metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(2,2′-bi­pyridine)(μ3-7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato)cadmium] monohydrate]

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 21 April 2011; accepted 8 September 2011; online 14 September 2011)

The title compound, {[Cd(C8H8O5)(C10H8N2)]·H2O}n, was obtained by the reaction of cadmium acetate with 2,2′-bi­pyridine and 7-oxabicyclo­(2.2.1)heptane-2,3-dicarb­oxy­lic anhydride. The CdII atom is seven-coordinated in a distorted penta­gonal–bipyramidal configuration, defined by five O atoms from the carboxyl­ate groups of three 7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ato ligands and two N atoms from the 2,2′-bipyridine ligand. Two O atoms link two CdII atoms, forming a dinuclear center: the Cd—O—Cd bridging angle is 110.19 (6)°. The polymeric structure extends along [100] and is linked by inter­molecular O—H⋯O hydrogen bonds involving the solvent water molecule. Extensive ππ stacking exists between 2,2-bypiridine ligands along [010] with centroid-centroid distance of 3.650 (2) Å

Related literature

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride], see: Wang et al. (1989[Wang, G.-S. (1989). J. Ethnopharmacol. 26, 147-162.]). F or related structures, see: Yin et al. (2003[Yin, F.-L., Shen, J., Zou, J.-J. & Li, R.-C. (2003). Acta Chim. Sin. 61, 556-561.]); Wang et al. (2009[Wang, N., Wang, Y.-J. & Lin, Q.-Y. (2009). Acta Cryst. E65, m782.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H8O5)(C10H8N2)]·H2O

  • Mr = 470.75

  • Triclinic, [P \overline 1]

  • a = 8.2599 (1) Å

  • b = 10.5950 (2) Å

  • c = 11.1097 (2) Å

  • α = 111.784 (1)°

  • β = 94.066 (1)°

  • γ = 102.749 (1)°

  • V = 867.94 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.33 × 0.14 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.918

  • 13190 measured reflections

  • 3972 independent reflections

  • 3699 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 0.95

  • 3972 reflections

  • 250 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.92 (2) 2.19 (4) 2.980 (4) 144 (5)
O1W—H1WA⋯O1Wii 0.92 (2) 2.38 (6) 2.833 (8) 110 (5)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

7-oxabicyclo(2,2,1)heptane-2,3-dicarboxylic anhydride (norcantharidin) is a variety of pharmacologically important compound such as protein kinase inhibitors and antitumor properties (Wang, 1989). Demethylcantharate is the acid radical of norcantharidin. A copper complex of 2,2'-bipyridine and demethylcantharate was reported (Yin et al., 2003); and a similar cadmium complex of demethylcantharate (Wang et al., 2009) has been reported.

Cadmium acetate can react with 2,2'-bipyridine and norcantharidin to form the title compound. X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration, defined by five oxygen atoms (O1,O2,O1A,O3B,O4B) from carboxylate groups of three demethylcantharates and two nitrogen atoms (N1,N2) from 2,2'-bipyridine. O1 and O1A link two cadmium atoms(Cd1,Cd1A) to form a dinuclear center, and the The angle of the bridging O1(Cd1—O1—Cd1A)), is 110.19 (6)°.Each demethylcantharate acts as a four-coordinated bridging linker that connects two cadmium centers.

It showed that the polymeric molecules grow in [100] direction,and are linked by H-bonds(O1W—H1WA···O3; O1W—H1WA···O1W) to form a plane. Extensive pi-stacking is observed between 2,2-bypiridine ligands propagated along [010], linking the planes with the distance between planes of 3.4738 Å.

Related literature top

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo(2.2.1)heptane-2,3-dicarboxylic anhydride], see: Wang et al. (1989). F or related structures, see: Yin et al. (2003); Wang et al. (2009).

Experimental top

A mixture of 0.5 mmol norcantharidin, 0.5 mmol 2,2'-bipyridine,0.5 mmol cadmium acetate and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block shaped colorless transparent crystals were obtained.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic of tertiary carbon C—H = 0.98 Å, aliphatic of secondary carbon C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O).

Structure description top

7-oxabicyclo(2,2,1)heptane-2,3-dicarboxylic anhydride (norcantharidin) is a variety of pharmacologically important compound such as protein kinase inhibitors and antitumor properties (Wang, 1989). Demethylcantharate is the acid radical of norcantharidin. A copper complex of 2,2'-bipyridine and demethylcantharate was reported (Yin et al., 2003); and a similar cadmium complex of demethylcantharate (Wang et al., 2009) has been reported.

Cadmium acetate can react with 2,2'-bipyridine and norcantharidin to form the title compound. X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration, defined by five oxygen atoms (O1,O2,O1A,O3B,O4B) from carboxylate groups of three demethylcantharates and two nitrogen atoms (N1,N2) from 2,2'-bipyridine. O1 and O1A link two cadmium atoms(Cd1,Cd1A) to form a dinuclear center, and the The angle of the bridging O1(Cd1—O1—Cd1A)), is 110.19 (6)°.Each demethylcantharate acts as a four-coordinated bridging linker that connects two cadmium centers.

It showed that the polymeric molecules grow in [100] direction,and are linked by H-bonds(O1W—H1WA···O3; O1W—H1WA···O1W) to form a plane. Extensive pi-stacking is observed between 2,2-bypiridine ligands propagated along [010], linking the planes with the distance between planes of 3.4738 Å.

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo(2.2.1)heptane-2,3-dicarboxylic anhydride], see: Wang et al. (1989). F or related structures, see: Yin et al. (2003); Wang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability, hydrogen atoms and water molecules were omitted.
Poly[[(2,2'-bipyridine)(µ3-7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato)cadmium] monohydrate] top
Crystal data top
[Cd(C8H8O5)(C10H8N2)]·H2OZ = 2
Mr = 470.75F(000) = 472
Triclinic, P1Dx = 1.801 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2599 (1) ÅCell parameters from 7860 reflections
b = 10.5950 (2) Åθ = 2.0–27.6°
c = 11.1097 (2) ŵ = 1.30 mm1
α = 111.784 (1)°T = 296 K
β = 94.066 (1)°Block, colourless
γ = 102.749 (1)°0.33 × 0.14 × 0.07 mm
V = 867.94 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3972 independent reflections
Radiation source: fine-focus sealed tube3699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.803, Tmax = 0.918k = 1313
13190 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.509P]
where P = (Fo2 + 2Fc2)/3
3972 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cd(C8H8O5)(C10H8N2)]·H2Oγ = 102.749 (1)°
Mr = 470.75V = 867.94 (2) Å3
Triclinic, P1Z = 2
a = 8.2599 (1) ÅMo Kα radiation
b = 10.5950 (2) ŵ = 1.30 mm1
c = 11.1097 (2) ÅT = 296 K
α = 111.784 (1)°0.33 × 0.14 × 0.07 mm
β = 94.066 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3699 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.918Rint = 0.021
13190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0223 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.34 e Å3
3972 reflectionsΔρmin = 0.56 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.622884 (17)0.135016 (14)0.438680 (14)0.02838 (6)
N10.7226 (2)0.34613 (18)0.41261 (17)0.0312 (4)
N20.5919 (2)0.32243 (19)0.62096 (18)0.0329 (4)
O1W0.4578 (5)0.1298 (4)0.0551 (3)0.1174 (12)
H1WA0.411 (7)0.057 (5)0.024 (3)0.176*
H1WB0.400 (8)0.088 (6)0.104 (5)0.176*
O10.37311 (19)0.02140 (17)0.40538 (16)0.0371 (3)
O20.3303 (2)0.11060 (18)0.30183 (19)0.0449 (4)
O30.3040 (2)0.0038 (2)0.22846 (18)0.0500 (5)
O40.1199 (2)0.09023 (19)0.40964 (15)0.0432 (4)
O50.0940 (2)0.27932 (18)0.14335 (18)0.0474 (4)
C10.2765 (2)0.0124 (2)0.33481 (19)0.0274 (4)
C20.0974 (2)0.0774 (2)0.29330 (19)0.0267 (4)
H2A0.05200.07880.37210.032*
C30.0822 (3)0.2314 (2)0.1986 (2)0.0361 (5)
H3A0.11770.28820.24260.043*
C40.1675 (3)0.2356 (3)0.0796 (2)0.0452 (6)
H4A0.17840.32930.02900.054*
H4B0.27760.16850.10580.054*
C50.0417 (4)0.1935 (4)0.0024 (3)0.0565 (7)
H5A0.09370.10680.00670.068*
H5B0.00490.26750.08410.068*
C60.0928 (3)0.1738 (3)0.0910 (2)0.0439 (6)
H6A0.20290.18270.04480.053*
C70.0255 (3)0.0357 (2)0.21353 (19)0.0296 (4)
H7A0.03820.03710.18780.036*
C80.1600 (3)0.0185 (2)0.2884 (2)0.0305 (4)
C90.7903 (3)0.3532 (3)0.3088 (2)0.0402 (5)
H9A0.78960.26950.24000.048*
C100.8609 (3)0.4784 (3)0.2992 (3)0.0465 (6)
H10A0.90630.47940.22520.056*
C110.8631 (4)0.6025 (3)0.4012 (3)0.0477 (6)
H11A0.91150.68890.39790.057*
C120.7923 (3)0.5967 (2)0.5088 (2)0.0407 (5)
H12A0.79140.67930.57840.049*
C130.7229 (3)0.4670 (2)0.5117 (2)0.0295 (4)
C140.6425 (3)0.4529 (2)0.6236 (2)0.0295 (4)
C150.6177 (3)0.5688 (2)0.7256 (2)0.0393 (5)
H15A0.65480.65910.72730.047*
C160.5372 (4)0.5476 (3)0.8235 (2)0.0476 (6)
H16A0.51990.62370.89240.057*
C170.4825 (3)0.4128 (3)0.8190 (2)0.0463 (6)
H17A0.42610.39640.88350.056*
C180.5134 (3)0.3037 (3)0.7171 (2)0.0410 (5)
H18A0.47840.21290.71450.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02580 (9)0.02276 (9)0.03633 (9)0.00709 (6)0.00848 (6)0.01055 (6)
N10.0303 (9)0.0274 (9)0.0358 (9)0.0080 (7)0.0086 (7)0.0118 (7)
N20.0360 (10)0.0287 (9)0.0367 (9)0.0109 (7)0.0097 (8)0.0139 (7)
O1W0.152 (3)0.093 (2)0.087 (2)0.012 (2)0.004 (2)0.0295 (18)
O10.0269 (8)0.0421 (9)0.0458 (9)0.0071 (6)0.0014 (6)0.0233 (7)
O20.0348 (9)0.0379 (9)0.0687 (11)0.0044 (7)0.0074 (8)0.0317 (8)
O30.0282 (8)0.0570 (11)0.0526 (10)0.0190 (8)0.0038 (7)0.0047 (8)
O40.0451 (10)0.0547 (10)0.0328 (8)0.0276 (8)0.0114 (7)0.0118 (7)
O50.0317 (9)0.0380 (9)0.0558 (10)0.0016 (7)0.0018 (7)0.0058 (8)
C10.0246 (9)0.0265 (10)0.0305 (9)0.0095 (7)0.0078 (8)0.0086 (8)
C20.0238 (9)0.0296 (10)0.0299 (9)0.0072 (8)0.0074 (7)0.0147 (8)
C30.0306 (11)0.0291 (11)0.0454 (12)0.0065 (8)0.0051 (9)0.0122 (9)
C40.0414 (13)0.0494 (14)0.0414 (12)0.0219 (11)0.0124 (10)0.0078 (11)
C50.0595 (17)0.078 (2)0.0342 (12)0.0364 (15)0.0134 (12)0.0131 (13)
C60.0334 (12)0.0545 (15)0.0339 (11)0.0177 (11)0.0002 (9)0.0042 (10)
C70.0254 (10)0.0361 (11)0.0298 (9)0.0104 (8)0.0068 (8)0.0144 (8)
C80.0291 (10)0.0288 (10)0.0385 (11)0.0101 (8)0.0113 (8)0.0163 (9)
C90.0457 (13)0.0340 (12)0.0401 (12)0.0102 (10)0.0141 (10)0.0130 (10)
C100.0549 (15)0.0436 (14)0.0423 (13)0.0054 (11)0.0162 (11)0.0212 (11)
C110.0589 (16)0.0339 (13)0.0485 (14)0.0002 (11)0.0099 (12)0.0214 (11)
C120.0507 (14)0.0261 (11)0.0401 (12)0.0038 (10)0.0052 (10)0.0115 (9)
C130.0264 (10)0.0273 (10)0.0334 (10)0.0066 (8)0.0009 (8)0.0117 (8)
C140.0283 (10)0.0273 (10)0.0324 (10)0.0087 (8)0.0017 (8)0.0110 (8)
C150.0475 (13)0.0276 (11)0.0396 (12)0.0107 (9)0.0082 (10)0.0091 (9)
C160.0561 (16)0.0411 (14)0.0384 (12)0.0153 (11)0.0118 (11)0.0058 (10)
C170.0537 (15)0.0497 (15)0.0385 (12)0.0149 (12)0.0174 (11)0.0186 (11)
C180.0489 (14)0.0344 (12)0.0436 (12)0.0112 (10)0.0156 (11)0.0183 (10)
Geometric parameters (Å, º) top
Cd1—O12.2511 (15)C3—H3A0.9800
Cd1—O4i2.2963 (16)C4—C51.541 (4)
Cd1—N22.3285 (18)C4—H4A0.9700
Cd1—N12.3382 (17)C4—H4B0.9700
Cd1—O1ii2.4513 (15)C5—C61.534 (3)
Cd1—O3i2.4546 (17)C5—H5A0.9700
Cd1—O22.6704 (17)C5—H5B0.9700
Cd1—C8i2.720 (2)C6—C71.535 (3)
Cd1—C12.826 (2)C6—H6A0.9800
N1—C91.336 (3)C7—C81.521 (3)
N1—C131.343 (3)C7—H7A0.9800
N2—C181.341 (3)C8—Cd1iii2.720 (2)
N2—C141.341 (3)C9—C101.373 (3)
O1W—H1WA0.915 (19)C9—H9A0.9300
O1W—H1WB0.922 (19)C10—C111.377 (4)
O1—C11.275 (2)C10—H10A0.9300
O1—Cd1ii2.4513 (15)C11—C121.383 (3)
O2—C11.232 (3)C11—H11A0.9300
O3—C81.249 (3)C12—C131.381 (3)
O3—Cd1iii2.4546 (17)C12—H12A0.9300
O4—C81.252 (3)C13—C141.490 (3)
O4—Cd1iii2.2963 (16)C14—C151.395 (3)
O5—C31.438 (3)C15—C161.376 (4)
O5—C61.438 (3)C15—H15A0.9300
C1—C21.504 (3)C16—C171.380 (4)
C2—C71.540 (3)C16—H16A0.9300
C2—C31.550 (3)C17—C181.373 (3)
C2—H2A0.9800C17—H17A0.9300
C3—C41.533 (3)C18—H18A0.9300
O1—Cd1—O4i127.85 (6)C7—C2—H2A108.5
O1—Cd1—N299.82 (6)C3—C2—H2A108.5
O4i—Cd1—N2121.75 (6)O5—C3—C4102.84 (19)
O1—Cd1—N1137.35 (6)O5—C3—C2101.22 (16)
O4i—Cd1—N188.94 (6)C4—C3—C2110.98 (19)
N2—Cd1—N170.49 (6)O5—C3—H3A113.6
O1—Cd1—O1ii69.81 (6)C4—C3—H3A113.6
O4i—Cd1—O1ii84.38 (6)C2—C3—H3A113.6
N2—Cd1—O1ii83.14 (6)C3—C4—C5101.08 (19)
N1—Cd1—O1ii143.93 (6)C3—C4—H4A111.6
O1—Cd1—O3i93.72 (6)C5—C4—H4A111.6
O4i—Cd1—O3i54.58 (6)C3—C4—H4B111.6
N2—Cd1—O3i162.62 (7)C5—C4—H4B111.6
N1—Cd1—O3i92.16 (7)H4A—C4—H4B109.4
O1ii—Cd1—O3i111.97 (6)C6—C5—C4101.4 (2)
O1—Cd1—O251.77 (5)C6—C5—H5A111.5
O4i—Cd1—O2141.20 (6)C4—C5—H5A111.5
N2—Cd1—O292.73 (6)C6—C5—H5B111.5
N1—Cd1—O286.47 (5)C4—C5—H5B111.5
O1ii—Cd1—O2119.82 (5)H5A—C5—H5B109.3
O3i—Cd1—O287.10 (6)O5—C6—C5102.7 (2)
O1—Cd1—C8i112.42 (6)O5—C6—C7102.64 (18)
O4i—Cd1—C8i27.27 (6)C5—C6—C7109.6 (2)
N2—Cd1—C8i146.41 (7)O5—C6—H6A113.6
N1—Cd1—C8i90.67 (6)C5—C6—H6A113.6
O1ii—Cd1—C8i98.88 (6)C7—C6—H6A113.6
O3i—Cd1—C8i27.32 (6)C8—C7—C6114.70 (18)
O2—Cd1—C8i114.24 (6)C8—C7—C2113.22 (16)
O1—Cd1—C126.07 (5)C6—C7—C2101.20 (17)
O4i—Cd1—C1140.84 (6)C8—C7—H7A109.1
N2—Cd1—C196.88 (6)C6—C7—H7A109.1
N1—Cd1—C1111.81 (6)C2—C7—H7A109.1
O1ii—Cd1—C195.02 (5)O3—C8—O4121.56 (19)
O3i—Cd1—C190.48 (6)O3—C8—C7120.25 (19)
O2—Cd1—C125.70 (5)O4—C8—C7118.12 (18)
C8i—Cd1—C1116.18 (6)O3—C8—Cd1iii64.41 (12)
O1—Cd1—Cd1ii36.61 (4)O4—C8—Cd1iii57.15 (11)
O4i—Cd1—Cd1ii107.21 (5)C7—C8—Cd1iii174.70 (15)
N2—Cd1—Cd1ii91.35 (5)N1—C9—C10123.0 (2)
N1—Cd1—Cd1ii160.51 (4)N1—C9—H9A118.5
O1ii—Cd1—Cd1ii33.21 (4)C10—C9—H9A118.5
O3i—Cd1—Cd1ii105.99 (5)C9—C10—C11118.7 (2)
O2—Cd1—Cd1ii87.42 (3)C9—C10—H10A120.7
C8i—Cd1—Cd1ii108.70 (4)C11—C10—H10A120.7
C1—Cd1—Cd1ii62.06 (4)C10—C11—C12119.0 (2)
C9—N1—C13118.48 (19)C10—C11—H11A120.5
C9—N1—Cd1123.34 (14)C12—C11—H11A120.5
C13—N1—Cd1117.99 (14)C13—C12—C11119.3 (2)
C18—N2—C14119.07 (19)C13—C12—H12A120.4
C18—N2—Cd1122.58 (15)C11—C12—H12A120.4
C14—N2—Cd1118.11 (14)N1—C13—C12121.7 (2)
H1WA—O1W—H1WB95 (2)N1—C13—C14116.21 (18)
C1—O1—Cd1103.02 (13)C12—C13—C14122.13 (19)
C1—O1—Cd1ii143.44 (13)N2—C14—C15121.1 (2)
Cd1—O1—Cd1ii110.19 (6)N2—C14—C13116.89 (18)
C1—O2—Cd184.22 (12)C15—C14—C13121.98 (19)
C8—O3—Cd1iii88.27 (13)C16—C15—C14119.0 (2)
C8—O4—Cd1iii95.58 (13)C16—C15—H15A120.5
C3—O5—C696.14 (17)C14—C15—H15A120.5
O2—C1—O1120.98 (19)C15—C16—C17119.7 (2)
O2—C1—C2123.43 (18)C15—C16—H16A120.2
O1—C1—C2115.57 (17)C17—C16—H16A120.2
O2—C1—Cd170.08 (12)C18—C17—C16118.4 (2)
O1—C1—Cd150.91 (10)C18—C17—H17A120.8
C2—C1—Cd1166.44 (14)C16—C17—H17A120.8
C1—C2—C7117.17 (16)N2—C18—C17122.8 (2)
C1—C2—C3112.65 (16)N2—C18—H18A118.6
C7—C2—C3101.19 (16)C17—C18—H18A118.6
C1—C2—H2A108.5
O1—Cd1—N1—C998.43 (19)N1—Cd1—C1—O1170.00 (12)
O4i—Cd1—N1—C953.92 (18)O1ii—Cd1—C1—O114.62 (16)
N2—Cd1—N1—C9178.32 (19)O3i—Cd1—C1—O197.48 (13)
O1ii—Cd1—N1—C9132.87 (17)O2—Cd1—C1—O1179.8 (2)
O3i—Cd1—N1—C90.57 (18)C8i—Cd1—C1—O187.84 (13)
O2—Cd1—N1—C987.53 (18)Cd1ii—Cd1—C1—O110.42 (11)
C8i—Cd1—N1—C926.71 (18)O1—Cd1—C1—C24.7 (5)
C1—Cd1—N1—C991.96 (18)O4i—Cd1—C1—C268.0 (6)
Cd1ii—Cd1—N1—C9159.50 (14)N2—Cd1—C1—C2103.0 (6)
O1—Cd1—N1—C1386.62 (17)N1—Cd1—C1—C2174.7 (5)
O4i—Cd1—N1—C13121.02 (15)O1ii—Cd1—C1—C219.3 (6)
N2—Cd1—N1—C133.37 (14)O3i—Cd1—C1—C292.8 (6)
O1ii—Cd1—N1—C1342.07 (19)O2—Cd1—C1—C2175.1 (6)
O3i—Cd1—N1—C13175.52 (15)C8i—Cd1—C1—C283.2 (6)
O2—Cd1—N1—C1397.52 (15)Cd1ii—Cd1—C1—C215.1 (5)
C8i—Cd1—N1—C13148.23 (15)O2—C1—C2—C74.4 (3)
C1—Cd1—N1—C1393.09 (15)O1—C1—C2—C7177.14 (17)
Cd1ii—Cd1—N1—C1325.6 (2)Cd1—C1—C2—C7178.8 (5)
O1—Cd1—N2—C1837.44 (19)O2—C1—C2—C3112.4 (2)
O4i—Cd1—N2—C18109.65 (19)O1—C1—C2—C366.1 (2)
N1—Cd1—N2—C18174.4 (2)Cd1—C1—C2—C362.1 (6)
O1ii—Cd1—N2—C1830.63 (18)C6—O5—C3—C456.7 (2)
O3i—Cd1—N2—C18178.09 (18)C6—O5—C3—C258.15 (19)
O2—Cd1—N2—C1889.09 (18)C1—C2—C3—O5162.72 (17)
C8i—Cd1—N2—C18126.37 (18)C7—C2—C3—O536.8 (2)
C1—Cd1—N2—C1863.63 (19)C1—C2—C3—C454.1 (2)
Cd1ii—Cd1—N2—C181.61 (18)C7—C2—C3—C471.8 (2)
O1—Cd1—N2—C14136.90 (15)O5—C3—C4—C534.9 (2)
O4i—Cd1—N2—C1476.02 (16)C2—C3—C4—C572.7 (2)
N1—Cd1—N2—C140.04 (14)C3—C4—C5—C60.3 (3)
O1ii—Cd1—N2—C14155.04 (16)C3—O5—C6—C556.3 (2)
O3i—Cd1—N2—C143.8 (3)C3—O5—C6—C757.48 (19)
O2—Cd1—N2—C1485.25 (15)C4—C5—C6—O534.4 (3)
C8i—Cd1—N2—C1459.3 (2)C4—C5—C6—C774.2 (3)
C1—Cd1—N2—C14110.71 (15)O5—C6—C7—C888.6 (2)
Cd1ii—Cd1—N2—C14172.72 (15)C5—C6—C7—C8162.76 (19)
O4i—Cd1—O1—C1130.25 (12)O5—C6—C7—C233.6 (2)
N2—Cd1—O1—C185.57 (13)C5—C6—C7—C275.0 (2)
N1—Cd1—O1—C113.77 (17)C1—C2—C7—C8111.9 (2)
O1ii—Cd1—O1—C1164.46 (17)C3—C2—C7—C8125.18 (18)
O3i—Cd1—O1—C183.48 (13)C1—C2—C7—C6124.80 (19)
O2—Cd1—O1—C10.13 (11)C3—C2—C7—C61.9 (2)
C8i—Cd1—O1—C1104.04 (13)Cd1iii—O3—C8—O40.2 (2)
Cd1ii—Cd1—O1—C1164.46 (17)Cd1iii—O3—C8—C7177.16 (17)
O4i—Cd1—O1—Cd1ii65.30 (9)Cd1iii—O4—C8—O30.2 (2)
N2—Cd1—O1—Cd1ii78.88 (7)Cd1iii—O4—C8—C7177.23 (16)
N1—Cd1—O1—Cd1ii150.68 (7)C6—C7—C8—O331.7 (3)
O1ii—Cd1—O1—Cd1ii0.0C2—C7—C8—O3147.1 (2)
O3i—Cd1—O1—Cd1ii112.06 (7)C6—C7—C8—O4151.3 (2)
O2—Cd1—O1—Cd1ii164.59 (10)C2—C7—C8—O435.8 (3)
C8i—Cd1—O1—Cd1ii91.51 (8)C13—N1—C9—C100.4 (4)
C1—Cd1—O1—Cd1ii164.46 (17)Cd1—N1—C9—C10174.6 (2)
O1—Cd1—O2—C10.13 (12)N1—C9—C10—C110.4 (4)
O4i—Cd1—O2—C1105.62 (14)C9—C10—C11—C120.9 (4)
N2—Cd1—O2—C1100.23 (13)C10—C11—C12—C130.7 (4)
N1—Cd1—O2—C1170.48 (13)C9—N1—C13—C120.6 (3)
O1ii—Cd1—O2—C116.58 (15)Cd1—N1—C13—C12174.62 (17)
O3i—Cd1—O2—C197.17 (13)C9—N1—C13—C14178.72 (19)
C8i—Cd1—O2—C1100.38 (13)Cd1—N1—C13—C146.1 (2)
Cd1ii—Cd1—O2—C19.00 (12)C11—C12—C13—N10.1 (4)
Cd1—O2—C1—O10.22 (19)C11—C12—C13—C14179.2 (2)
Cd1—O2—C1—C2178.62 (18)C18—N2—C14—C151.2 (3)
Cd1—O1—C1—O20.3 (2)Cd1—N2—C14—C15175.77 (16)
Cd1ii—O1—C1—O2155.28 (18)C18—N2—C14—C13177.6 (2)
Cd1—O1—C1—C2178.79 (13)Cd1—N2—C14—C133.1 (2)
Cd1ii—O1—C1—C226.2 (3)N1—C13—C14—N26.1 (3)
Cd1ii—O1—C1—Cd1155.0 (3)C12—C13—C14—N2174.6 (2)
O1—Cd1—C1—O2179.8 (2)N1—C13—C14—C15172.8 (2)
O4i—Cd1—C1—O2107.13 (14)C12—C13—C14—C156.5 (3)
N2—Cd1—C1—O281.94 (13)N2—C14—C15—C161.1 (3)
N1—Cd1—C1—O210.24 (14)C13—C14—C15—C16177.7 (2)
O1ii—Cd1—C1—O2165.61 (13)C14—C15—C16—C170.2 (4)
O3i—Cd1—C1—O282.28 (13)C15—C16—C17—C181.2 (4)
C8i—Cd1—C1—O291.92 (13)C14—N2—C18—C170.1 (4)
Cd1ii—Cd1—C1—O2169.82 (14)Cd1—N2—C18—C17174.43 (19)
O4i—Cd1—C1—O172.63 (16)C16—C17—C18—N21.1 (4)
N2—Cd1—C1—O198.30 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iv0.92 (2)2.19 (4)2.980 (4)144 (5)
O1W—H1WA···O1Wv0.92 (2)2.38 (6)2.833 (8)110 (5)
Symmetry codes: (iv) x, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H8O5)(C10H8N2)]·H2O
Mr470.75
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2599 (1), 10.5950 (2), 11.1097 (2)
α, β, γ (°)111.784 (1), 94.066 (1), 102.749 (1)
V3)867.94 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.33 × 0.14 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.803, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
13190, 3972, 3699
Rint0.021
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 0.95
No. of reflections3972
No. of parameters250
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.56

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.915 (19)2.19 (4)2.980 (4)144 (5)
O1W—H1WA···O1Wii0.915 (19)2.38 (6)2.833 (8)110 (5)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the undergraduate innovative project of Zhejiang Province, China.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-S. (1989). J. Ethnopharmacol. 26, 147–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, N., Wang, Y.-J. & Lin, Q.-Y. (2009). Acta Cryst. E65, m782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, F.-L., Shen, J., Zou, J.-J. & Li, R.-C. (2003). Acta Chim. Sin. 61, 556–561.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds