organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4,6-tri­methyl­anilinium) sulfate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 22 August 2011; accepted 18 September 2011; online 30 September 2011)

In the crystal structure of the title compound, 2C9H14N+·SO42−·H2O, the components are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. N—H⋯S and O—H⋯S inter­actions also occur.

Related literature

The title compound was obtained during attempts to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.], 2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]) and for phase transition of ferroelectric materials, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • 2C9H14N+·SO42−·H2O

  • Mr = 386.50

  • Orthorhombic, P n a 21

  • a = 7.7414 (12) Å

  • b = 30.418 (5) Å

  • c = 16.949 (3) Å

  • V = 3991.3 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.962

  • 41971 measured reflections

  • 9160 independent reflections

  • 7532 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.143

  • S = 1.06

  • 9160 reflections

  • 485 parameters

  • 411 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4422 Friedel pairs

  • Flack parameter: 0.05 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O6 0.89 1.81 2.668 (4) 162
N1—H1D⋯S1 0.89 2.74 3.603 (3) 164
N2—H2B⋯O1W 0.89 2.12 2.834 (4) 137
N2—H2C⋯O4 0.89 1.88 2.763 (4) 173
N2—H2C⋯S2 0.89 3.00 3.861 (3) 162
N3—H3A⋯O7 0.89 1.89 2.761 (4) 166
N3—H3B⋯O2W 0.89 2.12 2.877 (4) 142
N4—H4A⋯O7 0.89 1.97 2.800 (4) 155
N3—H3A⋯S1 0.89 3.05 3.858 (3) 153
O1W—H1WA⋯O1 0.78 2.02 2.782 (4) 165
O1W—H1WB⋯O5 0.97 1.82 2.788 (4) 173
O1W—H1WB⋯S1 0.97 2.88 3.805 (3) 159
O2W—H2WB⋯O5 0.80 1.97 2.756 (4) 166
O2W—H2WB⋯S1 0.80 2.99 3.761 (3) 162
N1—H1E⋯O2Wi 0.89 1.99 2.837 (4) 158
N1—H1F⋯O4ii 0.89 1.99 2.807 (4) 153
N1—H1F⋯S2ii 0.89 2.92 3.622 (3) 137
N2—H2A⋯O6iii 0.89 1.85 2.735 (4) 171
N2—H2A⋯S1iii 0.89 3.01 3.800 (3) 149
N3—H3C⋯O2iv 0.89 1.81 2.695 (4) 178
N3—H3C⋯S2iv 0.89 2.96 3.788 (3) 156
N4—H4B⋯O1Wiv 0.89 1.97 2.842 (4) 165
N4—H4C⋯O2ii 0.89 1.79 2.683 (4) 178
N4—H4C⋯S2ii 0.89 2.81 3.616 (3) 151
O2W—H2WA⋯O1v 0.94 1.86 2.781 (4) 168
O2W—H2WA⋯S2v 0.94 2.88 3.791 (3) 165
Symmetry codes: (i) x-1, y, z; (ii) [-x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, z+{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009), As a part of our work to obtain potential ferroelectric phase-transitionmaterials, we report herein on the crystal structure of title compound. Unluckily, the title compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

The asymmetric unit of the title compound is is shown in Fig. 1. There are two independent molecules [labelled A & B]. The crystal packing (Fig. 2) is stabilized by weak intermolecular N—H···O and O—H···O hydrogen bonds between the [C9H14N]+ cations and, SO42- anions and H2O (see; Table 1).

Related literature top

The title compound was obtained during attempts to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007) and for phase transition of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).

Experimental top

For the preparation of the title compound, the water solution ofthe sulfuric acid(1 g) was added to the ethanol solution of the 2,4,6-trimethylaniline, The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to O/N atoms were calculated geometrically and were allowed to ride on the O/N atoms with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Structure description top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009), As a part of our work to obtain potential ferroelectric phase-transitionmaterials, we report herein on the crystal structure of title compound. Unluckily, the title compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

The asymmetric unit of the title compound is is shown in Fig. 1. There are two independent molecules [labelled A & B]. The crystal packing (Fig. 2) is stabilized by weak intermolecular N—H···O and O—H···O hydrogen bonds between the [C9H14N]+ cations and, SO42- anions and H2O (see; Table 1).

The title compound was obtained during attempts to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007) and for phase transition of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme.Displacement ellipsoids are drawn at the 30%
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Bis(2,4,6-trimethylanilinium) sulfate monohydrate top
Crystal data top
2C9H14N+·SO42·H2OF(000) = 1664
Mr = 386.50Dx = 1.286 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9163 reflections
a = 7.7414 (12) Åθ = 2.3–27.5°
b = 30.418 (5) ŵ = 0.19 mm1
c = 16.949 (3) ÅT = 293 K
V = 3991.3 (11) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
9160 independent reflections
Radiation source: fine-focus sealed tube7532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3939
Tmin = 0.962, Tmax = 0.962l = 2222
41971 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.9745P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.061
9160 reflectionsΔρmax = 0.21 e Å3
485 parametersΔρmin = 0.41 e Å3
411 restraintsAbsolute structure: Flack (1983), 4422 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (9)
Crystal data top
2C9H14N+·SO42·H2OV = 3991.3 (11) Å3
Mr = 386.50Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 7.7414 (12) ŵ = 0.19 mm1
b = 30.418 (5) ÅT = 293 K
c = 16.949 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
9160 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
7532 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.962Rint = 0.072
41971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.41 e Å3
9160 reflectionsAbsolute structure: Flack (1983), 4422 Friedel pairs
485 parametersAbsolute structure parameter: 0.05 (9)
411 restraints
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3645 (7)0.74678 (12)0.3953 (3)0.0612 (12)
H1A0.26980.76590.38250.092*
H1B0.44540.74650.35240.092*
H1C0.42080.75720.44210.092*
C20.2968 (5)0.70050 (11)0.4092 (2)0.0422 (8)
C30.2874 (5)0.67005 (12)0.3479 (2)0.0398 (8)
H3D0.32230.67840.29760.048*
C40.2272 (4)0.62748 (12)0.3598 (2)0.0326 (8)
C50.2256 (6)0.59543 (13)0.2924 (3)0.0464 (11)
H5A0.10900.59120.27460.070*
H5B0.27230.56780.30970.070*
H5C0.29440.60670.24990.070*
C60.1750 (4)0.61570 (11)0.4357 (2)0.0290 (7)
C70.1817 (5)0.64510 (11)0.4987 (2)0.0333 (7)
C80.1295 (5)0.63270 (12)0.5813 (2)0.0421 (9)
H8A0.17200.65440.61770.063*
H8B0.17740.60450.59430.063*
H8C0.00580.63130.58460.063*
C90.2440 (5)0.68731 (12)0.4831 (2)0.0411 (8)
H9A0.25010.70740.52440.049*
C100.4137 (4)0.39188 (11)0.1167 (2)0.0300 (7)
C110.3603 (4)0.36232 (11)0.0583 (2)0.0345 (8)
C120.3073 (5)0.37656 (13)0.0227 (2)0.0425 (9)
H12A0.40490.37490.05760.064*
H12B0.26590.40630.02080.064*
H12C0.21730.35760.04170.064*
C130.3624 (5)0.31764 (12)0.0775 (2)0.0432 (8)
H13A0.32640.29740.03980.052*
C140.4161 (5)0.30232 (12)0.1505 (2)0.0425 (9)
C150.4195 (7)0.25288 (12)0.1675 (3)0.0642 (13)
H15A0.30710.24060.15800.096*
H15B0.45110.24810.22160.096*
H15C0.50240.23890.13370.096*
C160.4709 (5)0.33302 (12)0.2059 (2)0.0395 (8)
H16A0.51010.32300.25450.047*
C170.4699 (4)0.37818 (12)0.1919 (2)0.0324 (8)
C180.5313 (5)0.40923 (14)0.2532 (2)0.0410 (9)
H18A0.43620.42680.27130.062*
H18B0.61870.42800.23130.062*
H18C0.57860.39300.29670.062*
C191.0994 (7)0.25935 (12)0.3873 (3)0.0590 (12)
H19A1.15060.24820.43480.088*
H19B1.18210.25790.34510.088*
H19C1.00000.24200.37400.088*
C201.0455 (5)0.30644 (11)0.3998 (2)0.0420 (8)
C210.9827 (5)0.32054 (12)0.4715 (2)0.0415 (8)
H21A0.96910.30000.51160.050*
C220.9385 (4)0.36406 (11)0.4870 (2)0.0334 (7)
C230.8725 (6)0.37680 (13)0.5670 (2)0.0445 (9)
H23A0.82070.35170.59180.067*
H23B0.78790.39970.56160.067*
H23C0.96680.38720.59870.067*
C240.9606 (4)0.39414 (11)0.4253 (2)0.0296 (7)
C251.0192 (4)0.38128 (13)0.3507 (2)0.0323 (8)
C261.0393 (5)0.41393 (14)0.2835 (2)0.0409 (9)
H26A1.08630.39920.23820.061*
H26B1.11590.43710.29940.061*
H26C0.92860.42610.27040.061*
C271.0603 (5)0.33733 (12)0.3397 (2)0.0390 (8)
H27A1.09900.32820.29040.047*
C280.3445 (5)0.29434 (11)0.6463 (2)0.0416 (9)
C290.3301 (7)0.24593 (12)0.6662 (3)0.0656 (13)
H29A0.29230.24270.71980.098*
H29B0.44080.23220.65980.098*
H29C0.24800.23230.63160.098*
C300.3880 (5)0.30767 (11)0.5709 (2)0.0405 (8)
H30A0.40750.28640.53250.049*
C310.3125 (5)0.32664 (11)0.7020 (2)0.0399 (8)
H31A0.27920.31810.75250.048*
C320.3279 (5)0.37103 (12)0.6857 (2)0.0341 (8)
C330.2834 (6)0.40487 (14)0.7471 (3)0.0483 (11)
H33A0.23610.39050.79270.072*
H33B0.19980.42500.72590.072*
H33C0.38570.42070.76180.072*
C340.3768 (4)0.38316 (11)0.6097 (2)0.0308 (7)
C350.4038 (4)0.35176 (11)0.5502 (2)0.0346 (8)
C360.4449 (5)0.36414 (13)0.4659 (2)0.0442 (9)
H36A0.55890.37650.46330.066*
H36B0.36240.38540.44750.066*
H36C0.43970.33840.43320.066*
N10.1239 (4)0.56985 (9)0.44948 (18)0.0305 (7)
H1D0.21790.55300.45190.046*
H1E0.05680.56080.41010.046*
H1F0.06620.56800.49480.046*
N20.4050 (4)0.43893 (9)0.09915 (18)0.0321 (7)
H2A0.45760.44420.05340.048*
H2B0.45720.45400.13740.048*
H2C0.29500.44720.09590.048*
N30.9247 (4)0.44069 (9)0.44031 (18)0.0298 (6)
H3A0.81140.44460.44600.045*
H3B0.96220.45670.39980.045*
H3C0.97860.44910.48420.045*
N40.3946 (4)0.43013 (8)0.59140 (18)0.0299 (6)
H4A0.45590.43330.54740.045*
H4B0.44830.44360.63100.045*
H4C0.29040.44190.58470.045*
O10.0627 (4)0.50945 (10)0.19281 (18)0.0436 (7)
O20.0796 (3)0.53415 (9)0.07533 (17)0.0415 (6)
O30.1988 (3)0.47421 (9)0.14906 (19)0.0449 (7)
O40.0670 (3)0.46503 (9)0.07558 (17)0.0392 (6)
O50.5726 (4)0.50569 (10)0.34540 (17)0.0414 (7)
O60.4401 (3)0.53554 (9)0.46156 (18)0.0432 (7)
O70.5875 (3)0.46616 (9)0.46752 (18)0.0402 (6)
O80.3141 (3)0.47293 (9)0.39917 (19)0.0453 (7)
O1W0.4214 (3)0.51438 (8)0.19692 (17)0.0345 (6)
H1WA0.32200.51730.19940.052*
H1WB0.46650.51270.25020.052*
O2W0.9251 (3)0.51838 (9)0.34350 (16)0.0374 (6)
H2WB0.82300.51760.35060.056*
H2WA0.95670.51330.29100.056*
S10.47640 (10)0.49460 (3)0.41718 (5)0.02659 (19)
S20.03898 (10)0.49501 (3)0.12443 (5)0.02667 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (3)0.041 (2)0.074 (3)0.015 (2)0.005 (3)0.001 (2)
C20.044 (2)0.0324 (18)0.050 (2)0.0027 (14)0.0001 (18)0.0047 (16)
C30.0382 (19)0.042 (2)0.040 (2)0.0005 (16)0.0010 (16)0.0055 (16)
C40.0319 (17)0.0317 (18)0.0341 (18)0.0042 (14)0.0004 (15)0.0032 (15)
C50.065 (3)0.041 (2)0.033 (2)0.009 (2)0.009 (2)0.0054 (18)
C60.0268 (16)0.0287 (16)0.0315 (17)0.0058 (12)0.0047 (13)0.0010 (13)
C70.0335 (18)0.0309 (17)0.0354 (18)0.0019 (14)0.0049 (15)0.0026 (14)
C80.054 (2)0.038 (2)0.0345 (19)0.0017 (17)0.0015 (18)0.0039 (16)
C90.046 (2)0.0325 (18)0.045 (2)0.0008 (15)0.0051 (17)0.0067 (15)
C100.0279 (16)0.0314 (17)0.0307 (18)0.0017 (12)0.0055 (14)0.0004 (14)
C110.0295 (17)0.0394 (19)0.0347 (18)0.0018 (14)0.0031 (14)0.0058 (15)
C120.050 (2)0.046 (2)0.0315 (19)0.0019 (17)0.0078 (17)0.0013 (17)
C130.050 (2)0.0359 (18)0.043 (2)0.0035 (16)0.0014 (18)0.0048 (16)
C140.047 (2)0.0313 (18)0.050 (2)0.0014 (15)0.0009 (18)0.0020 (16)
C150.088 (3)0.030 (2)0.074 (3)0.001 (2)0.013 (3)0.005 (2)
C160.049 (2)0.0341 (18)0.0351 (19)0.0001 (16)0.0019 (17)0.0060 (15)
C170.0322 (17)0.0359 (18)0.0291 (18)0.0003 (14)0.0048 (14)0.0028 (14)
C180.051 (2)0.042 (2)0.030 (2)0.0041 (17)0.0009 (17)0.0020 (17)
C190.071 (3)0.033 (2)0.073 (3)0.009 (2)0.001 (2)0.001 (2)
C200.050 (2)0.0302 (17)0.046 (2)0.0014 (15)0.0038 (18)0.0017 (15)
C210.051 (2)0.0302 (17)0.043 (2)0.0030 (16)0.0020 (18)0.0052 (15)
C220.0336 (18)0.0357 (17)0.0308 (17)0.0009 (14)0.0014 (14)0.0000 (14)
C230.055 (2)0.043 (2)0.036 (2)0.0069 (18)0.0055 (18)0.0069 (17)
C240.0301 (16)0.0288 (16)0.0298 (17)0.0010 (12)0.0031 (14)0.0005 (14)
C250.0286 (16)0.0361 (19)0.0323 (19)0.0013 (14)0.0013 (14)0.0049 (14)
C260.050 (2)0.043 (2)0.031 (2)0.0033 (17)0.0027 (17)0.0009 (17)
C270.043 (2)0.0372 (19)0.0370 (19)0.0027 (16)0.0017 (16)0.0062 (15)
C280.055 (2)0.0257 (17)0.045 (2)0.0022 (15)0.0002 (18)0.0029 (14)
C290.099 (4)0.0261 (19)0.072 (3)0.003 (2)0.017 (3)0.0068 (19)
C300.058 (2)0.0249 (16)0.0390 (19)0.0001 (16)0.0037 (17)0.0044 (14)
C310.051 (2)0.0337 (18)0.0346 (18)0.0039 (16)0.0059 (17)0.0035 (15)
C320.0366 (18)0.0298 (17)0.0358 (19)0.0003 (14)0.0005 (15)0.0010 (15)
C330.064 (3)0.042 (2)0.038 (3)0.001 (2)0.018 (2)0.0027 (19)
C340.0280 (16)0.0281 (17)0.0363 (19)0.0013 (13)0.0013 (14)0.0008 (14)
C350.0370 (18)0.0305 (17)0.0363 (18)0.0012 (15)0.0022 (15)0.0033 (14)
C360.062 (3)0.041 (2)0.0300 (18)0.0044 (18)0.0017 (18)0.0074 (16)
N10.0279 (14)0.0328 (16)0.0307 (17)0.0043 (12)0.0001 (12)0.0036 (13)
N20.0334 (15)0.0336 (16)0.0291 (17)0.0037 (12)0.0009 (12)0.0020 (13)
N30.0323 (15)0.0289 (15)0.0284 (16)0.0012 (11)0.0003 (12)0.0014 (12)
N40.0351 (15)0.0252 (15)0.0295 (16)0.0026 (11)0.0003 (12)0.0001 (12)
O10.0407 (15)0.0633 (19)0.0269 (15)0.0010 (12)0.0036 (12)0.0122 (14)
O20.0436 (14)0.0446 (15)0.0363 (15)0.0127 (12)0.0077 (12)0.0149 (13)
O30.0324 (13)0.0462 (16)0.056 (2)0.0073 (12)0.0056 (12)0.0068 (14)
O40.0365 (13)0.0436 (15)0.0376 (15)0.0099 (11)0.0022 (12)0.0128 (13)
O50.0392 (13)0.0624 (19)0.0226 (14)0.0029 (12)0.0020 (12)0.0061 (13)
O60.0458 (15)0.0353 (14)0.0484 (18)0.0093 (12)0.0113 (13)0.0150 (13)
O70.0383 (13)0.0424 (15)0.0397 (16)0.0113 (11)0.0005 (12)0.0148 (13)
O80.0312 (13)0.0518 (17)0.0529 (18)0.0075 (12)0.0033 (12)0.0133 (15)
O1W0.0344 (13)0.0412 (15)0.0281 (14)0.0010 (10)0.0020 (11)0.0006 (12)
O2W0.0349 (12)0.0493 (17)0.0279 (15)0.0004 (12)0.0016 (11)0.0034 (13)
S10.0277 (4)0.0280 (4)0.0240 (5)0.0017 (3)0.0003 (4)0.0003 (4)
S20.0277 (4)0.0291 (4)0.0232 (4)0.0018 (3)0.0005 (3)0.0010 (4)
Geometric parameters (Å, º) top
C1—C21.521 (5)C23—H23C0.9600
C1—H1A0.9600C24—C251.400 (5)
C1—H1B0.9600C24—N31.465 (4)
C1—H1C0.9600C25—C271.387 (5)
C2—C91.377 (5)C25—C261.519 (5)
C2—C31.394 (5)C26—H26A0.9600
C3—C41.391 (5)C26—H26B0.9600
C3—H3D0.9300C26—H26C0.9600
C4—C61.396 (5)C27—H27A0.9300
C4—C51.501 (5)C28—C301.382 (5)
C5—H5A0.9600C28—C311.385 (5)
C5—H5B0.9600C28—C291.515 (5)
C5—H5C0.9600C29—H29A0.9600
C6—C71.393 (5)C29—H29B0.9600
C6—N11.468 (4)C29—H29C0.9600
C7—C91.397 (5)C30—C351.392 (4)
C7—C81.506 (5)C30—H30A0.9300
C8—H8A0.9600C31—C321.384 (5)
C8—H8B0.9600C31—H31A0.9300
C8—H8C0.9600C32—C341.392 (5)
C9—H9A0.9300C32—C331.503 (5)
C10—C111.400 (5)C33—H33A0.9600
C10—C171.410 (5)C33—H33B0.9600
C10—N21.463 (4)C33—H33C0.9600
C11—C131.398 (5)C34—C351.405 (5)
C11—C121.497 (5)C34—N41.469 (4)
C12—H12A0.9600C35—C361.512 (5)
C12—H12B0.9600C36—H36A0.9600
C12—H12C0.9600C36—H36B0.9600
C13—C141.386 (5)C36—H36C0.9600
C13—H13A0.9300N1—H1D0.8900
C14—C161.390 (5)N1—H1E0.8900
C14—C151.531 (5)N1—H1F0.8900
C15—H15A0.9600N2—H2A0.8900
C15—H15B0.9600N2—H2B0.8900
C15—H15C0.9600N2—H2C0.8900
C16—C171.394 (5)N3—H3A0.8900
C16—H16A0.9300N3—H3B0.8900
C17—C181.482 (5)N3—H3C0.8900
C18—H18A0.9600N4—H4A0.8900
C18—H18B0.9600N4—H4B0.8900
C18—H18C0.9600N4—H4C0.8900
C19—C201.507 (5)O1—S21.468 (3)
C19—H19A0.9600O2—S21.486 (3)
C19—H19B0.9600O3—S21.451 (3)
C19—H19C0.9600O4—S21.480 (3)
C20—C211.378 (5)O5—S11.466 (3)
C20—C271.391 (5)O6—S11.482 (3)
C21—C221.392 (5)O7—S11.489 (3)
C21—H21A0.9300O8—S11.451 (2)
C22—C241.399 (5)O1W—H1WA0.7755
C22—C231.500 (5)O1W—H1WB0.9693
C23—H23A0.9600O2W—H2WB0.7995
C23—H23B0.9600O2W—H2WA0.9364
C2—C1—H1A109.5H23A—C23—H23C109.5
C2—C1—H1B109.5H23B—C23—H23C109.5
H1A—C1—H1B109.5C22—C24—C25122.1 (3)
C2—C1—H1C109.5C22—C24—N3118.7 (3)
H1A—C1—H1C109.5C25—C24—N3119.2 (3)
H1B—C1—H1C109.5C27—C25—C24117.7 (4)
C9—C2—C3118.0 (3)C27—C25—C26120.4 (3)
C9—C2—C1120.9 (4)C24—C25—C26121.9 (3)
C3—C2—C1121.1 (4)C25—C26—H26A109.5
C4—C3—C2121.9 (4)C25—C26—H26B109.5
C4—C3—H3D119.1H26A—C26—H26B109.5
C2—C3—H3D119.1C25—C26—H26C109.5
C3—C4—C6118.0 (3)H26A—C26—H26C109.5
C3—C4—C5119.8 (3)H26B—C26—H26C109.5
C6—C4—C5122.1 (3)C25—C27—C20122.3 (4)
C4—C5—H5A109.5C25—C27—H27A118.9
C4—C5—H5B109.5C20—C27—H27A118.9
H5A—C5—H5B109.5C30—C28—C31117.8 (3)
C4—C5—H5C109.5C30—C28—C29120.6 (3)
H5A—C5—H5C109.5C31—C28—C29121.6 (4)
H5B—C5—H5C109.5C28—C29—H29A109.5
C7—C6—C4122.0 (3)C28—C29—H29B109.5
C7—C6—N1119.9 (3)H29A—C29—H29B109.5
C4—C6—N1117.9 (3)C28—C29—H29C109.5
C6—C7—C9117.3 (3)H29A—C29—H29C109.5
C6—C7—C8122.8 (3)H29B—C29—H29C109.5
C9—C7—C8119.9 (3)C28—C30—C35122.5 (3)
C7—C8—H8A109.5C28—C30—H30A118.7
C7—C8—H8B109.5C35—C30—H30A118.8
H8A—C8—H8B109.5C32—C31—C28122.7 (3)
C7—C8—H8C109.5C32—C31—H31A118.6
H8A—C8—H8C109.5C28—C31—H31A118.6
H8B—C8—H8C109.5C31—C32—C34117.8 (3)
C2—C9—C7122.8 (3)C31—C32—C33120.7 (3)
C2—C9—H9A118.6C34—C32—C33121.4 (3)
C7—C9—H9A118.6C32—C33—H33A109.5
C11—C10—C17122.7 (3)C32—C33—H33B109.5
C11—C10—N2118.1 (3)H33A—C33—H33B109.5
C17—C10—N2119.2 (3)C32—C33—H33C109.5
C13—C11—C10117.2 (3)H33A—C33—H33C109.5
C13—C11—C12119.9 (3)H33B—C33—H33C109.5
C10—C11—C12122.9 (3)C32—C34—C35121.7 (3)
C11—C12—H12A109.5C32—C34—N4118.6 (3)
C11—C12—H12B109.5C35—C34—N4119.7 (3)
H12A—C12—H12B109.5C30—C35—C34117.4 (3)
C11—C12—H12C109.5C30—C35—C36119.8 (3)
H12A—C12—H12C109.5C34—C35—C36122.8 (3)
H12B—C12—H12C109.5C35—C36—H36A109.5
C14—C13—C11122.6 (4)C35—C36—H36B109.5
C14—C13—H13A118.7H36A—C36—H36B109.5
C11—C13—H13A118.7C35—C36—H36C109.5
C13—C14—C16117.9 (3)H36A—C36—H36C109.5
C13—C14—C15120.2 (4)H36B—C36—H36C109.5
C16—C14—C15121.8 (4)C6—N1—H1D109.5
C14—C15—H15A109.5C6—N1—H1E109.5
C14—C15—H15B109.5H1D—N1—H1E109.5
H15A—C15—H15B109.5C6—N1—H1F109.5
C14—C15—H15C109.5H1D—N1—H1F109.5
H15A—C15—H15C109.5H1E—N1—H1F109.5
H15B—C15—H15C109.5C10—N2—H2A109.5
C14—C16—C17123.1 (3)C10—N2—H2B109.5
C14—C16—H16A118.5H2A—N2—H2B109.5
C17—C16—H16A118.5C10—N2—H2C109.5
C16—C17—C10116.5 (3)H2A—N2—H2C109.5
C16—C17—C18120.5 (3)H2B—N2—H2C109.5
C10—C17—C18123.0 (3)C24—N3—H3A109.5
C17—C18—H18A109.5C24—N3—H3B109.5
C17—C18—H18B109.5H3A—N3—H3B109.5
H18A—C18—H18B109.5C24—N3—H3C109.5
C17—C18—H18C109.5H3A—N3—H3C109.5
H18A—C18—H18C109.5H3B—N3—H3C109.5
H18B—C18—H18C109.5C34—N4—H4A109.5
C20—C19—H19A109.5C34—N4—H4B109.5
C20—C19—H19B109.5H4A—N4—H4B109.5
H19A—C19—H19B109.5C34—N4—H4C109.5
C20—C19—H19C109.5H4A—N4—H4C109.5
H19A—C19—H19C109.5H4B—N4—H4C109.5
H19B—C19—H19C109.5H1WA—O1W—H1WB108.3
C21—C20—C27117.7 (3)H2WB—O2W—H2WA113.3
C21—C20—C19121.2 (4)O8—S1—O5111.70 (18)
C27—C20—C19121.1 (4)O8—S1—O6108.90 (16)
C20—C21—C22123.3 (3)O5—S1—O6108.93 (18)
C20—C21—H21A118.4O8—S1—O7110.91 (17)
C22—C21—H21A118.4O5—S1—O7108.42 (16)
C21—C22—C24116.8 (3)O6—S1—O7107.89 (18)
C21—C22—C23120.0 (3)O3—S2—O1111.13 (19)
C24—C22—C23123.2 (3)O3—S2—O4111.42 (17)
C22—C23—H23A109.5O1—S2—O4109.19 (15)
C22—C23—H23B109.5O3—S2—O2109.28 (16)
H23A—C23—H23B109.5O1—S2—O2108.40 (17)
C22—C23—H23C109.5O4—S2—O2107.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O60.891.812.668 (4)162
N1—H1D···S10.892.743.603 (3)164
N2—H2B···O1W0.892.122.834 (4)137
N2—H2C···O40.891.882.763 (4)173
N2—H2C···S20.893.003.861 (3)162
N3—H3A···O70.891.892.761 (4)166
N3—H3B···O2W0.892.122.877 (4)142
N4—H4A···O70.891.972.800 (4)155
N3—H3A···S10.893.053.858 (3)153
O1W—H1WA···O10.782.022.782 (4)165
O1W—H1WB···O50.971.822.788 (4)173
O1W—H1WB···S10.972.883.805 (3)159
O2W—H2WB···O50.801.972.756 (4)166
O2W—H2WB···S10.802.993.761 (3)162
N1—H1E···O2Wi0.891.992.837 (4)158
N1—H1F···O4ii0.891.992.807 (4)153
N1—H1F···S2ii0.892.923.622 (3)137
N2—H2A···O6iii0.891.852.735 (4)171
N2—H2A···S1iii0.893.013.800 (3)149
N3—H3C···O2iv0.891.812.695 (4)178
N3—H3C···S2iv0.892.963.788 (3)156
N4—H4B···O1Wiv0.891.972.842 (4)165
N4—H4C···O2ii0.891.792.683 (4)178
N4—H4C···S2ii0.892.813.616 (3)151
O2W—H2WA···O1v0.941.862.781 (4)168
O2W—H2WA···S2v0.942.883.791 (3)165
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y+1, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C9H14N+·SO42·H2O
Mr386.50
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)7.7414 (12), 30.418 (5), 16.949 (3)
V3)3991.3 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.962, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
41971, 9160, 7532
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.143, 1.06
No. of reflections9160
No. of parameters485
No. of restraints411
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.41
Absolute structureFlack (1983), 4422 Friedel pairs
Absolute structure parameter0.05 (9)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O60.891.812.668 (4)161.9
N1—H1D···S10.892.743.603 (3)163.6
N2—H2B···O1W0.892.122.834 (4)137.2
N2—H2C···O40.891.882.763 (4)172.9
N2—H2C···S20.893.003.861 (3)161.9
N3—H3A···O70.891.892.761 (4)166.1
N3—H3B···O2W0.892.122.877 (4)141.8
N4—H4A···O70.891.972.800 (4)155.4
N3—H3A···S10.893.053.858 (3)152.5
O1W—H1WA···O10.782.022.782 (4)165.3
O1W—H1WB···O50.971.822.788 (4)173.1
O1W—H1WB···S10.972.883.805 (3)159.0
O2W—H2WB···O50.801.972.756 (4)165.8
O2W—H2WB···S10.802.993.761 (3)161.7
N1—H1E···O2Wi0.891.992.837 (4)157.5
N1—H1F···O4ii0.891.992.807 (4)152.6
N1—H1F···S2ii0.892.923.622 (3)136.6
N2—H2A···O6iii0.891.852.735 (4)171.0
N2—H2A···S1iii0.893.013.800 (3)149.1
N3—H3C···O2iv0.891.812.695 (4)177.6
N3—H3C···S2iv0.892.963.788 (3)155.5
N4—H4B···O1Wiv0.891.972.842 (4)164.6
N4—H4C···O2ii0.891.792.683 (4)177.8
N4—H4C···S2ii0.892.813.616 (3)150.6
O2W—H2WA···O1v0.941.862.781 (4)167.7
O2W—H2WA···S2v0.942.883.791 (3)165.4
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y+1, z+1/2; (v) x+1, y, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University, Nanjing, P. R. China.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds