organic compounds
1-Methyl-3-(4-chlorobenzoyl)imidazo[1,2-a]pyridin-1-ium-2-olate
aDepartament of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru
In the molecule of the title compound, C15H11ClN2O2, the nine-membered heterobicycle is approximately planar [largest deviation from least-squares plane = 0.012 (2) Å] and forms a dihedral angle of 51.14 (8)° with the plane of the 4-chlorophenyl group. There is a non-classical intramolecular hydrogen bond between the pyridine α-H atom and the O atom of the benzoyl group. The is stabilized by weak C—H⋯O and C—H⋯Cl interactions involving the `olate' O atom and the Cl atom attached to the benzoyl group as acceptors.
Related literature
For related structures, see: Friedman et al. (1978); Rybakov et al. (1999, 2000a,b, 2001, 2002). For the synthesis of 1-methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate, see: Sych & Gorb (1976). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811039614/yk2022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811039614/yk2022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811039614/yk2022Isup3.cml
1-Methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate III was obtained as described by Sych & Gorb (1976) (Fig. 2). In order to obtain 1-methyl-3-(4-chlorobenzoyl)imidazo[1,2-a]pyridinium-2-olate IV, triethylamine (2.24 ml, 0.016 mol) was added slowly to the solution of 2.0 g (8 mmol) III in 10 ml of acetonitrile, and 1.4 g (8 mmol) of 4-chlorobenzoil chloride was added to the obtained mixture. The reaction flask was stirred at room temperature for 1 h and then kept overnight. The precipitate was filtered and recrystallized from isopropyl alcohol. The yield was 1.3 g (60%). M.p. 479–481 K. 1H NMR spectra (DMSO-d6, p.p.m.): 9.96 (d, 1H, 9-H), 7.85 (dd, 1H, 8-H), 7.68 (m, 2H, p-ClPh), 7.61 (d, 1H, 6-H), 7.44 (m, 2H, p-ClPh), 7.34 (dd, 1H, 7-H), 3.38 (s, 3H, 4-Me). The numbering of protons is given according to the atoms numbering on Fig. 1.
All the hydrogen atoms in the molecule were placed geometrically and allowed to ride on their parent atoms with C—H distance in the range 0.93Å and 0.96Å and with Uiso(H) = 1.5Ueq(C) for CH3 group and Uiso(H) = 1.2Ueq(C) for the aryl groups.
Early we described crystal structures of "pyridylglycine" I (Rybakov et al., 1999) (Fig. 1) and the product of its cyclocondensation – 2-oxoimidazo[1,2-a]pyridine II (Rybakov et al., 2000a) (Fig. 1). According to Sych & Gorb (1976), we have also performed selective N–methylation of II and investigated the molecular and crystal structures of the resulting salt III (Rybakov et al., 2000b) (Fig. 1). In the present paper we continue the sequence I-II-III and report the molecular structure of the acylated derivative of the compound III - the mesoionic 1-methyl-3-(p–chlorobenzoyl)imidazo[1,2-a] pyridinium-2-olate IV (Fig. 1). The acylation of III was performed by using of 4-chlorobenzoyl chloride in the presence of triethylamine leading to green crystals of the derivative IV with the 60% yield.
The molecular structure of the mesoionic compound IV (Fig. 2) displays some remarkable features early observed for analogous fused imidazopyridines (Friedman et al., 1978) and oxazolopyridines (Rybakov et al., 2001; Rybakov et al., 2002). In particular, in the moiety O10═ C30—C3—C2═O2 the bonds length C3—C30 and C2—C3 correspond to single bonds (~1.43 Å), whereas the bonds length C30═O30 and C2═ O2 (~1.23 Å) correspond to double bonds, thus displaying the unusual ylide-like pattern of the imidazolone fragment. On the other hand, the sequence C5═C6–C7═C8 displays alternation of the bonds length, thus corresponding to quasi-diene fragment of the pyridine ring. These facts seem to be common to the entire class of azolopyridinium-2-olates. The intramolecular interaction C5—H5···O30 with parameters H5···O30 = 2.296 Å, C5···O30 = 2.863 (3)Å and angle C5—H5···O30 = 118.83° (Table 1) is found. The molecules in crystal are linked by weak intermolecular interactions: C8—H8···O2i with parameters H8···O2i = 2.466 Å, C8···O2i = 3.291 (4)Å and angle C8—H8···O2i = 147.86°; C32—H32···Cl34ii with parameters H32···Cl34ii = 2.931 Å, C32···Cl34 = 3.794 (3)Å and angle C32—H32···Cl34ii = 154.93°. Symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.
For related structures, see: Friedman et al. (1978); Rybakov et al. (1999, 2000a,b, 2001, (2002). For the synthesis of 1-methyl-2-oxo-2,3-dihydroimidazopyridinium perchlorate, see: Sych & Gorb (1976). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell
CAD-4 Software (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H11ClN2O2 | F(000) = 592 |
Mr = 286.71 | Dx = 1.465 Mg m−3 |
Monoclinic, P21/c | Melting point = 479–481 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.190 (8) Å | Cell parameters from 25 reflections |
b = 13.914 (3) Å | θ = 13.0–14.8° |
c = 11.675 (4) Å | µ = 0.30 mm−1 |
β = 102.38 (2)° | T = 295 K |
V = 1299.5 (14) Å3 | Prism, green |
Z = 4 | 0.30 × 0.30 × 0.30 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.042 |
Radiation source: fine-focus sealed tube | θmax = 26.0°, θmin = 2.3° |
Graphite monochromator | h = −10→9 |
non–profiled ω scans | k = 0→17 |
2675 measured reflections | l = 0→14 |
2546 independent reflections | 1 standard reflections every 200 reflections |
1486 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0433P)2] where P = (Fo2 + 2Fc2)/3 |
2546 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C15H11ClN2O2 | V = 1299.5 (14) Å3 |
Mr = 286.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.190 (8) Å | µ = 0.30 mm−1 |
b = 13.914 (3) Å | T = 295 K |
c = 11.675 (4) Å | 0.30 × 0.30 × 0.30 mm |
β = 102.38 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.042 |
2675 measured reflections | 1 standard reflections every 200 reflections |
2546 independent reflections | intensity decay: 2% |
1486 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.15 e Å−3 |
2546 reflections | Δρmin = −0.26 e Å−3 |
182 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0863 (3) | 0.54749 (15) | 0.22101 (19) | 0.0505 (6) | |
C2 | 0.1226 (3) | 0.45544 (18) | 0.1820 (2) | 0.0449 (6) | |
O2 | 0.0815 (2) | 0.38150 (13) | 0.22548 (16) | 0.0594 (5) | |
C3 | 0.2076 (3) | 0.47398 (16) | 0.0895 (2) | 0.0424 (6) | |
N4 | 0.2102 (2) | 0.57470 (13) | 0.07555 (17) | 0.0416 (5) | |
C5 | 0.2755 (3) | 0.62878 (19) | −0.0013 (2) | 0.0521 (7) | |
H5 | 0.3244 | 0.5997 | −0.0574 | 0.063* | |
C6 | 0.2675 (4) | 0.7264 (2) | 0.0060 (3) | 0.0646 (9) | |
H6 | 0.3118 | 0.7641 | −0.0457 | 0.078* | |
C7 | 0.1947 (4) | 0.7704 (2) | 0.0887 (3) | 0.0690 (9) | |
H7 | 0.1903 | 0.8371 | 0.0920 | 0.083* | |
C8 | 0.1292 (4) | 0.71635 (19) | 0.1653 (3) | 0.0609 (8) | |
H8 | 0.0801 | 0.7453 | 0.2213 | 0.073* | |
C9 | 0.1377 (3) | 0.61773 (18) | 0.1577 (2) | 0.0469 (6) | |
C11 | −0.0063 (4) | 0.5623 (2) | 0.3124 (3) | 0.0725 (9) | |
H11A | 0.0696 | 0.5797 | 0.3840 | 0.109* | |
H11B | −0.0636 | 0.5041 | 0.3240 | 0.109* | |
H11C | −0.0863 | 0.6129 | 0.2895 | 0.109* | |
C30 | 0.2748 (3) | 0.40950 (17) | 0.0162 (2) | 0.0459 (6) | |
O30 | 0.3115 (3) | 0.43543 (13) | −0.07607 (15) | 0.0659 (6) | |
C31 | 0.3064 (3) | 0.30759 (17) | 0.0552 (2) | 0.0390 (6) | |
C32 | 0.3762 (3) | 0.28280 (17) | 0.1699 (2) | 0.0451 (6) | |
H32 | 0.3955 | 0.3304 | 0.2271 | 0.054* | |
C33 | 0.4177 (3) | 0.18918 (18) | 0.2012 (2) | 0.0463 (6) | |
H33 | 0.4654 | 0.1733 | 0.2785 | 0.056* | |
C34 | 0.3869 (3) | 0.11962 (17) | 0.1154 (2) | 0.0450 (6) | |
Cl34 | 0.43791 (11) | 0.00078 (5) | 0.15427 (8) | 0.0725 (3) | |
C35 | 0.3144 (3) | 0.14142 (17) | 0.0010 (2) | 0.0478 (7) | |
H35 | 0.2914 | 0.0931 | −0.0552 | 0.057* | |
C36 | 0.2766 (3) | 0.23515 (18) | −0.0291 (2) | 0.0460 (7) | |
H36 | 0.2305 | 0.2507 | −0.1068 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0450 (14) | 0.0641 (14) | 0.0448 (14) | 0.0060 (11) | 0.0150 (12) | −0.0039 (12) |
C2 | 0.0378 (16) | 0.0555 (15) | 0.0389 (15) | 0.0004 (12) | 0.0023 (13) | −0.0033 (13) |
O2 | 0.0603 (13) | 0.0647 (12) | 0.0568 (13) | −0.0035 (10) | 0.0208 (11) | 0.0127 (10) |
C3 | 0.0415 (15) | 0.0452 (13) | 0.0396 (15) | 0.0000 (11) | 0.0071 (13) | 0.0030 (11) |
N4 | 0.0339 (12) | 0.0468 (11) | 0.0409 (12) | 0.0017 (9) | 0.0012 (10) | 0.0011 (10) |
C5 | 0.0418 (17) | 0.0627 (17) | 0.0506 (17) | 0.0017 (13) | 0.0071 (14) | 0.0112 (14) |
C6 | 0.050 (2) | 0.0561 (17) | 0.082 (2) | −0.0012 (14) | 0.0015 (18) | 0.0165 (16) |
C7 | 0.056 (2) | 0.0515 (17) | 0.089 (3) | 0.0079 (15) | −0.0079 (19) | −0.0010 (18) |
C8 | 0.0476 (19) | 0.0582 (17) | 0.072 (2) | 0.0084 (14) | 0.0022 (17) | −0.0111 (16) |
C9 | 0.0372 (16) | 0.0568 (15) | 0.0460 (17) | 0.0101 (12) | 0.0071 (13) | −0.0063 (13) |
C11 | 0.069 (2) | 0.098 (2) | 0.057 (2) | 0.0132 (18) | 0.0286 (18) | −0.0073 (18) |
C30 | 0.0430 (16) | 0.0554 (16) | 0.0382 (16) | −0.0002 (12) | 0.0060 (13) | 0.0004 (12) |
O30 | 0.0985 (17) | 0.0675 (12) | 0.0383 (11) | 0.0132 (11) | 0.0289 (12) | 0.0086 (10) |
C31 | 0.0336 (14) | 0.0519 (14) | 0.0291 (14) | 0.0011 (11) | 0.0012 (11) | −0.0001 (11) |
C32 | 0.0471 (17) | 0.0500 (14) | 0.0359 (15) | −0.0021 (12) | 0.0037 (13) | −0.0056 (12) |
C33 | 0.0409 (16) | 0.0557 (15) | 0.0392 (15) | 0.0044 (12) | 0.0019 (12) | 0.0035 (13) |
C34 | 0.0362 (15) | 0.0475 (14) | 0.0536 (17) | 0.0070 (11) | 0.0149 (14) | 0.0050 (13) |
Cl34 | 0.0791 (6) | 0.0543 (4) | 0.0870 (7) | 0.0176 (4) | 0.0246 (5) | 0.0101 (4) |
C35 | 0.0469 (17) | 0.0510 (15) | 0.0434 (16) | 0.0013 (12) | 0.0055 (13) | −0.0132 (13) |
C36 | 0.0412 (16) | 0.0596 (16) | 0.0343 (15) | 0.0038 (12) | 0.0016 (13) | −0.0043 (12) |
Cl34—C34 | 1.742 (2) | C5—H5 | 0.9300 |
N4—C5 | 1.365 (3) | C30—O30 | 1.233 (3) |
N4—C9 | 1.370 (3) | C30—C31 | 1.495 (3) |
N4—C3 | 1.412 (3) | C31—C32 | 1.382 (3) |
C2—C3 | 1.428 (3) | C31—C36 | 1.393 (3) |
C3—C30 | 1.429 (3) | C32—C33 | 1.376 (3) |
C2—O2 | 1.226 (3) | C32—H32 | 0.9300 |
C2—N1 | 1.412 (3) | C33—C34 | 1.377 (3) |
N1—C9 | 1.346 (3) | C33—H33 | 0.9300 |
N1—C11 | 1.450 (3) | C34—C35 | 1.374 (3) |
C9—C8 | 1.378 (3) | C35—C36 | 1.369 (3) |
C8—C7 | 1.364 (4) | C35—H35 | 0.9300 |
C8—H8 | 0.9300 | C36—H36 | 0.9300 |
C7—C6 | 1.382 (4) | C11—H11A | 0.9600 |
C7—H7 | 0.9300 | C11—H11B | 0.9600 |
C6—C5 | 1.364 (4) | C11—H11C | 0.9600 |
C6—H6 | 0.9300 | ||
C5—N4—C9 | 120.6 (2) | O30—C30—C3 | 122.5 (2) |
C5—N4—C3 | 129.8 (2) | O30—C30—C31 | 119.0 (2) |
C9—N4—C3 | 109.5 (2) | C3—C30—C31 | 118.5 (2) |
N4—C3—C2 | 106.7 (2) | C32—C31—C36 | 118.5 (2) |
N4—C3—C30 | 122.5 (2) | C32—C31—C30 | 122.7 (2) |
C2—C3—C30 | 130.7 (2) | C36—C31—C30 | 118.6 (2) |
O2—C2—N1 | 122.1 (2) | C33—C32—C31 | 121.4 (2) |
O2—C2—C3 | 133.4 (2) | C33—C32—H32 | 119.3 |
N1—C2—C3 | 104.5 (2) | C31—C32—H32 | 119.3 |
C9—N1—C2 | 111.7 (2) | C32—C33—C34 | 118.4 (2) |
C9—N1—C11 | 125.1 (2) | C32—C33—H33 | 120.8 |
C2—N1—C11 | 123.1 (2) | C34—C33—H33 | 120.8 |
N1—C9—N4 | 107.5 (2) | C35—C34—C33 | 121.7 (2) |
N1—C9—C8 | 131.5 (3) | C35—C34—Cl34 | 119.5 (2) |
N4—C9—C8 | 121.0 (3) | C33—C34—Cl34 | 118.8 (2) |
C7—C8—C9 | 118.4 (3) | C36—C35—C34 | 119.1 (2) |
C7—C8—H8 | 120.8 | C36—C35—H35 | 120.4 |
C9—C8—H8 | 120.8 | C34—C35—H35 | 120.4 |
C8—C7—C6 | 120.2 (3) | C35—C36—C31 | 120.8 (2) |
C8—C7—H7 | 119.9 | C35—C36—H36 | 119.6 |
C6—C7—H7 | 119.9 | C31—C36—H36 | 119.6 |
C5—C6—C7 | 121.3 (3) | N1—C11—H11A | 109.5 |
C5—C6—H6 | 119.4 | N1—C11—H11B | 109.5 |
C7—C6—H6 | 119.4 | N1—C11—H11C | 109.5 |
C6—C5—N4 | 118.5 (3) | H11A—C11—H11B | 109.5 |
C6—C5—H5 | 120.7 | H11A—C11—H11C | 109.5 |
N4—C5—H5 | 120.7 | H11B—C11—H11C | 109.5 |
C5—N4—C3—C2 | −179.6 (2) | C8—C7—C6—C5 | 0.1 (5) |
C9—N4—C3—C2 | 2.5 (3) | C7—C6—C5—N4 | −0.2 (4) |
C5—N4—C3—C30 | −2.0 (4) | C9—N4—C5—C6 | 0.3 (4) |
C9—N4—C3—C30 | −179.9 (2) | C3—N4—C5—C6 | −177.5 (2) |
N4—C3—C2—O2 | 176.9 (3) | N4—C3—C30—O30 | −13.5 (4) |
C30—C3—C2—O2 | −0.5 (5) | C2—C3—C30—O30 | 163.5 (3) |
N4—C3—C2—N1 | −2.5 (3) | N4—C3—C30—C31 | 164.6 (2) |
C30—C3—C2—N1 | −179.8 (3) | C2—C3—C30—C31 | −18.4 (4) |
O2—C2—N1—C9 | −177.7 (2) | O30—C30—C31—C32 | 136.1 (3) |
C3—C2—N1—C9 | 1.8 (3) | C3—C30—C31—C32 | −42.1 (4) |
O2—C2—N1—C11 | −2.0 (4) | O30—C30—C31—C36 | −38.7 (4) |
C3—C2—N1—C11 | 177.5 (2) | C3—C30—C31—C36 | 143.1 (2) |
C2—N1—C9—N4 | −0.3 (3) | C36—C31—C32—C33 | 0.7 (4) |
C11—N1—C9—N4 | −175.9 (2) | C30—C31—C32—C33 | −174.1 (2) |
C2—N1—C9—C8 | −179.5 (3) | C31—C32—C33—C34 | −0.5 (4) |
C11—N1—C9—C8 | 4.9 (5) | C32—C33—C34—C35 | −0.9 (4) |
C5—N4—C9—N1 | −179.5 (2) | C32—C33—C34—Cl34 | −179.66 (19) |
C3—N4—C9—N1 | −1.4 (3) | C33—C34—C35—C36 | 2.0 (4) |
C5—N4—C9—C8 | −0.2 (4) | Cl34—C34—C35—C36 | −179.18 (19) |
C3—N4—C9—C8 | 177.9 (3) | C34—C35—C36—C31 | −1.8 (4) |
N1—C9—C8—C7 | 179.3 (3) | C32—C31—C36—C35 | 0.5 (4) |
N4—C9—C8—C7 | 0.1 (4) | C30—C31—C36—C35 | 175.5 (2) |
C9—C8—C7—C6 | −0.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O30 | 0.93 | 2.30 | 2.863 (3) | 119 |
C8—H8···O2i | 0.93 | 2.47 | 3.291 (4) | 148 |
C32—H32···Cl34ii | 0.93 | 2.93 | 3.794 (3) | 155 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H11ClN2O2 |
Mr | 286.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 8.190 (8), 13.914 (3), 11.675 (4) |
β (°) | 102.38 (2) |
V (Å3) | 1299.5 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.30 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2675, 2546, 1486 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.107, 0.94 |
No. of reflections | 2546 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.26 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O30 | 0.93 | 2.296 | 2.863 (3) | 118.83 |
C8—H8···O2i | 0.93 | 2.466 | 3.291 (4) | 147.86 |
C32—H32···Cl34ii | 0.93 | 2.931 | 3.794 (3) | 154.93 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors are indebted to I. V. Dlinnykh for the preparation of title compound. The authors wish to thank Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database ver. 5.32 (Allen, 2002).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD–4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Friedman, A. E., Anderson, W. K. & Shefter, E. (1978). Cryst. Struct. Commun. 7, 723–726. CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Rybakov, V. B., Babaev, E. V., Pasichnichenko, K. Yu. & Sonneveld, E. J. (2002). Crystallogr. Rep. 47, 69–74. Web of Science CrossRef CAS Google Scholar
Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (1999). Crystallogr. Rep. 44, 997–999. Google Scholar
Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000a). Crystallogr. Rep. 45, 103–104. Web of Science CrossRef Google Scholar
Rybakov, V. B., Zhukov, S. G., Babaev, E. V., Mazina, O. S. & Aslanov, L. A. (2000b). Crystallogr. Rep. 45, 261–263. Web of Science CrossRef Google Scholar
Rybakov, V. B., Zhukov, S. G., Babaev, E. V. & Sonneveld, E. J. (2001). Crystallogr. Rep. 46, 385–388. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sych, E. D. & Gorb, L. T. (1976). Ukr. Khim. Zh. (Russ. Ed.), 9, 961–963. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Early we described crystal structures of "pyridylglycine" I (Rybakov et al., 1999) (Fig. 1) and the product of its cyclocondensation – 2-oxoimidazo[1,2-a]pyridine II (Rybakov et al., 2000a) (Fig. 1). According to Sych & Gorb (1976), we have also performed selective N–methylation of II and investigated the molecular and crystal structures of the resulting salt III (Rybakov et al., 2000b) (Fig. 1). In the present paper we continue the sequence I-II-III and report the molecular structure of the acylated derivative of the compound III - the mesoionic 1-methyl-3-(p–chlorobenzoyl)imidazo[1,2-a] pyridinium-2-olate IV (Fig. 1). The acylation of III was performed by using of 4-chlorobenzoyl chloride in the presence of triethylamine leading to green crystals of the derivative IV with the 60% yield.
The molecular structure of the mesoionic compound IV (Fig. 2) displays some remarkable features early observed for analogous fused imidazopyridines (Friedman et al., 1978) and oxazolopyridines (Rybakov et al., 2001; Rybakov et al., 2002). In particular, in the moiety O10═ C30—C3—C2═O2 the bonds length C3—C30 and C2—C3 correspond to single bonds (~1.43 Å), whereas the bonds length C30═O30 and C2═ O2 (~1.23 Å) correspond to double bonds, thus displaying the unusual ylide-like pattern of the imidazolone fragment. On the other hand, the sequence C5═C6–C7═C8 displays alternation of the bonds length, thus corresponding to quasi-diene fragment of the pyridine ring. These facts seem to be common to the entire class of azolopyridinium-2-olates. The intramolecular interaction C5—H5···O30 with parameters H5···O30 = 2.296 Å, C5···O30 = 2.863 (3)Å and angle C5—H5···O30 = 118.83° (Table 1) is found. The molecules in crystal are linked by weak intermolecular interactions: C8—H8···O2i with parameters H8···O2i = 2.466 Å, C8···O2i = 3.291 (4)Å and angle C8—H8···O2i = 147.86°; C32—H32···Cl34ii with parameters H32···Cl34ii = 2.931 Å, C32···Cl34 = 3.794 (3)Å and angle C32—H32···Cl34ii = 154.93°. Symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.