organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­phen­yl)-2-methyl-4-nitro-1H-imidazole-5-carboxamide

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and bThe ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519, Australia
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 29 July 2011; accepted 8 September 2011; online 14 September 2011)

In the crystal structure of the title compound, C11H9ClN4O3, pairs of N—H⋯N(imidazole) hydrogen bonds connect the mol­ecules into centrosymmetric dimers, which are further connected by N—H⋯O(carbamo­yl) hydrogen bonds into C(4) chains along [010]. Inter­play of these two kinds of hydrogen bonds connect the mol­ecules into layers perpendicular to [101]. The imidazole [maximum deviation 0.0069 (9) Å] and phenyl rings are inclined at a dihedral angle of 58.44 (6)°; the nitro group is almost coplanar [dihedral angle 5.8 (2)°] with the imidazole ring while the carbamoyl group is almost perpendicular [70.15 (13)°] to it.

Related literature

For the synthesis, see: Suwiński et al. (1994[Suwiński, J., Walczak, K. & Wagner, P. (1994). Pol. J. Appl. Chem. 38, 499-506.]). For similar nitro­imidazole derivatives, see: Kubicki (2004a[Kubicki, M. (2004a). Acta Cryst. C60, o255-o257.],b[Kubicki, M. (2004b). Acta Cryst. C60, o341-o343.]). For a recent experimental charge density study of a nitro­imidazole derivative, see: Paul et al. (2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN4O3

  • Mr = 280.67

  • Monoclinic, C e 2/c

  • a = 21.8417 (14) Å

  • b = 7.3710 (4) Å

  • c = 16.2467 (10) Å

  • β = 108.680 (7)°

  • V = 2477.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.25 × 0.2 × 0.08 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.833, Tmax = 1.000

  • 4943 measured reflections

  • 2702 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.04

  • 2702 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N51—H51A⋯N3i 0.85 (2) 2.29 (2) 3.130 (2) 169.2 (18)
N51—H51B⋯O51ii 0.87 (2) 2.03 (2) 2.8938 (19) 171.3 (18)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on nitroimidazole derivatives (e.g. Kubicki, 2004a, 2004b; Paul et al., 2011) we have determined the crystal structure of another member of the family of 1-aryl-4-nitro substituted imidazole, 1(3-chlorophenyl)-2-methyl-4-nitro-5-carbamoyl-imidazole (1, Scheme 1).

Fig. 1 shows the perspective view of 1. The two main planar fragments, imidazole (maximum deviation 0.0069 (9) Å) and phenyl rings (0.0125 (13) Å), are inclined by 58.44 (6)°. This value is relatively small: for instance, in three polymorphs of 1-phenyl-2-methyl-4-nitro-5-bromoimidazole (Kubicki, 2004a) the twist angle ranges from 86 to 90°, and in 1-(4-chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carbonitrile (Kubicki, 2004b) - 87.5°. The nitro group is nearly coplanar with the imidazole ring (dihedral angle of 5.8 (2)°, while the carbamoyl fragment is, on contrary, almost perpendicular and is inclined by 70.15 (13)° with respect to the imidazole ring plane.

The principal motifs of the crystal sructure are constructed by means of N—H···N and N—H···O hydrogen bonds. N51···N3(1/2 - x,3/2 - y,1 - z) hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2), and these dimers - the graph set symbol R22(12) - might be regarded as the building blocks of the structure. The other hydrogen bond, N51···O51(1/2 - x,-1/2 + y,1/2 - z), connect the molecules into C(4) chains along [010] direction. Interplay of these two kinds of hydrogen bonds connect molecules into layers perpendicular to [101], Fig. 3. The neighbouring layers are not connected by any directional intermolecular interactions.

Related literature top

For the synthesis, see: Suwiński et al. (1994). For similar nitroimidazole derivatives, see: Kubicki (2004a,b). For a recent experimental charge density study of a nitroimidazole derivative, see: Paul et al. (2011).

Experimental top

The compound, as an intermediate in purine synthesis, was synthesized by alkaline hydrolysis of 5-cyano derivative in the presence of hydrogen peroxide in good yield (Suwiński et al., 1994).

Refinement top

Hydrogen atoms from methyl group were placed geometrically and refined as riding model with Uiso set at 1.5 times Ueq of C21 atom. All other hydrogen atoms were found in the difference Fourier maps and freely refined with isotropic displacement parameters.

Structure description top

In the course of our studies on nitroimidazole derivatives (e.g. Kubicki, 2004a, 2004b; Paul et al., 2011) we have determined the crystal structure of another member of the family of 1-aryl-4-nitro substituted imidazole, 1(3-chlorophenyl)-2-methyl-4-nitro-5-carbamoyl-imidazole (1, Scheme 1).

Fig. 1 shows the perspective view of 1. The two main planar fragments, imidazole (maximum deviation 0.0069 (9) Å) and phenyl rings (0.0125 (13) Å), are inclined by 58.44 (6)°. This value is relatively small: for instance, in three polymorphs of 1-phenyl-2-methyl-4-nitro-5-bromoimidazole (Kubicki, 2004a) the twist angle ranges from 86 to 90°, and in 1-(4-chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carbonitrile (Kubicki, 2004b) - 87.5°. The nitro group is nearly coplanar with the imidazole ring (dihedral angle of 5.8 (2)°, while the carbamoyl fragment is, on contrary, almost perpendicular and is inclined by 70.15 (13)° with respect to the imidazole ring plane.

The principal motifs of the crystal sructure are constructed by means of N—H···N and N—H···O hydrogen bonds. N51···N3(1/2 - x,3/2 - y,1 - z) hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2), and these dimers - the graph set symbol R22(12) - might be regarded as the building blocks of the structure. The other hydrogen bond, N51···O51(1/2 - x,-1/2 + y,1/2 - z), connect the molecules into C(4) chains along [010] direction. Interplay of these two kinds of hydrogen bonds connect molecules into layers perpendicular to [101], Fig. 3. The neighbouring layers are not connected by any directional intermolecular interactions.

For the synthesis, see: Suwiński et al. (1994). For similar nitroimidazole derivatives, see: Kubicki (2004a,b). For a recent experimental charge density study of a nitroimidazole derivative, see: Paul et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The centrosymmetric dimer formed by N—H···N hydrogen bond; primes denote symmetry code (i) 1/2 - x,3/2 - y,1 - z
[Figure 3] Fig. 3. Two mutually perpendicular views of the hydrogen bonded layer of the molecules 1. Neighbouring layers are only loosely bound to one another.
1-(3-Chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carboxamide top
Crystal data top
C11H9ClN4O3F(000) = 1152
Mr = 280.67Dx = 1.505 Mg m3
Monoclinic, Ce2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1970 reflections
a = 21.8417 (14) Åθ = 2.6–27.8°
b = 7.3710 (4) ŵ = 0.32 mm1
c = 16.2467 (10) ÅT = 295 K
β = 108.680 (7)°Plate, colourless
V = 2477.9 (3) Å30.25 × 0.2 × 0.08 mm
Z = 8
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2702 independent reflections
Radiation source: Enhance (Mo) X-ray Source2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.1929 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω–scanh = 2823
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.833, Tmax = 1.000l = 1920
4943 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.4411P]
where P = (Fo2 + 2Fc2)/3
2702 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C11H9ClN4O3V = 2477.9 (3) Å3
Mr = 280.67Z = 8
Monoclinic, Ce2/cMo Kα radiation
a = 21.8417 (14) ŵ = 0.32 mm1
b = 7.3710 (4) ÅT = 295 K
c = 16.2467 (10) Å0.25 × 0.2 × 0.08 mm
β = 108.680 (7)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2702 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2185 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 1.000Rint = 0.019
4943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
2702 reflectionsΔρmin = 0.32 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17359 (6)0.85257 (17)0.33362 (8)0.0271 (3)
C110.12098 (7)0.8118 (2)0.25590 (9)0.0293 (3)
C120.09423 (8)0.6397 (2)0.24501 (11)0.0332 (4)
H120.1077 (9)0.552 (3)0.2894 (12)0.037 (5)*
C130.04732 (8)0.6004 (2)0.16645 (11)0.0379 (4)
Cl130.01602 (3)0.38209 (7)0.14854 (4)0.05910 (19)
C140.02578 (10)0.7283 (3)0.10197 (12)0.0504 (5)
H140.0065 (11)0.699 (3)0.0509 (15)0.064 (7)*
C150.05307 (10)0.8993 (3)0.11556 (13)0.0560 (6)
H150.0382 (12)0.991 (4)0.0733 (17)0.072 (7)*
C160.10138 (9)0.9419 (3)0.19203 (12)0.0415 (4)
H160.1217 (10)1.055 (3)0.2009 (13)0.046 (5)*
C20.17800 (8)0.9965 (2)0.38931 (10)0.0305 (3)
C210.12317 (10)1.1186 (3)0.38571 (14)0.0502 (5)
H21A0.13421.19200.43720.075*
H21B0.08561.04730.38210.075*
H21C0.11421.19550.33550.075*
N30.23569 (7)1.00575 (17)0.44768 (8)0.0310 (3)
C40.26864 (7)0.8643 (2)0.42808 (9)0.0266 (3)
N40.33550 (7)0.83535 (19)0.47546 (8)0.0339 (3)
O410.36067 (7)0.9295 (2)0.53941 (9)0.0568 (4)
O420.36375 (6)0.7157 (2)0.44992 (9)0.0543 (4)
C50.23205 (7)0.76476 (19)0.35908 (9)0.0249 (3)
C510.24424 (7)0.5998 (2)0.31274 (9)0.0267 (3)
O510.24669 (7)0.61445 (15)0.23864 (7)0.0387 (3)
N510.24967 (7)0.44533 (19)0.35555 (9)0.0342 (3)
H51A0.2520 (9)0.444 (3)0.4089 (13)0.039 (5)*
H51B0.2552 (9)0.346 (3)0.3297 (12)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (6)0.0263 (6)0.0261 (6)0.0018 (5)0.0067 (5)0.0005 (5)
C110.0257 (7)0.0328 (8)0.0273 (7)0.0001 (6)0.0054 (6)0.0001 (6)
C120.0332 (8)0.0334 (8)0.0308 (8)0.0010 (7)0.0071 (7)0.0005 (7)
C130.0336 (9)0.0394 (9)0.0379 (9)0.0081 (7)0.0073 (7)0.0065 (7)
Cl130.0610 (3)0.0487 (3)0.0575 (3)0.0197 (2)0.0048 (3)0.0114 (2)
C140.0399 (10)0.0630 (13)0.0362 (10)0.0071 (9)0.0046 (8)0.0027 (9)
C150.0496 (12)0.0587 (13)0.0426 (10)0.0043 (10)0.0093 (9)0.0181 (10)
C160.0367 (9)0.0388 (10)0.0409 (9)0.0040 (8)0.0012 (7)0.0092 (8)
C20.0370 (8)0.0255 (7)0.0299 (7)0.0026 (6)0.0118 (6)0.0003 (6)
C210.0482 (11)0.0447 (11)0.0579 (12)0.0155 (9)0.0174 (9)0.0052 (9)
N30.0387 (7)0.0269 (7)0.0272 (6)0.0012 (6)0.0103 (6)0.0035 (5)
C40.0303 (8)0.0266 (7)0.0215 (6)0.0000 (6)0.0066 (6)0.0000 (6)
N40.0332 (7)0.0368 (7)0.0279 (6)0.0020 (6)0.0045 (6)0.0023 (6)
O410.0461 (8)0.0674 (9)0.0430 (7)0.0046 (7)0.0050 (6)0.0219 (7)
O420.0351 (7)0.0607 (9)0.0597 (8)0.0109 (6)0.0049 (6)0.0182 (7)
C50.0278 (7)0.0243 (7)0.0219 (6)0.0008 (6)0.0071 (6)0.0016 (5)
C510.0283 (7)0.0257 (7)0.0245 (7)0.0003 (6)0.0062 (6)0.0027 (6)
O510.0627 (8)0.0305 (6)0.0268 (6)0.0056 (6)0.0196 (5)0.0008 (5)
N510.0530 (9)0.0239 (7)0.0266 (7)0.0029 (6)0.0142 (6)0.0014 (6)
Geometric parameters (Å, º) top
N1—C51.3719 (19)C2—C211.484 (2)
N1—C21.3774 (19)C21—H21A0.9600
N1—C111.4408 (19)C21—H21B0.9600
C11—C161.377 (2)C21—H21C0.9600
C11—C121.384 (2)N3—C41.361 (2)
C12—C131.388 (2)C4—C51.364 (2)
C12—H120.94 (2)C4—N41.432 (2)
C13—C141.376 (3)N4—O421.2228 (19)
C13—Cl131.7360 (18)N4—O411.2236 (18)
C14—C151.381 (3)C5—C511.498 (2)
C14—H140.93 (2)C51—O511.2270 (18)
C15—C161.384 (3)C51—N511.319 (2)
C15—H150.94 (3)N51—H51A0.85 (2)
C16—H160.93 (2)N51—H51B0.87 (2)
C2—N31.314 (2)
C5—N1—C2107.62 (12)N1—C2—C21123.73 (15)
C5—N1—C11124.74 (12)C2—C21—H21A109.5
C2—N1—C11127.22 (13)C2—C21—H21B109.5
C16—C11—C12121.72 (15)H21A—C21—H21B109.5
C16—C11—N1118.89 (15)C2—C21—H21C109.5
C12—C11—N1119.27 (14)H21A—C21—H21C109.5
C11—C12—C13117.78 (15)H21B—C21—H21C109.5
C11—C12—H12121.0 (11)C2—N3—C4104.35 (13)
C13—C12—H12121.2 (11)N3—C4—C5112.95 (14)
C14—C13—C12121.94 (17)N3—C4—N4120.85 (13)
C14—C13—Cl13119.18 (14)C5—C4—N4126.15 (14)
C12—C13—Cl13118.87 (14)O42—N4—O41123.99 (15)
C13—C14—C15118.62 (17)O42—N4—C4117.62 (13)
C13—C14—H14119.8 (15)O41—N4—C4118.38 (14)
C15—C14—H14121.6 (15)C4—C5—N1103.76 (13)
C14—C15—C16121.11 (18)C4—C5—C51134.27 (14)
C14—C15—H15120.4 (15)N1—C5—C51121.97 (13)
C16—C15—H15118.5 (15)O51—C51—N51124.64 (14)
C11—C16—C15118.79 (18)O51—C51—C5119.48 (13)
C11—C16—H16119.2 (13)N51—C51—C5115.84 (13)
C15—C16—H16122.0 (12)C51—N51—H51A121.0 (14)
N3—C2—N1111.31 (14)C51—N51—H51B118.4 (12)
N3—C2—C21124.90 (15)H51A—N51—H51B120.2 (19)
C5—N1—C11—C16115.99 (18)C21—C2—N3—C4177.36 (16)
C2—N1—C11—C1655.6 (2)C2—N3—C4—C50.99 (17)
C5—N1—C11—C1260.0 (2)C2—N3—C4—N4176.64 (14)
C2—N1—C11—C12128.44 (17)N3—C4—N4—O42173.81 (15)
C16—C11—C12—C131.1 (3)C5—C4—N4—O423.5 (2)
N1—C11—C12—C13174.80 (15)N3—C4—N4—O417.2 (2)
C11—C12—C13—C142.3 (3)C5—C4—N4—O41175.54 (15)
C11—C12—C13—Cl13176.52 (12)N3—C4—C5—N11.33 (17)
C12—C13—C14—C151.6 (3)N4—C4—C5—N1176.15 (14)
Cl13—C13—C14—C15177.23 (17)N3—C4—C5—C51179.51 (15)
C13—C14—C15—C160.4 (3)N4—C4—C5—C513.0 (3)
C12—C11—C16—C150.8 (3)C2—N1—C5—C41.11 (15)
N1—C11—C16—C15176.73 (17)C11—N1—C5—C4171.84 (13)
C14—C15—C16—C111.6 (3)C2—N1—C5—C51179.59 (13)
C5—N1—C2—N30.58 (17)C11—N1—C5—C517.5 (2)
C11—N1—C2—N3172.15 (14)C4—C5—C51—O51110.4 (2)
C5—N1—C2—C21176.59 (16)N1—C5—C51—O5168.6 (2)
C11—N1—C2—C2110.7 (2)C4—C5—C51—N5171.6 (2)
N1—C2—N3—C40.23 (17)N1—C5—C51—N51109.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···N3i0.85 (2)2.29 (2)3.130 (2)169.2 (18)
N51—H51B···O51ii0.87 (2)2.03 (2)2.8938 (19)171.3 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9ClN4O3
Mr280.67
Crystal system, space groupMonoclinic, Ce2/c
Temperature (K)295
a, b, c (Å)21.8417 (14), 7.3710 (4), 16.2467 (10)
β (°) 108.680 (7)
V3)2477.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.2 × 0.08
Data collection
DiffractometerAgilent Xcalibur Sapphire2
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.833, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4943, 2702, 2185
Rint0.019
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04
No. of reflections2702
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···N3i0.85 (2)2.29 (2)3.130 (2)169.2 (18)
N51—H51B···O51ii0.87 (2)2.03 (2)2.8938 (19)171.3 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKubicki, M. (2004a). Acta Cryst. C60, o255–o257.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M. (2004b). Acta Cryst. C60, o341–o343.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365–378.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwiński, J., Walczak, K. & Wagner, P. (1994). Pol. J. Appl. Chem. 38, 499–506.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds