organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-(4-chloro­benzo­yl)imidazo[1,2-a]pyridin-1-ium-2-olate

aDepartament of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 12 September 2011; accepted 27 September 2011; online 30 September 2011)

In the mol­ecule of the title compound, C15H11ClN2O2, the nine-membered heterobicycle is approximately planar [largest deviation from least-squares plane = 0.012 (2) Å] and forms a dihedral angle of 51.14 (8)° with the plane of the 4-chloro­phenyl group. There is a non-classical intra­molecular hydrogen bond between the pyridine α-H atom and the O atom of the benzoyl group. The crystal structure is stabilized by weak C—H⋯O and C—H⋯Cl inter­actions involving the `olate' O atom and the Cl atom attached to the benzoyl group as acceptors.

Related literature

For related structures, see: Friedman et al. (1978[Friedman, A. E., Anderson, W. K. & Shefter, E. (1978). Cryst. Struct. Commun. 7, 723-726.]); Rybakov et al. (1999[Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (1999). Crystallogr. Rep. 44, 997-999.], 2000a[Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000a). Crystallogr. Rep. 45, 103-104.],b[Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000b). Crystallogr. Rep. 45, 261-263.], 2001[Rybakov, V. B., Zhukov, S. G., Babaev, E. V. & Sonneveld, E. J. (2001). Crystallogr. Rep. 46, 385-388.], 2002[Rybakov, V. B., Babaev, E. V., Pasichnichenko, K. Yu. & Sonneveld, E. J. (2002). Crystallogr. Rep. 47, 69-74.]). For the synthesis of 1-methyl-2-oxo-2,3-dihydro­imidazopyridinium perchlorate, see: Sych & Gorb (1976[Sych, E. D. & Gorb, L. T. (1976). Ukr. Khim. Zh. (Russ. Ed.), 9, 961-963.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClN2O2

  • Mr = 286.71

  • Monoclinic, P 21 /c

  • a = 8.190 (8) Å

  • b = 13.914 (3) Å

  • c = 11.675 (4) Å

  • β = 102.38 (2)°

  • V = 1299.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2675 measured reflections

  • 2546 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.042

  • 1 standard reflections every 200 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 0.94

  • 2546 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O30 0.93 2.30 2.863 (3) 119
C8—H8⋯O2i 0.93 2.47 3.291 (4) 148
C32—H32⋯Cl34ii 0.93 2.93 3.794 (3) 155
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Early we described crystal structures of "pyridylglycine" I (Rybakov et al., 1999) (Fig. 1) and the product of its cyclocondensation – 2-oxoimidazo[1,2-a]pyridine II (Rybakov et al., 2000a) (Fig. 1). According to Sych & Gorb (1976), we have also performed selective N–methylation of II and investigated the molecular and crystal structures of the resulting salt III (Rybakov et al., 2000b) (Fig. 1). In the present paper we continue the sequence I-II-III and report the molecular structure of the acylated derivative of the compound III - the mesoionic 1-methyl-3-(p–chlorobenzoyl)imidazo[1,2-a] pyridinium-2-olate IV (Fig. 1). The acylation of III was performed by using of 4-chlorobenzoyl chloride in the presence of triethylamine leading to green crystals of the derivative IV with the 60% yield.

The molecular structure of the mesoionic compound IV (Fig. 2) displays some remarkable features early observed for analogous fused imidazopyridines (Friedman et al., 1978) and oxazolopyridines (Rybakov et al., 2001; Rybakov et al., 2002). In particular, in the moiety O10 C30—C3—C2O2 the bonds length C3—C30 and C2—C3 correspond to single bonds (~1.43 Å), whereas the bonds length C30O30 and C2 O2 (~1.23 Å) correspond to double bonds, thus displaying the unusual ylide-like pattern of the imidazolone fragment. On the other hand, the sequence C5C6–C7C8 displays alternation of the bonds length, thus corresponding to quasi-diene fragment of the pyridine ring. These facts seem to be common to the entire class of azolopyridinium-2-olates. The intramolecular interaction C5—H5···O30 with parameters H5···O30 = 2.296 Å, C5···O30 = 2.863 (3)Å and angle C5—H5···O30 = 118.83° (Table 1) is found. The molecules in crystal are linked by weak intermolecular interactions: C8—H8···O2i with parameters H8···O2i = 2.466 Å, C8···O2i = 3.291 (4)Å and angle C8—H8···O2i = 147.86°; C32—H32···Cl34ii with parameters H32···Cl34ii = 2.931 Å, C32···Cl34 = 3.794 (3)Å and angle C32—H32···Cl34ii = 154.93°. Symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.

Related literature top

For related structures, see: Friedman et al. (1978); Rybakov et al. (1999, 2000a,b, 2001, (2002). For the synthesis of 1-methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate, see: Sych & Gorb (1976). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

1-Methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate III was obtained as described by Sych & Gorb (1976) (Fig. 2). In order to obtain 1-methyl-3-(4-chlorobenzoyl)imidazo[1,2-a]pyridinium-2-olate IV, triethylamine (2.24 ml, 0.016 mol) was added slowly to the solution of 2.0 g (8 mmol) III in 10 ml of acetonitrile, and 1.4 g (8 mmol) of 4-chlorobenzoil chloride was added to the obtained mixture. The reaction flask was stirred at room temperature for 1 h and then kept overnight. The precipitate was filtered and recrystallized from isopropyl alcohol. The yield was 1.3 g (60%). M.p. 479–481 K. 1H NMR spectra (DMSO-d6, p.p.m.): 9.96 (d, 1H, 9-H), 7.85 (dd, 1H, 8-H), 7.68 (m, 2H, p-ClPh), 7.61 (d, 1H, 6-H), 7.44 (m, 2H, p-ClPh), 7.34 (dd, 1H, 7-H), 3.38 (s, 3H, 4-Me). The numbering of protons is given according to the atoms numbering on Fig. 1.

Refinement top

All the hydrogen atoms in the molecule were placed geometrically and allowed to ride on their parent atoms with C—H distance in the range 0.93Å and 0.96Å and with Uiso(H) = 1.5Ueq(C) for CH3 group and Uiso(H) = 1.2Ueq(C) for the aryl groups.

Structure description top

Early we described crystal structures of "pyridylglycine" I (Rybakov et al., 1999) (Fig. 1) and the product of its cyclocondensation – 2-oxoimidazo[1,2-a]pyridine II (Rybakov et al., 2000a) (Fig. 1). According to Sych & Gorb (1976), we have also performed selective N–methylation of II and investigated the molecular and crystal structures of the resulting salt III (Rybakov et al., 2000b) (Fig. 1). In the present paper we continue the sequence I-II-III and report the molecular structure of the acylated derivative of the compound III - the mesoionic 1-methyl-3-(p–chlorobenzoyl)imidazo[1,2-a] pyridinium-2-olate IV (Fig. 1). The acylation of III was performed by using of 4-chlorobenzoyl chloride in the presence of triethylamine leading to green crystals of the derivative IV with the 60% yield.

The molecular structure of the mesoionic compound IV (Fig. 2) displays some remarkable features early observed for analogous fused imidazopyridines (Friedman et al., 1978) and oxazolopyridines (Rybakov et al., 2001; Rybakov et al., 2002). In particular, in the moiety O10 C30—C3—C2O2 the bonds length C3—C30 and C2—C3 correspond to single bonds (~1.43 Å), whereas the bonds length C30O30 and C2 O2 (~1.23 Å) correspond to double bonds, thus displaying the unusual ylide-like pattern of the imidazolone fragment. On the other hand, the sequence C5C6–C7C8 displays alternation of the bonds length, thus corresponding to quasi-diene fragment of the pyridine ring. These facts seem to be common to the entire class of azolopyridinium-2-olates. The intramolecular interaction C5—H5···O30 with parameters H5···O30 = 2.296 Å, C5···O30 = 2.863 (3)Å and angle C5—H5···O30 = 118.83° (Table 1) is found. The molecules in crystal are linked by weak intermolecular interactions: C8—H8···O2i with parameters H8···O2i = 2.466 Å, C8···O2i = 3.291 (4)Å and angle C8—H8···O2i = 147.86°; C32—H32···Cl34ii with parameters H32···Cl34ii = 2.931 Å, C32···Cl34 = 3.794 (3)Å and angle C32—H32···Cl34ii = 154.93°. Symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.

For related structures, see: Friedman et al. (1978); Rybakov et al. (1999, 2000a,b, 2001, (2002). For the synthesis of 1-methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate, see: Sych & Gorb (1976). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis path for IV.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) plot of the molecule IV with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
1-Methyl-3-(4-chlorobenzoyl)imidazo[1,2-a]pyridin-1-ium-2-olate top
Crystal data top
C15H11ClN2O2F(000) = 592
Mr = 286.71Dx = 1.465 Mg m3
Monoclinic, P21/cMelting point = 479–481 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.190 (8) ÅCell parameters from 25 reflections
b = 13.914 (3) Åθ = 13.0–14.8°
c = 11.675 (4) ŵ = 0.30 mm1
β = 102.38 (2)°T = 295 K
V = 1299.5 (14) Å3Prism, green
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.042
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.3°
Graphite monochromatorh = 109
non–profiled ω scansk = 017
2675 measured reflectionsl = 014
2546 independent reflections1 standard reflections every 200 reflections
1486 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H11ClN2O2V = 1299.5 (14) Å3
Mr = 286.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.190 (8) ŵ = 0.30 mm1
b = 13.914 (3) ÅT = 295 K
c = 11.675 (4) Å0.30 × 0.30 × 0.30 mm
β = 102.38 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.042
2675 measured reflections1 standard reflections every 200 reflections
2546 independent reflections intensity decay: 2%
1486 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.94Δρmax = 0.15 e Å3
2546 reflectionsΔρmin = 0.26 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0863 (3)0.54749 (15)0.22101 (19)0.0505 (6)
C20.1226 (3)0.45544 (18)0.1820 (2)0.0449 (6)
O20.0815 (2)0.38150 (13)0.22548 (16)0.0594 (5)
C30.2076 (3)0.47398 (16)0.0895 (2)0.0424 (6)
N40.2102 (2)0.57470 (13)0.07555 (17)0.0416 (5)
C50.2755 (3)0.62878 (19)0.0013 (2)0.0521 (7)
H50.32440.59970.05740.063*
C60.2675 (4)0.7264 (2)0.0060 (3)0.0646 (9)
H60.31180.76410.04570.078*
C70.1947 (4)0.7704 (2)0.0887 (3)0.0690 (9)
H70.19030.83710.09200.083*
C80.1292 (4)0.71635 (19)0.1653 (3)0.0609 (8)
H80.08010.74530.22130.073*
C90.1377 (3)0.61773 (18)0.1577 (2)0.0469 (6)
C110.0063 (4)0.5623 (2)0.3124 (3)0.0725 (9)
H11A0.06960.57970.38400.109*
H11B0.06360.50410.32400.109*
H11C0.08630.61290.28950.109*
C300.2748 (3)0.40950 (17)0.0162 (2)0.0459 (6)
O300.3115 (3)0.43543 (13)0.07607 (15)0.0659 (6)
C310.3064 (3)0.30759 (17)0.0552 (2)0.0390 (6)
C320.3762 (3)0.28280 (17)0.1699 (2)0.0451 (6)
H320.39550.33040.22710.054*
C330.4177 (3)0.18918 (18)0.2012 (2)0.0463 (6)
H330.46540.17330.27850.056*
C340.3869 (3)0.11962 (17)0.1154 (2)0.0450 (6)
Cl340.43791 (11)0.00078 (5)0.15427 (8)0.0725 (3)
C350.3144 (3)0.14142 (17)0.0010 (2)0.0478 (7)
H350.29140.09310.05520.057*
C360.2766 (3)0.23515 (18)0.0291 (2)0.0460 (7)
H360.23050.25070.10680.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0450 (14)0.0641 (14)0.0448 (14)0.0060 (11)0.0150 (12)0.0039 (12)
C20.0378 (16)0.0555 (15)0.0389 (15)0.0004 (12)0.0023 (13)0.0033 (13)
O20.0603 (13)0.0647 (12)0.0568 (13)0.0035 (10)0.0208 (11)0.0127 (10)
C30.0415 (15)0.0452 (13)0.0396 (15)0.0000 (11)0.0071 (13)0.0030 (11)
N40.0339 (12)0.0468 (11)0.0409 (12)0.0017 (9)0.0012 (10)0.0011 (10)
C50.0418 (17)0.0627 (17)0.0506 (17)0.0017 (13)0.0071 (14)0.0112 (14)
C60.050 (2)0.0561 (17)0.082 (2)0.0012 (14)0.0015 (18)0.0165 (16)
C70.056 (2)0.0515 (17)0.089 (3)0.0079 (15)0.0079 (19)0.0010 (18)
C80.0476 (19)0.0582 (17)0.072 (2)0.0084 (14)0.0022 (17)0.0111 (16)
C90.0372 (16)0.0568 (15)0.0460 (17)0.0101 (12)0.0071 (13)0.0063 (13)
C110.069 (2)0.098 (2)0.057 (2)0.0132 (18)0.0286 (18)0.0073 (18)
C300.0430 (16)0.0554 (16)0.0382 (16)0.0002 (12)0.0060 (13)0.0004 (12)
O300.0985 (17)0.0675 (12)0.0383 (11)0.0132 (11)0.0289 (12)0.0086 (10)
C310.0336 (14)0.0519 (14)0.0291 (14)0.0011 (11)0.0012 (11)0.0001 (11)
C320.0471 (17)0.0500 (14)0.0359 (15)0.0021 (12)0.0037 (13)0.0056 (12)
C330.0409 (16)0.0557 (15)0.0392 (15)0.0044 (12)0.0019 (12)0.0035 (13)
C340.0362 (15)0.0475 (14)0.0536 (17)0.0070 (11)0.0149 (14)0.0050 (13)
Cl340.0791 (6)0.0543 (4)0.0870 (7)0.0176 (4)0.0246 (5)0.0101 (4)
C350.0469 (17)0.0510 (15)0.0434 (16)0.0013 (12)0.0055 (13)0.0132 (13)
C360.0412 (16)0.0596 (16)0.0343 (15)0.0038 (12)0.0016 (13)0.0043 (12)
Geometric parameters (Å, º) top
Cl34—C341.742 (2)C5—H50.9300
N4—C51.365 (3)C30—O301.233 (3)
N4—C91.370 (3)C30—C311.495 (3)
N4—C31.412 (3)C31—C321.382 (3)
C2—C31.428 (3)C31—C361.393 (3)
C3—C301.429 (3)C32—C331.376 (3)
C2—O21.226 (3)C32—H320.9300
C2—N11.412 (3)C33—C341.377 (3)
N1—C91.346 (3)C33—H330.9300
N1—C111.450 (3)C34—C351.374 (3)
C9—C81.378 (3)C35—C361.369 (3)
C8—C71.364 (4)C35—H350.9300
C8—H80.9300C36—H360.9300
C7—C61.382 (4)C11—H11A0.9600
C7—H70.9300C11—H11B0.9600
C6—C51.364 (4)C11—H11C0.9600
C6—H60.9300
C5—N4—C9120.6 (2)O30—C30—C3122.5 (2)
C5—N4—C3129.8 (2)O30—C30—C31119.0 (2)
C9—N4—C3109.5 (2)C3—C30—C31118.5 (2)
N4—C3—C2106.7 (2)C32—C31—C36118.5 (2)
N4—C3—C30122.5 (2)C32—C31—C30122.7 (2)
C2—C3—C30130.7 (2)C36—C31—C30118.6 (2)
O2—C2—N1122.1 (2)C33—C32—C31121.4 (2)
O2—C2—C3133.4 (2)C33—C32—H32119.3
N1—C2—C3104.5 (2)C31—C32—H32119.3
C9—N1—C2111.7 (2)C32—C33—C34118.4 (2)
C9—N1—C11125.1 (2)C32—C33—H33120.8
C2—N1—C11123.1 (2)C34—C33—H33120.8
N1—C9—N4107.5 (2)C35—C34—C33121.7 (2)
N1—C9—C8131.5 (3)C35—C34—Cl34119.5 (2)
N4—C9—C8121.0 (3)C33—C34—Cl34118.8 (2)
C7—C8—C9118.4 (3)C36—C35—C34119.1 (2)
C7—C8—H8120.8C36—C35—H35120.4
C9—C8—H8120.8C34—C35—H35120.4
C8—C7—C6120.2 (3)C35—C36—C31120.8 (2)
C8—C7—H7119.9C35—C36—H36119.6
C6—C7—H7119.9C31—C36—H36119.6
C5—C6—C7121.3 (3)N1—C11—H11A109.5
C5—C6—H6119.4N1—C11—H11B109.5
C7—C6—H6119.4N1—C11—H11C109.5
C6—C5—N4118.5 (3)H11A—C11—H11B109.5
C6—C5—H5120.7H11A—C11—H11C109.5
N4—C5—H5120.7H11B—C11—H11C109.5
C5—N4—C3—C2179.6 (2)C8—C7—C6—C50.1 (5)
C9—N4—C3—C22.5 (3)C7—C6—C5—N40.2 (4)
C5—N4—C3—C302.0 (4)C9—N4—C5—C60.3 (4)
C9—N4—C3—C30179.9 (2)C3—N4—C5—C6177.5 (2)
N4—C3—C2—O2176.9 (3)N4—C3—C30—O3013.5 (4)
C30—C3—C2—O20.5 (5)C2—C3—C30—O30163.5 (3)
N4—C3—C2—N12.5 (3)N4—C3—C30—C31164.6 (2)
C30—C3—C2—N1179.8 (3)C2—C3—C30—C3118.4 (4)
O2—C2—N1—C9177.7 (2)O30—C30—C31—C32136.1 (3)
C3—C2—N1—C91.8 (3)C3—C30—C31—C3242.1 (4)
O2—C2—N1—C112.0 (4)O30—C30—C31—C3638.7 (4)
C3—C2—N1—C11177.5 (2)C3—C30—C31—C36143.1 (2)
C2—N1—C9—N40.3 (3)C36—C31—C32—C330.7 (4)
C11—N1—C9—N4175.9 (2)C30—C31—C32—C33174.1 (2)
C2—N1—C9—C8179.5 (3)C31—C32—C33—C340.5 (4)
C11—N1—C9—C84.9 (5)C32—C33—C34—C350.9 (4)
C5—N4—C9—N1179.5 (2)C32—C33—C34—Cl34179.66 (19)
C3—N4—C9—N11.4 (3)C33—C34—C35—C362.0 (4)
C5—N4—C9—C80.2 (4)Cl34—C34—C35—C36179.18 (19)
C3—N4—C9—C8177.9 (3)C34—C35—C36—C311.8 (4)
N1—C9—C8—C7179.3 (3)C32—C31—C36—C350.5 (4)
N4—C9—C8—C70.1 (4)C30—C31—C36—C35175.5 (2)
C9—C8—C7—C60.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O300.932.302.863 (3)119
C8—H8···O2i0.932.473.291 (4)148
C32—H32···Cl34ii0.932.933.794 (3)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11ClN2O2
Mr286.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.190 (8), 13.914 (3), 11.675 (4)
β (°) 102.38 (2)
V3)1299.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2675, 2546, 1486
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 0.94
No. of reflections2546
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O300.932.2962.863 (3)118.83
C8—H8···O2i0.932.4663.291 (4)147.86
C32—H32···Cl34ii0.932.9313.794 (3)154.93
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to I. V. Dlinnykh for the preparation of title compound. The authors wish to thank Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database ver. 5.32 (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD–4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriedman, A. E., Anderson, W. K. & Shefter, E. (1978). Cryst. Struct. Commun. 7, 723–726.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationRybakov, V. B., Babaev, E. V., Pasichnichenko, K. Yu. & Sonneveld, E. J. (2002). Crystallogr. Rep. 47, 69–74.  Web of Science CrossRef CAS Google Scholar
First citationRybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (1999). Crystallogr. Rep. 44, 997–999.  Google Scholar
First citationRybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000a). Crystallogr. Rep. 45, 103–104.  Web of Science CrossRef Google Scholar
First citationRybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000b). Crystallogr. Rep. 45, 261–263.  Web of Science CrossRef Google Scholar
First citationRybakov, V. B., Zhukov, S. G., Babaev, E. V. & Sonneveld, E. J. (2001). Crystallogr. Rep. 46, 385–388.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSych, E. D. & Gorb, L. T. (1976). Ukr. Khim. Zh. (Russ. Ed.), 9, 961–963.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds