organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Dimeth­­oxy­naphthalen-1-yl)(2,4,6-tri­methyl­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 16 September 2011; accepted 24 September 2011; online 30 September 2011)

In the title compound, C22H22O3, the dihedral angle between the naphthalene ring system and the benzene ring is 82.93 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 50.11 (6) and 46.87 (7)°, respectively, with the naphthalene ring system and the benzene ring. In the crystal, three types of weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. In the press.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Watanabe et al. (2010[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.], 2011[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o1466.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O3

  • Mr = 334.40

  • Monoclinic, P 21 /c

  • a = 10.5238 (4) Å

  • b = 12.2289 (4) Å

  • c = 15.0504 (5) Å

  • β = 111.340 (2)°

  • V = 1804.11 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 193 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.739, Tmax = 0.882

  • 32585 measured reflections

  • 3295 independent reflections

  • 2945 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.08

  • 3295 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.54 3.3756 (18) 147
C7—H7⋯O2ii 0.95 2.60 3.466 (2) 152
C18—H18B⋯O3iii 0.98 2.59 3.471 (2) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic acylation of 2,7-dimethoxynaphthalene, peri-arylcarbonylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). Recently, we have reported the crystal structures of several 1,8-diarylcarbonylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The arylcarbonyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of arylcarbonylated naphthalene homologues, 1-monoarylcarbonylated naphthalene compounds and the β-isomers of 3-monoarylcarbonylated naphthalene compounds, have been also clarified such as (2,7-dimethoxynaphthalen-1-yl)(4-fluorophenyl)methanone (Watanabe et al., 2011) and (3,6-dimethoxy-2-naphthyl)(4-fluorobenzoyl)methanone (Watanabe, Muto, Nagasawa et al., 2010).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 1-monoarylcarbonylnaphthalene bearing three methyl groups on the arylcarbonyl group, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 82.93 (5)°. The carbonyl group makes torsion angles of -130.97 (14) and -131.79 (13)°, respectively, with the naphthalene ring and the benzene ring [C2—C1—C11—O1 torsion angle = -130.97 (14)°; O1—C11—C12—C13 torsion angle = -131.79 (13)°]. In addition, two types of intramolecular C—H···O interactions are observed (C9—H9···O1 = 2.39 Å and C22—H22a···O1 = 2.51 Å; Fig. 1 and Table 1).

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by three types of C—H···O hydrogen bondings: Intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H4) of the naphthalene ring of the adjacent molecule is formed along the c axis (C4—H4···O1i; Fig. 2 and Table 1). There is also intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of 2-methoxy group and one hydrogen atom (H7) of the naphthalene ring of the adjacent molecule along the b axis (C7—H7···O2ii; Fig. 3 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O3) of the 7-methoxy group and one hydrogen atom (H18b) of the 2-methoxy group of the adjacent molecule along the ac diagonal (C18—H18b···O3 iii; Fig. 4 and Table 1) is observed.

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010); Watanabe et al. (2010, 2011).

Experimental top

To a 10 ml flask, 2,4,6-trimethylbenzoyl chloride (0.55 mmol, 100 mg), aluminium chloride (0.60 mmol, 80.0 mg) and methylene chloride (1.25 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (0.50 mmol, 94.0 mg) was added. After the reaction mixture was stirred at 273 K for 6 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from methanol (yield 56%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from hexane and CHCl3.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic acylation of 2,7-dimethoxynaphthalene, peri-arylcarbonylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). Recently, we have reported the crystal structures of several 1,8-diarylcarbonylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The arylcarbonyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of arylcarbonylated naphthalene homologues, 1-monoarylcarbonylated naphthalene compounds and the β-isomers of 3-monoarylcarbonylated naphthalene compounds, have been also clarified such as (2,7-dimethoxynaphthalen-1-yl)(4-fluorophenyl)methanone (Watanabe et al., 2011) and (3,6-dimethoxy-2-naphthyl)(4-fluorobenzoyl)methanone (Watanabe, Muto, Nagasawa et al., 2010).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 1-monoarylcarbonylnaphthalene bearing three methyl groups on the arylcarbonyl group, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 82.93 (5)°. The carbonyl group makes torsion angles of -130.97 (14) and -131.79 (13)°, respectively, with the naphthalene ring and the benzene ring [C2—C1—C11—O1 torsion angle = -130.97 (14)°; O1—C11—C12—C13 torsion angle = -131.79 (13)°]. In addition, two types of intramolecular C—H···O interactions are observed (C9—H9···O1 = 2.39 Å and C22—H22a···O1 = 2.51 Å; Fig. 1 and Table 1).

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by three types of C—H···O hydrogen bondings: Intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H4) of the naphthalene ring of the adjacent molecule is formed along the c axis (C4—H4···O1i; Fig. 2 and Table 1). There is also intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of 2-methoxy group and one hydrogen atom (H7) of the naphthalene ring of the adjacent molecule along the b axis (C7—H7···O2ii; Fig. 3 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O3) of the 7-methoxy group and one hydrogen atom (H18b) of the 2-methoxy group of the adjacent molecule along the ac diagonal (C18—H18b···O3 iii; Fig. 4 and Table 1) is observed.

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010); Watanabe et al. (2010, 2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability and two types of weak intramolecular C—H···O interactions.
[Figure 2] Fig. 2. Intermolecular C4—H4···O1i interactions, viewed along the b axis [symmetry code: (i) x, -y + 1/2, z - 1/2].
[Figure 3] Fig. 3. A packing diagram of the title compound, showing intermolecular C7—H7···O2 ii interactions [symmetry code: (ii) –x + 1, y + 1/2, -z + 3/2].
[Figure 4] Fig. 4. A packing diagram of the title compound, showing intermolecular C18—H18b···O3 iii interactions [symmetry code: (iii) x - 1, -y + 1/2, z - 1/2].
(2,7-Dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone top
Crystal data top
C22H22O3F(000) = 712
Mr = 334.40Dx = 1.231 Mg m3
Monoclinic, P21/cMelting point = 408.0–410.0 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 10.5238 (4) ÅCell parameters from 15327 reflections
b = 12.2289 (4) Åθ = 3.2–68.1°
c = 15.0504 (5) ŵ = 0.64 mm1
β = 111.340 (2)°T = 193 K
V = 1804.11 (11) Å3Block, colorless
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3295 independent reflections
Radiation source: rotating anode2945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = 1212
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1414
Tmin = 0.739, Tmax = 0.882l = 1818
32585 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.4166P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3295 reflectionsΔρmax = 0.26 e Å3
232 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (5)
Crystal data top
C22H22O3V = 1804.11 (11) Å3
Mr = 334.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5238 (4) ŵ = 0.64 mm1
b = 12.2289 (4) ÅT = 193 K
c = 15.0504 (5) Å0.50 × 0.40 × 0.20 mm
β = 111.340 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3295 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2945 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.882Rint = 0.023
32585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
3295 reflectionsΔρmin = 0.25 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37023 (10)0.11774 (8)0.92101 (7)0.0486 (3)
O20.12893 (10)0.13899 (8)0.66767 (6)0.0484 (3)
O30.68551 (11)0.43082 (10)1.02164 (8)0.0629 (3)
C10.30975 (12)0.22890 (10)0.78444 (9)0.0358 (3)
C20.23219 (13)0.21417 (11)0.68881 (9)0.0400 (3)
C30.26304 (15)0.27038 (12)0.61732 (10)0.0481 (4)
H30.20940.25900.55190.058*
C40.37039 (16)0.34113 (12)0.64283 (10)0.0497 (4)
H40.39160.37800.59440.060*
C50.45068 (14)0.36101 (11)0.73909 (10)0.0438 (3)
C60.55965 (15)0.43751 (12)0.76592 (12)0.0539 (4)
H60.58040.47550.71780.065*
C70.63442 (15)0.45735 (13)0.85870 (13)0.0565 (4)
H70.70770.50810.87520.068*
C80.60373 (14)0.40273 (12)0.93107 (11)0.0487 (3)
C90.50014 (13)0.32777 (11)0.90886 (9)0.0415 (3)
H90.48090.29150.95840.050*
C100.42134 (12)0.30417 (10)0.81193 (9)0.0379 (3)
C110.27808 (13)0.16488 (10)0.85879 (8)0.0358 (3)
C120.13503 (13)0.15946 (10)0.85716 (8)0.0353 (3)
C130.05612 (13)0.25478 (10)0.84617 (9)0.0385 (3)
C140.07551 (14)0.24589 (11)0.84654 (9)0.0437 (3)
H140.12920.31020.83890.052*
C150.13086 (14)0.14637 (12)0.85775 (10)0.0458 (3)
C160.05042 (14)0.05397 (11)0.87003 (10)0.0462 (3)
H160.08670.01460.87880.055*
C170.08180 (14)0.05783 (10)0.86999 (9)0.0406 (3)
C180.02367 (17)0.14400 (14)0.57628 (12)0.0638 (4)
H18A0.00670.21990.56180.077*
H18B0.05330.09860.57590.077*
H18C0.05830.11700.52810.077*
C190.66243 (19)0.37810 (16)1.09841 (13)0.0703 (5)
H19A0.67290.29891.09370.084*
H19B0.56980.39441.09550.084*
H19C0.72870.40461.15900.084*
C200.11031 (16)0.36753 (11)0.83889 (12)0.0504 (4)
H20A0.12500.37410.77840.061*
H20B0.19690.37890.89210.061*
H20C0.04410.42270.84140.061*
C210.27449 (16)0.14021 (15)0.85686 (14)0.0639 (5)
H21A0.29920.06360.86060.077*
H21B0.33760.17260.79770.077*
H21C0.28000.18050.91170.077*
C220.16095 (16)0.04745 (12)0.87986 (13)0.0569 (4)
H22A0.23960.04670.94010.068*
H22B0.19270.05440.82650.068*
H22C0.10180.10950.87950.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (5)0.0555 (6)0.0429 (5)0.0012 (4)0.0126 (4)0.0122 (4)
O20.0554 (6)0.0534 (6)0.0327 (5)0.0105 (4)0.0115 (4)0.0034 (4)
O30.0491 (6)0.0660 (7)0.0622 (7)0.0138 (5)0.0066 (5)0.0090 (5)
C10.0394 (6)0.0382 (6)0.0329 (6)0.0018 (5)0.0168 (5)0.0003 (5)
C20.0472 (7)0.0402 (7)0.0346 (7)0.0016 (5)0.0175 (6)0.0010 (5)
C30.0649 (9)0.0500 (8)0.0325 (7)0.0041 (7)0.0213 (6)0.0012 (6)
C40.0663 (9)0.0480 (8)0.0462 (8)0.0050 (7)0.0341 (7)0.0081 (6)
C50.0460 (7)0.0439 (7)0.0491 (8)0.0041 (6)0.0262 (6)0.0052 (6)
C60.0526 (8)0.0497 (8)0.0706 (10)0.0007 (6)0.0359 (8)0.0089 (7)
C70.0431 (8)0.0493 (8)0.0803 (11)0.0071 (6)0.0261 (8)0.0016 (8)
C80.0373 (7)0.0473 (8)0.0586 (9)0.0000 (6)0.0139 (6)0.0044 (6)
C90.0379 (7)0.0440 (7)0.0437 (7)0.0003 (5)0.0162 (6)0.0008 (6)
C100.0378 (6)0.0386 (7)0.0414 (7)0.0038 (5)0.0192 (5)0.0010 (5)
C110.0418 (7)0.0358 (6)0.0290 (6)0.0019 (5)0.0121 (5)0.0027 (5)
C120.0415 (7)0.0390 (6)0.0263 (6)0.0027 (5)0.0135 (5)0.0024 (5)
C130.0460 (7)0.0379 (6)0.0329 (6)0.0023 (5)0.0158 (5)0.0040 (5)
C140.0467 (7)0.0437 (7)0.0431 (7)0.0019 (6)0.0192 (6)0.0054 (6)
C150.0452 (7)0.0524 (8)0.0439 (7)0.0053 (6)0.0209 (6)0.0090 (6)
C160.0525 (8)0.0431 (7)0.0477 (8)0.0099 (6)0.0237 (6)0.0031 (6)
C170.0471 (7)0.0386 (7)0.0374 (7)0.0031 (5)0.0170 (6)0.0002 (5)
C180.0582 (9)0.0627 (10)0.0544 (10)0.0011 (8)0.0014 (8)0.0022 (7)
C190.0629 (10)0.0782 (12)0.0547 (10)0.0117 (9)0.0035 (8)0.0099 (9)
C200.0562 (8)0.0371 (7)0.0630 (9)0.0008 (6)0.0276 (7)0.0007 (6)
C210.0526 (9)0.0698 (10)0.0793 (12)0.0065 (8)0.0358 (9)0.0094 (9)
C220.0570 (9)0.0386 (7)0.0753 (11)0.0005 (6)0.0243 (8)0.0049 (7)
Geometric parameters (Å, º) top
O1—C111.2201 (15)C13—C141.3916 (19)
O2—C21.3696 (16)C13—C201.5112 (18)
O2—C181.4190 (18)C14—C151.3858 (19)
O3—C81.3650 (18)C14—H140.9500
O3—C191.419 (2)C15—C161.383 (2)
C1—C21.3840 (18)C15—C211.5087 (19)
C1—C101.4296 (18)C16—C171.3924 (19)
C1—C111.4991 (16)C16—H160.9500
C2—C31.4105 (18)C17—C221.5111 (19)
C3—C41.363 (2)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.407 (2)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.420 (2)C19—H19B0.9800
C5—C101.4236 (18)C19—H19C0.9800
C6—C71.352 (2)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.412 (2)C20—H20C0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.3694 (19)C21—H21B0.9800
C9—C101.4208 (18)C21—H21C0.9800
C9—H90.9500C22—H22A0.9800
C11—C121.4982 (17)C22—H22B0.9800
C12—C171.4051 (17)C22—H22C0.9800
C12—C131.4056 (18)
C2—O2—C18118.01 (11)C15—C14—H14118.9
C8—O3—C19117.79 (12)C13—C14—H14118.9
C2—C1—C10119.75 (11)C16—C15—C14118.02 (12)
C2—C1—C11120.07 (11)C16—C15—C21121.52 (13)
C10—C1—C11120.17 (11)C14—C15—C21120.46 (13)
O2—C2—C1116.54 (11)C15—C16—C17122.36 (12)
O2—C2—C3122.23 (12)C15—C16—H16118.8
C1—C2—C3121.16 (12)C17—C16—H16118.8
C4—C3—C2119.46 (13)C16—C17—C12118.59 (12)
C4—C3—H3120.3C16—C17—C22119.09 (12)
C2—C3—H3120.3C12—C17—C22122.28 (12)
C3—C4—C5121.69 (12)O2—C18—H18A109.5
C3—C4—H4119.2O2—C18—H18B109.5
C5—C4—H4119.2H18A—C18—H18B109.5
C4—C5—C6121.78 (13)O2—C18—H18C109.5
C4—C5—C10119.41 (13)H18A—C18—H18C109.5
C6—C5—C10118.80 (13)H18B—C18—H18C109.5
C7—C6—C5121.20 (13)O3—C19—H19A109.5
C7—C6—H6119.4O3—C19—H19B109.5
C5—C6—H6119.4H19A—C19—H19B109.5
C6—C7—C8120.10 (14)O3—C19—H19C109.5
C6—C7—H7120.0H19A—C19—H19C109.5
C8—C7—H7120.0H19B—C19—H19C109.5
O3—C8—C9124.67 (14)C13—C20—H20A109.5
O3—C8—C7114.41 (13)C13—C20—H20B109.5
C9—C8—C7120.91 (14)H20A—C20—H20B109.5
C8—C9—C10120.13 (13)C13—C20—H20C109.5
C8—C9—H9119.9H20A—C20—H20C109.5
C10—C9—H9119.9H20B—C20—H20C109.5
C9—C10—C5118.84 (12)C15—C21—H21A109.5
C9—C10—C1122.61 (11)C15—C21—H21B109.5
C5—C10—C1118.49 (12)H21A—C21—H21B109.5
O1—C11—C12120.33 (11)C15—C21—H21C109.5
O1—C11—C1119.28 (11)H21A—C21—H21C109.5
C12—C11—C1120.39 (10)H21B—C21—H21C109.5
C17—C12—C13120.11 (12)C17—C22—H22A109.5
C17—C12—C11119.04 (11)C17—C22—H22B109.5
C13—C12—C11120.82 (11)H22A—C22—H22B109.5
C14—C13—C12118.76 (12)C17—C22—H22C109.5
C14—C13—C20118.30 (12)H22A—C22—H22C109.5
C12—C13—C20122.87 (12)H22B—C22—H22C109.5
C15—C14—C13122.15 (12)
C18—O2—C2—C1161.62 (13)C11—C1—C10—C94.59 (18)
C18—O2—C2—C321.32 (19)C2—C1—C10—C50.93 (18)
C10—C1—C2—O2178.56 (11)C11—C1—C10—C5178.15 (11)
C11—C1—C2—O20.52 (17)C2—C1—C11—O1130.97 (13)
C10—C1—C2—C31.46 (19)C10—C1—C11—O148.11 (17)
C11—C1—C2—C3177.62 (12)C2—C1—C11—C1249.47 (16)
O2—C2—C3—C4177.48 (12)C10—C1—C11—C12131.46 (12)
C1—C2—C3—C40.5 (2)O1—C11—C12—C1746.12 (17)
C2—C3—C4—C50.9 (2)C1—C11—C12—C17134.33 (12)
C3—C4—C5—C6177.78 (14)O1—C11—C12—C13131.78 (13)
C3—C4—C5—C101.4 (2)C1—C11—C12—C1347.77 (16)
C4—C5—C6—C7178.76 (14)C17—C12—C13—C141.15 (18)
C10—C5—C6—C70.4 (2)C11—C12—C13—C14179.03 (11)
C5—C6—C7—C80.8 (2)C17—C12—C13—C20175.68 (12)
C19—O3—C8—C90.5 (2)C11—C12—C13—C202.20 (18)
C19—O3—C8—C7179.03 (14)C12—C13—C14—C150.25 (19)
C6—C7—C8—O3179.25 (14)C20—C13—C14—C15176.73 (13)
C6—C7—C8—C91.2 (2)C13—C14—C15—C160.8 (2)
O3—C8—C9—C10179.74 (12)C13—C14—C15—C21179.45 (13)
C7—C8—C9—C100.2 (2)C14—C15—C16—C171.0 (2)
C8—C9—C10—C51.05 (19)C21—C15—C16—C17179.27 (13)
C8—C9—C10—C1178.31 (12)C15—C16—C17—C120.1 (2)
C4—C5—C10—C9177.84 (12)C15—C16—C17—C22177.54 (13)
C6—C5—C10—C91.38 (19)C13—C12—C17—C160.97 (18)
C4—C5—C10—C10.47 (18)C11—C12—C17—C16178.89 (11)
C6—C5—C10—C1178.75 (12)C13—C12—C17—C22178.55 (12)
C2—C1—C10—C9176.34 (11)C11—C12—C17—C223.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.543.3756 (18)147
C7—H7···O2ii0.952.603.466 (2)152
C9—H9···O10.952.392.9464 (17)117
C18—H18B···O3iii0.982.593.471 (2)149
C22—H22A···O10.982.512.885 (2)102
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H22O3
Mr334.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)10.5238 (4), 12.2289 (4), 15.0504 (5)
β (°) 111.340 (2)
V3)1804.11 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.739, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
32585, 3295, 2945
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.08
No. of reflections3295
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.543.3756 (18)147
C7—H7···O2ii0.952.603.466 (2)152
C9—H9···O10.952.392.9464 (17)117
C18—H18B···O3iii0.982.593.471 (2)149
C22—H22A···O10.982.512.885 (2)102
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. In the press.  Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds