (5)0.006 (5)0.07 (3)*
C90.1650 (8)0.179 (2)0.0789 (8)0.111 (5)
H90.20860.22710.10170.134*
C100.1511 (9)0.0488 (18)0.0982 (7)0.098 (4)
H100.162 (10)0.000 (13)0.143 (6)0.15 (6)*
C110.0859 (6)0.0230 (9)0.0674 (5)0.067 (2)0.50
H50.07600.11090.08130.080*0.25
H110.07600.11090.08130.080*0.50
O10.1017 (5)0.2143 (8)0.2235 (4)0.095 (2)
O20.1374 (4)0.3450 (6)0.3126 (4)0.0784 (19)
O30.2044 (5)0.1589 (7)0.2956 (5)0.101 (2)
O40.0397 (5)0.3946 (7)0.0954 (4)0.0789 (18)
O50.1352 (4)0.5005 (6)0.1561 (3)0.0635 (15)
O60.1767 (5)0.4407 (7)0.0349 (4)0.094 (2)
N10.1488 (5)0.2376 (7)0.2795 (5)0.0631 (19)
N20.1182 (5)0.4426 (7)0.0941 (4)0.0593 (18)
N30.0577 (4)0.6348 (5)0.3070 (3)0.0365 (12)
N40.0484 (6)0.1654 (8)0.0057 (4)0.063 (2)0.50
N50.0859 (6)0.0230 (9)0.0674 (5)0.067 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0478 (2)0.0270 (2)0.0448 (2)0.0000.02219 (16)0.000
C10.055 (5)0.047 (4)0.047 (4)0.004 (4)0.023 (4)0.000 (4)
C20.052 (4)0.052 (5)0.046 (4)0.010 (3)0.022 (3)0.005 (4)
C30.061 (5)0.042 (4)0.053 (5)0.017 (4)0.017 (4)0.006 (4)
C40.063 (5)0.026 (4)0.040 (4)0.009 (3)0.002 (3)0.002 (3)
C50.041 (4)0.029 (3)0.032 (3)0.002 (3)0.012 (3)0.005 (3)
C60.047 (4)0.053 (5)0.040 (4)0.011 (3)0.000 (3)0.002 (3)
C70.076 (5)0.053 (5)0.059 (5)0.000 (4)0.006 (4)0.004 (4)
C80.116 (10)0.066 (8)0.093 (8)0.020 (7)0.018 (8)0.003 (7)
C90.062 (7)0.181 (15)0.089 (9)0.025 (9)0.001 (6)0.065 (10)
C100.070 (7)0.164 (14)0.062 (7)0.047 (9)0.012 (6)0.023 (9)
C110.069 (5)0.080 (6)0.052 (4)0.026 (4)0.011 (4)0.002 (4)
O10.096 (2)0.094 (2)0.097 (2)0.0016 (10)0.0153 (10)0.0016 (10)
O20.092 (5)0.055 (4)0.097 (5)0.028 (3)0.048 (4)0.016 (3)
O30.093 (5)0.064 (4)0.152 (7)0.031 (4)0.039 (5)0.020 (4)
O40.085 (5)0.087 (5)0.071 (4)0.001 (4)0.034 (4)0.023 (3)
O50.064 (4)0.073 (4)0.054 (3)0.006 (3)0.008 (3)0.015 (3)
O60.103 (5)0.121 (6)0.053 (4)0.031 (4)0.009 (4)0.013 (4)
N10.062 (4)0.046 (4)0.087 (5)0.007 (3)0.031 (4)0.017 (4)
N20.071 (5)0.058 (4)0.053 (4)0.013 (4)0.021 (4)0.010 (4)
N30.046 (3)0.027 (3)0.039 (3)0.004 (2)0.013 (3)0.001 (2)
N40.076 (5)0.053 (5)0.059 (5)0.000 (4)0.006 (4)0.004 (4)
N50.069 (5)0.080 (6)0.052 (4)0.026 (4)0.011 (4)0.002 (4)
Geometric parameters (Å, º) top
Bi1—N32.444 (5)C6—C111.346 (10)
Bi1—N3i2.444 (5)C6—C71.362 (10)
Bi1—O5i2.470 (6)C6—C6ii1.463 (15)
Bi1—O52.470 (6)C7—C81.376 (15)
Bi1—O22.564 (6)C7—H4A0.9300
Bi1—O2i2.564 (6)C7—H70.9300
Bi1—O42.626 (6)C8—C91.345 (19)
Bi1—O4i2.626 (6)C8—H80.92 (2)
Bi1—O12.703 (8)C9—C101.368 (19)
Bi1—O1i2.703 (8)C9—H90.9300
C1—N31.333 (8)C10—C111.359 (17)
C1—C21.383 (10)C10—H100.93 (2)
C1—H10.9300C11—H50.9300
C2—C31.363 (10)C11—H110.9299
C2—H20.9300O1—N11.261 (9)
C3—C41.372 (10)O2—N11.228 (8)
C3—H30.9300O3—N11.200 (8)
C4—C51.399 (9)O4—N21.252 (9)
C4—H40.9300O5—N21.250 (8)
C5—N31.353 (8)O6—N21.232 (10)
C5—C5i1.445 (12)
N3—Bi1—N3i67.5 (2)C3—C2—H2120.8
N3—Bi1—O5i79.4 (2)C1—C2—H2120.8
N3i—Bi1—O5i74.64 (18)C2—C3—C4119.0 (6)
N3—Bi1—O574.64 (18)C2—C3—H3120.5
N3i—Bi1—O579.4 (2)C4—C3—H3120.5
O5i—Bi1—O5148.7 (3)C3—C4—C5121.1 (7)
N3—Bi1—O278.73 (19)C3—C4—H4119.5
N3i—Bi1—O2142.1 (2)C5—C4—H4119.5
O5i—Bi1—O2116.5 (2)N3—C5—C4118.9 (6)
O5—Bi1—O275.3 (2)N3—C5—C5i117.6 (3)
N3—Bi1—O2i142.1 (2)C4—C5—C5i123.5 (4)
N3i—Bi1—O2i78.73 (19)C11—C6—C7122.9 (8)
O5i—Bi1—O2i75.3 (2)C11—C6—C6ii119.0 (9)
O5—Bi1—O2i116.5 (2)C7—C6—C6ii118.1 (8)
O2—Bi1—O2i138.2 (3)C6—C7—C8117.7 (9)
N3—Bi1—O4118.3 (2)C6—C7—H4A121.2
N3i—Bi1—O477.65 (19)C8—C7—H4A121.2
O5i—Bi1—O4137.4 (2)C6—C7—H7121.2
O5—Bi1—O449.3 (2)C8—C7—H7121.2
O2—Bi1—O4105.3 (2)H4A—C7—H70.0
O2i—Bi1—O468.0 (2)C9—C8—C7120.8 (11)
N3—Bi1—O4i77.65 (19)C9—C8—H8143 (6)
N3i—Bi1—O4i118.3 (2)C7—C8—H895 (6)
O5i—Bi1—O4i49.3 (2)C8—C9—C10119.4 (11)
O5—Bi1—O4i137.4 (2)C8—C9—H9120.3
O2—Bi1—O4i68.0 (2)C10—C9—H9120.3
O2i—Bi1—O4i105.3 (2)C11—C10—C9121.3 (11)
O4—Bi1—O4i162.0 (3)C11—C10—H10103 (10)
N3—Bi1—O1122.9 (2)C9—C10—H10132 (10)
N3i—Bi1—O1147.0 (2)C6—C11—C10117.8 (10)
O5i—Bi1—O1135.5 (2)C6—C11—H5121.1
O5—Bi1—O174.6 (2)C10—C11—H5121.1
O2—Bi1—O147.4 (2)C6—C11—H11121.1
O2i—Bi1—O194.8 (2)C10—C11—H11121.1
O4—Bi1—O170.0 (2)H5—C11—H110.1
O4i—Bi1—O194.7 (2)N1—O1—Bi193.8 (5)
N3—Bi1—O1i147.0 (2)N1—O2—Bi1101.6 (5)
N3i—Bi1—O1i122.9 (2)N2—O4—Bi192.6 (4)
O5i—Bi1—O1i74.6 (2)N2—O5—Bi1100.2 (5)
O5—Bi1—O1i135.5 (2)O3—N1—O2123.3 (8)
O2—Bi1—O1i94.8 (2)O3—N1—O1119.9 (8)
O2i—Bi1—O1i47.4 (2)O2—N1—O1116.7 (7)
O4—Bi1—O1i94.7 (2)O6—N2—O5119.3 (8)
O4i—Bi1—O1i70.0 (2)O6—N2—O4123.8 (7)
O1—Bi1—O1i67.7 (3)O5—N2—O4116.8 (7)
N3—C1—C2123.2 (7)C1—N3—C5119.4 (6)
N3—C1—H1118.4C1—N3—Bi1122.0 (5)
C2—C1—H1118.4C5—N3—Bi1117.8 (4)
C3—C2—C1118.3 (6)
N3—C1—C2—C31.6 (12)N3i—Bi1—O5—N288.9 (5)
C1—C2—C3—C43.9 (11)O5i—Bi1—O5—N2123.2 (5)
C2—C3—C4—C53.3 (11)O2—Bi1—O5—N2119.6 (5)
C3—C4—C5—N30.2 (10)O2i—Bi1—O5—N217.3 (5)
C3—C4—C5—C5i179.7 (8)O4—Bi1—O5—N26.1 (4)
C11—C6—C7—C80.1 (12)O4i—Bi1—O5—N2150.5 (4)
C6ii—C6—C7—C8178.4 (9)O1—Bi1—O5—N270.5 (5)
C6—C7—C8—C90.8 (15)O1i—Bi1—O5—N237.8 (6)
C7—C8—C9—C101.8 (18)Bi1—O2—N1—O3175.6 (7)
C8—C9—C10—C112.0 (17)Bi1—O2—N1—O17.8 (8)
C7—C6—C11—C100.0 (12)Bi1—O1—N1—O3176.0 (7)
C6ii—C6—C11—C10178.5 (9)Bi1—O1—N1—O27.3 (8)
C9—C10—C11—C61.0 (15)Bi1—O5—N2—O6172.3 (6)
N3—Bi1—O1—N128.6 (6)Bi1—O5—N2—O411.0 (8)
N3i—Bi1—O1—N1127.7 (5)Bi1—O4—N2—O6173.2 (7)
O5i—Bi1—O1—N181.7 (6)Bi1—O4—N2—O510.2 (7)
O5—Bi1—O1—N188.2 (5)C2—C1—N3—C51.5 (11)
O2—Bi1—O1—N14.2 (5)C2—C1—N3—Bi1168.7 (6)
O2i—Bi1—O1—N1155.6 (5)C4—C5—N3—C12.2 (10)
O4—Bi1—O1—N1140.0 (5)C5i—C5—N3—C1177.9 (7)
O4i—Bi1—O1—N149.8 (5)C4—C5—N3—Bi1168.4 (5)
O1i—Bi1—O1—N1115.9 (6)C5i—C5—N3—Bi111.5 (9)
N3—Bi1—O2—N1163.7 (6)N3i—Bi1—N3—C1174.4 (7)
N3i—Bi1—O2—N1136.6 (5)O5i—Bi1—N3—C1107.9 (5)
O5i—Bi1—O2—N1124.2 (5)O5—Bi1—N3—C189.8 (6)
O5—Bi1—O2—N186.8 (5)O2—Bi1—N3—C112.1 (5)
O2i—Bi1—O2—N126.7 (5)O2i—Bi1—N3—C1156.7 (5)
O4—Bi1—O2—N147.2 (6)O4—Bi1—N3—C1113.5 (5)
O4i—Bi1—O2—N1115.2 (6)O4i—Bi1—N3—C157.6 (5)
O1—Bi1—O2—N14.4 (5)O1—Bi1—N3—C130.1 (6)
O1i—Bi1—O2—N149.0 (6)O1i—Bi1—N3—C169.4 (7)
N3—Bi1—O4—N236.8 (5)N3i—Bi1—N3—C54.1 (3)
N3i—Bi1—O4—N292.6 (5)O5i—Bi1—N3—C581.7 (5)
O5i—Bi1—O4—N2142.9 (4)O5—Bi1—N3—C580.6 (5)
O5—Bi1—O4—N26.0 (4)O2—Bi1—N3—C5158.3 (5)
O2—Bi1—O4—N248.4 (5)O2i—Bi1—N3—C533.0 (6)
O2i—Bi1—O4—N2175.3 (5)O4—Bi1—N3—C556.9 (5)
O4i—Bi1—O4—N2113.7 (5)O4i—Bi1—N3—C5132.1 (5)
O1—Bi1—O4—N280.5 (5)O1—Bi1—N3—C5140.3 (5)
O1i—Bi1—O4—N2144.7 (5)O1i—Bi1—N3—C5120.3 (5)
N3—Bi1—O5—N2158.3 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H7···O40.932.313.145 (10)149

Experimental details

Crystal data
Chemical formula(C10H9N2)[Bi(NO3)4(C10H8N2)]
Mr770.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.711 (5), 10.169 (3), 16.832 (5)
β (°) 97.275 (6)
V3)2497.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)7.14
Crystal size (mm)0.26 × 0.24 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.258, 0.360
No. of measured, independent and
observed [I > 2σ(I)] reflections
5998, 2224, 1895
Rint0.036
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.02
No. of reflections2224
No. of parameters194
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 1.43

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2008).

Selected bond lengths (Å) top
Bi1—N32.444 (5)Bi1—O42.626 (6)
Bi1—O52.470 (6)Bi1—O12.703 (8)
Bi1—O22.564 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H7···O40.932.313.145 (10)149
 

References

First citationAndrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852–4858.  Web of Science CSD CrossRef Google Scholar
First citationBoitrel, B., Halime, Z., Michaudet, L., Lachkar, M. & Toupet, L. (2003). Chem. Commun. pp. 2670–2671.  Web of Science CSD CrossRef Google Scholar
First citationBowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 293–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarsh, R. E. (2002). Acta Cryst. B58, 893–899.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. Z. & Szeto, K. Y. (2003). J. Inorg. Biochem. 94, 114–120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSun, H. Z., Zhang, L. & Szeto, K. Y. (2004). Met. Ions Biol. Syst. 41, 333–378.  PubMed CAS Google Scholar
First citationWullens, H., Devillers, M., Tinant, B. & Declercq, J.-P. (1998). Acta Cryst. C54, 770–773.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, J.-Y., Fu, Y.-L., Chu, J. & Ng, S. W. (2006). Acta Cryst. E62, m2310–m2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, N., Tanner, J. A., Wang, Z., Huang, J. D., Zheng, B. J., Zhu, N. Y. & Sun, H. Z. (2007). Chem. Commun. pp. 4413–4415.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds