organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Prop-2-yn-1-yl)-1,3-benzo­thia­zol-2-amine

aDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, India, bDepartment of Chemistry, Banaras Hindu University, Varanasi 225 001, India, and cChemical Biology Laboratory, Department of Chemistry, University of Delhi 110 007, India
*Correspondence e-mail: dralka@bhu.ac.in, awasthisatish@yahoo.com

(Received 2 August 2011; accepted 27 August 2011; online 14 September 2011)

In the title compound, C10H8N2S, the 2-amino­benzothia­zole and propyne groups are not coplanar [dihedral angle = 71.51 (1)°]. The crystal structure is stabilized by strong inter­molecular N—H⋯N hydrogen bonds and C—H⋯C, C—H⋯π and F-type aromatic–aromatic [centroid–centroid distance = 3.7826 (12) Å] inter­actions are also observed.

Related literature

For the biological activity of heterocyclic compounds, see: Xuan et al. (2001[Xuan, X., Zhiguang, X., Yifang, L. & Weihua, L. (2001). Chin. J. Med. Chem. 11, 317-321.]) and of benzothia­zole and benzimidazole compounds, see: Caroti et al. (1989[Caroti, P., Ceccotti, C., Settimo, F. D., Primofiore, G., Franzone, J. S., Reboani, M. C. & Cravanzola, C. (1989). Farmaco, 44, 327-355.]); Paget et al. (1969[Paget, C. J., Kisnar, K., Stone, R. L. & De Long, D. C. (1969). J. Med. Chem. 12, 1010-1015.]); Da Settimo et al. (1992[Da Settimo, A., Primofiore, G., Da Settimo, F. & Marini, A. M. (1992). Farmaco, 47, 1293-313.]); Johnson et al. (2009[Johnson, S. L., Chen, L. H., Barille, E., Emdadim, A., Sabet, M., Yuan, H., Wei, J., Guiney, D. & Palencia, M. (2009). Bioorg. Med. Chem. 17, 3352-68.]); Kus et al. (1996[Kus, C., Goker, H., Ayhan, G., Ertan, R., Antanlar, N. & Akin, A. (1996). Farmaco, 51, 413-417.]). For N—H⋯N hydrogen bonding, see: Mingos & Braga (2004[Mingos, D. M. P. & Braga, D. (2004). Supramolecular Assembly via Hydrogen Bonds, Vol. 2, pp. 39-41. Berlin: Springer.]). For F-type aromatic–aromatic inter­actions, see: Zhang et al. (2010[Zhang, Z.-T., Gao, M.-X. & He, Q. (2010). J. Chem. Crystallogr. 40, 841-845.]). For details of the synthesis, see: Lilienkampf et al. (2009[Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109-2118.]). For recently reported small crystal structures and their anti­microbial activity, see: Singh, Agarwal & Awasthi (2011[Singh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.]); Singh, Agarwal, Mahawar & Awasthi (2011[Singh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.]); Awasthi et al. (2009[Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2S

  • Mr = 188.25

  • Monoclinic, P 21 /c

  • a = 6.8048 (4) Å

  • b = 8.6071 (5) Å

  • c = 15.8244 (8) Å

  • β = 99.445 (5)°

  • V = 914.26 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.40 × 0.39 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.771, Tmax = 1.000

  • 4188 measured reflections

  • 2454 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 0.88

  • 2454 reflections

  • 128 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1,C1,C6,N1,C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯N1i 0.87 (3) 2.05 (3) 2.910 (2) 170 (2)
C8—H8A⋯C4ii 0.98 2.86 3.756 (3) 153 (1)
C10—H10⋯C1iii 0.89 2.87 3.687 (3) 153 (1)
C10—H10⋯C6iii 0.89 2.89 3.776 (3) 174 (1)
C10—H10⋯Cg1iii 0.89 2.74 3.548 (3) 151
Symmetry codes: (i) -x, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Heterocyclic compounds containing nitrogen, sulfur, oxygen etc have immense importance especially in pharmaceutical industry. Most of the modern drugs contain one or more heteroatom in their scaffold. Further, oxidation of nitrogen in heterocycle plays key role in bioactivity of these scaffolds (Xuan, et al., 2001). It is well documented that benzothiazole and benzimidazole derivatives show wide range of biological activities including antilipidemic (Caroti, et al., 1989), antimicrobial (Kus, et al., 1996), antiviral (Paget, et al., 1969) anti-inflammatory and analgesic properties (Da Settimo, et al., 1992). Moreover, 2-aminobenzimidazole/benzothiazole derivatives are common intermediate for the synthesis of various drugs. Anticancer properties of benzothiazole derivatives in cell based assays are also well documented (Johnson, et al., 2009).Our research interest involves the antimicrobial activities of small molecule (Awasthi, et al., 2009). Recently, we have reported several small crystal structures (Singh, Agarwal & Awasthi 2011, Singh, Agarwal, Mahawar et al., 2011). We report here the crystal structure of N-(prop-2-yn-1-yl)-1,3-benzothiazol-2-amine (Figure 1).

In the title compound, the C7—N2 single bond (1.342 Å) is shorter than normal C—N bond (1.47 Å) suggesting a delocalized double bond in benzothiazole moiety. Further, N2—C8 bond (1.438 Å) is also shorter than a standard C—N bond distance due to delocalization of electrons. Again, it is evident from the crystal structure that the title compound is stabilized by strong intermolecular N—H···N hydrogen bonding as well as C—H···π interactions and aromatic π···π stacking interaction resulting in the formation of supramolecular arrangement in the cystal as seen in the crystal packing along b axis (Figure 2, Table 1). The intermolecular hydrogen bond distance between N2···N1 (2.91 Å) is shorter than N···N average bond range 3.15 Å, suggesting strong hydrogen bonding (Mingos & Braga, 2004).

In the cystal packing two benzothiazole skeletons are arranged in an antiparallel fashion by F-type aromatic–aromatic interactions and form a dimer, the ring A and C of an benzothiazole skeleton stacks with the ring C and A of another adjacent benzothiazole skeleton, respectively. The distance of CgA and CgC is 3.783 Å, where CgA and CgC are the center of ring A and C, respectively and the centroid - centroid distance between two adjacent benzothiazole ring is 3.879Å (Zhang et al., 2010). 2-Aminobenzothiazole and propyne group are not co-planar with a dihedral angle of 71.51°. The torsion angles of C7—N2—C8—C9 and C10—C9—C8—N2 are found 91.1 (3) and 44 (7)° respectively. The CCDC No. of the crystal is 806158.

Related literature top

For the biological activity of heterocyclic compounds, see: Xuan et al. (2001) and of benzothiazole and benzimidazole compounds, see: Caroti et al. (1989); Paget et al. (1969); Da Settimo et al. (1992); Johnson et al. (2009); Kus et al. (1996). For N—H···N hydrogen bonding, see: Mingos & Braga (2004). For F-type aromatic–aromatic interactions, see: Zhang et al. (2010). For details of the synthesis, see: Lilienkampf et al. (2009). For recently reported related? small crystal structures and their antimicrobial activity, see: Singh, Agarwal & Awasthi (2011); Singh, Agarwal, Mahawar & Awasthi (2011); Awasthi et al. (2009).

Experimental top

The synthesis of the title compound was carried out according to the published procedure (Lilienkampf, et al., 2009). Briefly, to a solution of 2-aminobenzothaizole (0.90 g, 6 mmol) in dry acetone was added anhydrous K2CO3 (4.97 g m, 32 mmol) and reaction mixture was further refluxed for 15–30 minutes. Subsequently, KI (0.50 g m, 3 mmol) and propargyl bromide (0.64 ml, 7.2 mmol) were added and further refluxed the reaction mixture for 18 hrs. The reaction mixture was cooled, filtered, and the filtrate was evaporated in vacuo to give the product which was purified by column chromatography using hexane and dichloromethane (65:35) as eluent. The product was crystallized from hexane:dichloromethane (1:1). The light pink colored crystals were obtained by slow evaporation of solvent at room temperature in several days. Yield = 20%. MS (Macromass G) m/z = 188 (M+), Rf = 0.59 (98:2, CH2Cl2: MeOH), m.p.= 215°, Elemental analysis (Perkin –Elmer 240 C elemental analyzer) Calculated for: C10H8N2S (%) C– 63.8, H-4.2, N -14.9, S-17.1, found C-63.9, H-4.5, N -14.7, S-16.9. 1H NMR (CDCl3), 8.35 (s, 1H, NH), 7.71–7.68 (m, 1H), 7.44–7.42(m, 1H), 7.26–7.21 (m, 1H), 7.07–7.02(m, 1H), 4.18–4.17(m, 2H, CH2) 3.21 (s, 1H, CH).

Refinement top

All H atoms were located from difference Fourier map (range of C—H = 0.87 - 0.98 Å and N–H = 0.87 Å) and allowed to refine freely.

Structure description top

Heterocyclic compounds containing nitrogen, sulfur, oxygen etc have immense importance especially in pharmaceutical industry. Most of the modern drugs contain one or more heteroatom in their scaffold. Further, oxidation of nitrogen in heterocycle plays key role in bioactivity of these scaffolds (Xuan, et al., 2001). It is well documented that benzothiazole and benzimidazole derivatives show wide range of biological activities including antilipidemic (Caroti, et al., 1989), antimicrobial (Kus, et al., 1996), antiviral (Paget, et al., 1969) anti-inflammatory and analgesic properties (Da Settimo, et al., 1992). Moreover, 2-aminobenzimidazole/benzothiazole derivatives are common intermediate for the synthesis of various drugs. Anticancer properties of benzothiazole derivatives in cell based assays are also well documented (Johnson, et al., 2009).Our research interest involves the antimicrobial activities of small molecule (Awasthi, et al., 2009). Recently, we have reported several small crystal structures (Singh, Agarwal & Awasthi 2011, Singh, Agarwal, Mahawar et al., 2011). We report here the crystal structure of N-(prop-2-yn-1-yl)-1,3-benzothiazol-2-amine (Figure 1).

In the title compound, the C7—N2 single bond (1.342 Å) is shorter than normal C—N bond (1.47 Å) suggesting a delocalized double bond in benzothiazole moiety. Further, N2—C8 bond (1.438 Å) is also shorter than a standard C—N bond distance due to delocalization of electrons. Again, it is evident from the crystal structure that the title compound is stabilized by strong intermolecular N—H···N hydrogen bonding as well as C—H···π interactions and aromatic π···π stacking interaction resulting in the formation of supramolecular arrangement in the cystal as seen in the crystal packing along b axis (Figure 2, Table 1). The intermolecular hydrogen bond distance between N2···N1 (2.91 Å) is shorter than N···N average bond range 3.15 Å, suggesting strong hydrogen bonding (Mingos & Braga, 2004).

In the cystal packing two benzothiazole skeletons are arranged in an antiparallel fashion by F-type aromatic–aromatic interactions and form a dimer, the ring A and C of an benzothiazole skeleton stacks with the ring C and A of another adjacent benzothiazole skeleton, respectively. The distance of CgA and CgC is 3.783 Å, where CgA and CgC are the center of ring A and C, respectively and the centroid - centroid distance between two adjacent benzothiazole ring is 3.879Å (Zhang et al., 2010). 2-Aminobenzothiazole and propyne group are not co-planar with a dihedral angle of 71.51°. The torsion angles of C7—N2—C8—C9 and C10—C9—C8—N2 are found 91.1 (3) and 44 (7)° respectively. The CCDC No. of the crystal is 806158.

For the biological activity of heterocyclic compounds, see: Xuan et al. (2001) and of benzothiazole and benzimidazole compounds, see: Caroti et al. (1989); Paget et al. (1969); Da Settimo et al. (1992); Johnson et al. (2009); Kus et al. (1996). For N—H···N hydrogen bonding, see: Mingos & Braga (2004). For F-type aromatic–aromatic interactions, see: Zhang et al. (2010). For details of the synthesis, see: Lilienkampf et al. (2009). For recently reported related? small crystal structures and their antimicrobial activity, see: Singh, Agarwal & Awasthi (2011); Singh, Agarwal, Mahawar & Awasthi (2011); Awasthi et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; yellow: S; blue: N; white: H.
[Figure 2] Fig. 2. Packing diagram of molecule viewed through b plane showing supramolecular arrangement, Intermolecular N—H···N hydrogen bonding, C—H···π interactions and F-type aromatic-aromatic interaction.
[Figure 3] Fig. 3. The formation of the title compound.
N-(Prop-2-yn-1-yl)-1,3-benzothiazol-2-amine top
Crystal data top
C10H8N2SF(000) = 392
Mr = 188.25Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8048 (4) ÅCell parameters from 1697 reflections
b = 8.6071 (5) Åθ = 3.5–29.1°
c = 15.8244 (8) ŵ = 0.30 mm1
β = 99.445 (5)°T = 293 K
V = 914.26 (9) Å3Block, light pink
Z = 40.40 × 0.39 × 0.38 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2454 independent reflections
Radiation source: fine-focus sealed tube1428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 29.1°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 95
Tmin = 0.771, Tmax = 1.000k = 109
4188 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max = 0.05
128 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H8N2SV = 914.26 (9) Å3
Mr = 188.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8048 (4) ŵ = 0.30 mm1
b = 8.6071 (5) ÅT = 293 K
c = 15.8244 (8) Å0.40 × 0.39 × 0.38 mm
β = 99.445 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2454 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1428 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.045
4188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.17 e Å3
2454 reflectionsΔρmin = 0.27 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HN20.004 (4)0.093 (3)0.0660 (17)0.085 (8)*
S10.42981 (8)0.29415 (6)0.04155 (3)0.0554 (2)
N10.2087 (2)0.08399 (18)0.04719 (10)0.0464 (4)
N20.0971 (3)0.1551 (2)0.07821 (11)0.0548 (5)
C70.2251 (3)0.1665 (2)0.02239 (12)0.0444 (5)
C60.3657 (3)0.1159 (2)0.09078 (12)0.0457 (5)
C90.0017 (3)0.3891 (3)0.14573 (12)0.0505 (5)
C10.5014 (3)0.2280 (2)0.05259 (13)0.0497 (5)
C80.1095 (3)0.2429 (3)0.15623 (14)0.0541 (5)
H8A0.250 (2)0.2658 (4)0.1781 (3)0.065*
H8B0.0582 (7)0.1790 (9)0.1993 (6)0.065*
C20.6662 (4)0.2711 (3)0.08909 (17)0.0638 (7)
H20.750 (2)0.3410 (19)0.0650 (7)0.077*
C50.3948 (3)0.0473 (3)0.16713 (14)0.0577 (6)
H50.306 (2)0.0263 (18)0.1935 (7)0.069*
C30.6923 (4)0.2005 (3)0.16390 (17)0.0705 (7)
H30.805 (3)0.2274 (8)0.1895 (7)0.085*
C40.5588 (4)0.0906 (3)0.20341 (16)0.0674 (7)
H40.5794 (6)0.0458 (12)0.2544 (14)0.081*
C100.0941 (4)0.5029 (3)0.13609 (15)0.0737 (7)
H100.165 (2)0.591 (2)0.1287 (3)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (4)0.0468 (4)0.0591 (4)0.0137 (2)0.0038 (3)0.0032 (2)
N10.0444 (9)0.0428 (9)0.0508 (9)0.0020 (7)0.0046 (7)0.0031 (7)
N20.0561 (12)0.0534 (11)0.0553 (10)0.0136 (9)0.0101 (9)0.0129 (9)
C70.0454 (11)0.0370 (10)0.0484 (10)0.0012 (9)0.0009 (8)0.0009 (8)
C60.0435 (11)0.0409 (11)0.0506 (11)0.0074 (9)0.0010 (9)0.0062 (9)
C90.0494 (12)0.0545 (13)0.0476 (11)0.0088 (10)0.0081 (9)0.0043 (9)
C10.0482 (11)0.0429 (12)0.0567 (12)0.0018 (9)0.0045 (9)0.0114 (9)
C80.0607 (13)0.0532 (13)0.0480 (11)0.0043 (11)0.0078 (10)0.0035 (10)
C20.0572 (14)0.0577 (14)0.0773 (17)0.0066 (11)0.0130 (12)0.0125 (12)
C50.0582 (13)0.0584 (14)0.0544 (12)0.0092 (11)0.0030 (10)0.0013 (10)
C30.0617 (15)0.0776 (19)0.0761 (17)0.0052 (13)0.0227 (13)0.0242 (14)
C40.0686 (16)0.0786 (17)0.0572 (13)0.0226 (14)0.0164 (12)0.0117 (12)
C100.0827 (17)0.0700 (17)0.0664 (15)0.0148 (15)0.0062 (13)0.0025 (13)
Geometric parameters (Å, º) top
S1—C11.738 (2)C1—C21.394 (3)
S1—C71.7612 (19)C8—H8A0.9843
N1—C71.299 (2)C8—H8B0.9843
N1—C61.391 (2)C2—C31.368 (3)
N2—C71.342 (3)C2—H20.8728
N2—C81.438 (3)C5—C41.388 (3)
N2—HN20.87 (3)C5—H50.9257
C6—C51.388 (3)C3—C41.387 (3)
C6—C11.402 (3)C3—H30.9510
C9—C101.160 (3)C4—H40.9255
C9—C81.464 (3)C10—H100.8942
C1—S1—C788.46 (10)C9—C8—H8A108.9
C7—N1—C6110.27 (17)N2—C8—H8B108.9
C7—N2—C8125.02 (19)C9—C8—H8B108.9
C7—N2—HN2118.2 (16)H8A—C8—H8B107.7
C8—N2—HN2116.7 (16)C3—C2—C1117.9 (2)
N1—C7—N2122.92 (18)C3—C2—H2121.1
N1—C7—S1116.23 (15)C1—C2—H2121.1
N2—C7—S1120.83 (15)C6—C5—C4119.0 (2)
C5—C6—N1125.34 (19)C6—C5—H5120.5
C5—C6—C1119.37 (19)C4—C5—H5120.5
N1—C6—C1115.29 (17)C2—C3—C4121.7 (2)
C10—C9—C8178.2 (2)C2—C3—H3119.2
C2—C1—C6121.5 (2)C4—C3—H3119.2
C2—C1—S1128.74 (19)C3—C4—C5120.6 (2)
C6—C1—S1109.74 (14)C3—C4—H4119.7
N2—C8—C9113.45 (18)C5—C4—H4119.7
N2—C8—H8A108.9C9—C10—H10180.0
C6—N1—C7—N2177.76 (18)C7—S1—C1—C2179.2 (2)
C6—N1—C7—S11.1 (2)C7—S1—C1—C60.15 (15)
C8—N2—C7—N1179.58 (19)C7—N2—C8—C991.1 (3)
C8—N2—C7—S10.7 (3)C10—C9—C8—N244 (7)
C1—S1—C7—N10.77 (16)C6—C1—C2—C30.0 (3)
C1—S1—C7—N2178.15 (17)S1—C1—C2—C3179.24 (17)
C7—N1—C6—C5179.50 (18)N1—C6—C5—C4179.97 (17)
C7—N1—C6—C11.0 (2)C1—C6—C5—C40.6 (3)
C5—C6—C1—C20.7 (3)C1—C2—C3—C40.8 (4)
N1—C6—C1—C2179.82 (18)C2—C3—C4—C50.9 (3)
C5—C6—C1—S1179.97 (15)C6—C5—C4—C30.2 (3)
N1—C6—C1—S10.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1,C6,N1,C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···N1i0.87 (3)2.05 (3)2.910 (2)170 (2)
C8—H8A···C4ii0.982.863.756 (3)153 (1)
C10—H10···C1iii0.892.873.687 (3)153 (1)
C10—H10···C6iii0.892.893.776 (3)174 (1)
C10—H10···Cg1iii0.892.743.548 (3)151
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2S
Mr188.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8048 (4), 8.6071 (5), 15.8244 (8)
β (°) 99.445 (5)
V3)914.26 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.39 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.771, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4188, 2454, 1428
Rint0.045
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 0.88
No. of reflections2454
No. of parameters128
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1,C6,N1,C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···N1i0.87 (3)2.05 (3)2.910 (2)170 (2)
C8—H8A···C4ii0.982.863.756 (3)152.5 (6)
C10—H10···C1iii0.892.873.687 (3)153 (1)
C10—H10···C6iii0.892.893.776 (3)174 (1)
C10—H10···Cg1iii0.892.743.548 (3)151
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

AA and MKS are thankful to the University Grant Commission (scheme No. 34–311/2008), New Delhi, and Banaras Hindu University (BHU), Varanasi, India, respectively, for financial assistance. The authors are highly thankful to the department of Chemistry, Banaras Hindu University, for providing the single-crystal X-ray data.

References

First citationAwasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.  Web of Science CrossRef CAS Google Scholar
First citationCaroti, P., Ceccotti, C., Settimo, F. D., Primofiore, G., Franzone, J. S., Reboani, M. C. & Cravanzola, C. (1989). Farmaco, 44, 327–355.  Google Scholar
First citationDa Settimo, A., Primofiore, G., Da Settimo, F. & Marini, A. M. (1992). Farmaco, 47, 1293–313.  PubMed CAS Google Scholar
First citationJohnson, S. L., Chen, L. H., Barille, E., Emdadim, A., Sabet, M., Yuan, H., Wei, J., Guiney, D. & Palencia, M. (2009). Bioorg. Med. Chem. 17, 3352–68.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKus, C., Goker, H., Ayhan, G., Ertan, R., Antanlar, N. & Akin, A. (1996). Farmaco, 51, 413–417.  CAS PubMed Google Scholar
First citationLilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMingos, D. M. P. & Braga, D. (2004). Supramolecular Assembly via Hydrogen Bonds, Vol. 2, pp. 39–41. Berlin: Springer.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPaget, C. J., Kisnar, K., Stone, R. L. & De Long, D. C. (1969). J. Med. Chem. 12, 1010–1015.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X., Zhiguang, X., Yifang, L. & Weihua, L. (2001). Chin. J. Med. Chem. 11, 317–321.  Google Scholar
First citationZhang, Z.-T., Gao, M.-X. & He, Q. (2010). J. Chem. Crystallogr. 40, 841–845.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds