organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-N-(3-nitro­phen­yl)benzamide

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

(Received 19 July 2011; accepted 17 September 2011; online 30 September 2011)

The title compound, C13H9N3O5, prepared as a solid derivative of 3-nitro­analine via reaction with 4-nitro­benzoyl chloride, crystallizes in a chiral space group. The mol­ecule is non-planar with a dihedral angle of 26.1 (1)° between the two benzene rings. Both nitro groups are twisted slightly out of the plane of their corresponding benzene rings, making dihedral angles of 10.7 (4) and 13.5 (4)°. The mol­ecules are stacked along the a axis with benzene ring centroid–centroid distances of 3.8878 (6) Å. In the crystal, inter­molecular benzene C—H⋯O inter­actions involving one nitro group and the carbonyl group link the mol­ecules, forming chains along [001]. An additional set of aromatic C—H⋯O inter­actions with the second nitro group form chains along [101], connecting adjacent chains to create layers perpendicular to the b axis.

Related literature

For the preparation, properties and applications of the title compound, see: Kichitaro (1954[Kichitaro, T. (1954). Yakugaku Zasshi, 73, 810-817.]); Shchel'tsyn et al. (1972[Shchel'tsyn, V. K., Vaisman, I. L., Gitis, S. S., Kozhevnikova, N. L. & Ovchinnikova, L. A. (1972). Sin. Anal. Strukt. Org. Soedin. 4, 46-50.]); Kang et al. (2008[Kang, S.-B., Yim, H.-S., Won, J.-E., Kim, M.-J., Kim, J.-J., Kim, H.-K., Lee, S.-G. & Yoon, Y.-J. (2008). Bull. Korean Chem. Soc. 29, 1025-1032.]). For related structures, see: Hariharan & Srinivasan (1990[Hariharan, M. & Srinivasan, R. (1990). Acta Cryst. C46, 1056-1058.]); Adams et al. (2001[Adams, H., Bernad, P. L. Jr, Eggleston, D. S., Haltiwanger, R. C., Harris, K. D. M., Hembury, G. A., Hunter, C. A., Livingstone, D. J., Kariuki, B. M. & McCabe, J. F. (2001). Chem. Commun. pp. 1500-1501.]); Novozhilova et al. (1986[Novozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel'skii, V. K. (1986). Zh. Strukt. Khim. 27, 169-175.]); Sun et al. (2009[Sun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480-3485.]). The title compound represents a relatively unusual example of an achiral mol­ecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005[Pidcock, E. (2005). Chem. Commun. pp. 3457-3459.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O5

  • Mr = 287.23

  • Monoclinic, P 21

  • a = 3.8878 (6) Å

  • b = 21.686 (3) Å

  • c = 7.3919 (11) Å

  • β = 90.294 (11)°

  • V = 623.20 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.45 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.737, Tmax = 0.989

  • 3940 measured reflections

  • 1136 independent reflections

  • 1008 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.083

  • S = 1.07

  • 1136 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.375 (4) 153
C5—H5⋯O3ii 0.95 2.38 3.263 (4) 155
C13—H13⋯O5iii 0.95 2.51 3.421 (4) 162
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) x-1, y, z-1.

Data collection: APEX2 and GIS (Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Australia.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was prepared as a solid derivative of 3-nitroanaline for a qualitative organic analysis laboratory course. The starting material was 3-nitroaniline, and reaction with 4-nitrobenzoyl chloride produced a p-nitrobenzamide derivative.

The title compound crystallizes in the chiral spacegroup P21 and represents a relatively unusual example of an achiral molecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).

The molecule (Fig. 1) is non-planar with a dihedral angle of approximately 26.1 (1)° between the two aromatic rings. Both nitro groups are twisted slightly out of the plane of their corresponding aromatic rings, with dihedral angles of 10.7 (4) (N1, O1, O2) and 13.5 (4) (N3, O4, O5) degrees.

In the unit cell, the molecules are stacked along the a axis (Fig. 2) with aromatic ring centroid-centroid distances of 3.8878 (6) Å, corresponding precisely to the length of the a axis. The ring numbered C1–C6 stacks with a plane-centroid distance of 3.392 (2) Å and a ring shift of 1.899 (4) Å. The ring numbered C8–C13 stacks with a plane-centroid distance of 3.483 (2) Å and a ring shift of 1.728 (4) Å.

The title compound forms hydrogen bonding interactions with adjacent molecules along two different axes to create layers perpendicular to the b axis. The C2—H2···O1i and C5—H5···O3ii interactions (Fig. 3, Fig. 4, Table 1) form chains along [001] (all symmetry operators as in Table 1). Additional C13—H13···O5iii interactions also connect adjacent molecules, with the resulting chains running along [101] (Fig. 5). The position of the N—H in the molecule prevents it from forming a significant hydrogen bonding interaction (H2N···O4iii distance of 2.65 Å, greater than the sum of the van der Waals radii).

Related literature top

For the preparation, properties and applications of the title compound, see: Kichitaro (1954); Shchel'tsyn et al. (1972); Kang et al. (2008). For related structures, see: Hariharan & Srinivasan (1990); Adams et al. (2001); Novozhilova et al. (1986); Sun et al. (2009). The title compound represents a relatively unusual example of an achiral molecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).

Experimental top

Approximately 1.0 g (7.24 mmol) of 3-nitroaniline was dissolved in 3.0 ml of pyridine in a small test tube. To this was added 0.5 g (2.70 mmol) of 4-nitrobenzoyl chloride. This mixture was warmed slightly with a water bath until homogeneous, allowed to cool to room temperature, and then poured into 10.0 ml of water. The solution was allowed to separate and the top layer was decanted. The residue was stirred with 5.0 ml of a 5% Na2CO3 solution, and then cooled in an ice bath to induce crystallization. The crude crystals were filtered, and then recrystallized from absolute ethanol to produce 4-nitro-N-(3-nitrophenyl)benzamide, mp = 502–503 K (lit = 500–501 K, Kang et al. (2008).)

Refinement top

All hydrogen atoms were located in difference maps and refined with the atom positions constrained to the external bisector of the appropriate X—C—Y or X—N—Y atom with C—H distances of 0.95 Å and an N—H distance of 0.88 Å. A riding model was used for all H atoms with Uiso(H) = 1.2 times Uiso(C) or Uiso(N). In the absence of significant anomalous scattering effects Friedel pairs were merged in the final refinement.

Structure description top

The title compound was prepared as a solid derivative of 3-nitroanaline for a qualitative organic analysis laboratory course. The starting material was 3-nitroaniline, and reaction with 4-nitrobenzoyl chloride produced a p-nitrobenzamide derivative.

The title compound crystallizes in the chiral spacegroup P21 and represents a relatively unusual example of an achiral molecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).

The molecule (Fig. 1) is non-planar with a dihedral angle of approximately 26.1 (1)° between the two aromatic rings. Both nitro groups are twisted slightly out of the plane of their corresponding aromatic rings, with dihedral angles of 10.7 (4) (N1, O1, O2) and 13.5 (4) (N3, O4, O5) degrees.

In the unit cell, the molecules are stacked along the a axis (Fig. 2) with aromatic ring centroid-centroid distances of 3.8878 (6) Å, corresponding precisely to the length of the a axis. The ring numbered C1–C6 stacks with a plane-centroid distance of 3.392 (2) Å and a ring shift of 1.899 (4) Å. The ring numbered C8–C13 stacks with a plane-centroid distance of 3.483 (2) Å and a ring shift of 1.728 (4) Å.

The title compound forms hydrogen bonding interactions with adjacent molecules along two different axes to create layers perpendicular to the b axis. The C2—H2···O1i and C5—H5···O3ii interactions (Fig. 3, Fig. 4, Table 1) form chains along [001] (all symmetry operators as in Table 1). Additional C13—H13···O5iii interactions also connect adjacent molecules, with the resulting chains running along [101] (Fig. 5). The position of the N—H in the molecule prevents it from forming a significant hydrogen bonding interaction (H2N···O4iii distance of 2.65 Å, greater than the sum of the van der Waals radii).

For the preparation, properties and applications of the title compound, see: Kichitaro (1954); Shchel'tsyn et al. (1972); Kang et al. (2008). For related structures, see: Hariharan & Srinivasan (1990); Adams et al. (2001); Novozhilova et al. (1986); Sun et al. (2009). The title compound represents a relatively unusual example of an achiral molecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).

Computing details top

Data collection: APEX2 and GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008), and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling scheme drawn with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis drawn with 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. Ball and stick diagram of the hydrogen bonding interactions of the title compound with participating atoms labeled. For operators for symmetry created atoms (omitted here) see Table 1.
[Figure 4] Fig. 4. Perspective view down the a axis of the packing of molecules with hydrogen bonding interactions represented by dashed lines.
[Figure 5] Fig. 5. Perspective view down the c axis of the packing of molecules with hydrogen bonding interactions represented by dashed lines. Hydrogen bonds connect molecules along [001] (the viewing axis) and [101].
4-Nitro-N-(3-nitrophenyl)benzamide top
Crystal data top
C13H9N3O5Dx = 1.531 Mg m3
Mr = 287.23Melting point: 502 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 3.8878 (6) ÅCell parameters from 1373 reflections
b = 21.686 (3) Åθ = 2.8–24.6°
c = 7.3919 (11) ŵ = 0.12 mm1
β = 90.294 (11)°T = 200 K
V = 623.20 (16) Å3Block, clear colourless
Z = 20.45 × 0.20 × 0.12 mm
F(000) = 296
Data collection top
Bruker SMART X2S benchtop
diffractometer
1136 independent reflections
Radiation source: fine-focus sealed tube1008 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.032
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.8°
ω scansh = 43
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2525
Tmin = 0.737, Tmax = 0.989l = 88
3940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.046P)2 + 0.048P]
where P = (Fo2 + 2Fc2)/3
1136 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C13H9N3O5V = 623.20 (16) Å3
Mr = 287.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.8878 (6) ŵ = 0.12 mm1
b = 21.686 (3) ÅT = 200 K
c = 7.3919 (11) Å0.45 × 0.20 × 0.12 mm
β = 90.294 (11)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
1136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1008 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.989Rint = 0.032
3940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.13 e Å3
1136 reflectionsΔρmin = 0.17 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5757 (8)0.50143 (14)0.7761 (4)0.0293 (7)
C20.4065 (8)0.55485 (16)0.8360 (4)0.0342 (8)
H20.37540.56160.96180.041*
C30.2833 (8)0.59829 (15)0.7109 (4)0.0335 (7)
H30.16470.63420.74990.040*
C40.3402 (8)0.58731 (15)0.5270 (4)0.0305 (7)
C50.5099 (8)0.53518 (14)0.4631 (4)0.0324 (7)
H50.54390.52920.33720.039*
C60.6291 (8)0.49190 (14)0.5889 (4)0.0310 (7)
H60.74620.45600.54870.037*
N10.2079 (8)0.63348 (12)0.3938 (4)0.0376 (7)
O10.3012 (8)0.62833 (13)0.2344 (3)0.0634 (9)
O20.0141 (7)0.67441 (11)0.4478 (3)0.0505 (7)
C70.7131 (8)0.45847 (15)0.9221 (4)0.0331 (7)
O30.7597 (8)0.47773 (12)1.0776 (3)0.0533 (7)
N20.7873 (7)0.39887 (12)0.8706 (3)0.0333 (6)
H2N0.73360.38890.75850.040*
C80.9407 (8)0.35147 (14)0.9776 (4)0.0288 (7)
C91.0551 (8)0.36141 (15)1.1561 (4)0.0300 (7)
H91.02950.40041.21330.036*
C101.2070 (8)0.31193 (15)1.2457 (4)0.0293 (7)
C111.2552 (8)0.25372 (14)1.1709 (4)0.0317 (7)
H111.36220.22141.23710.038*
C121.1382 (9)0.24514 (16)0.9931 (4)0.0352 (8)
H121.16540.20610.93680.042*
C130.9830 (8)0.29302 (14)0.8981 (4)0.0318 (7)
H130.90450.28620.77780.038*
N31.3347 (7)0.32240 (13)1.4340 (3)0.0344 (6)
O41.2424 (7)0.36973 (11)1.5145 (3)0.0508 (7)
O51.5281 (7)0.28377 (13)1.5016 (3)0.0543 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (17)0.0299 (17)0.0255 (14)0.0032 (15)0.0023 (13)0.0021 (12)
C20.0383 (18)0.0392 (19)0.0253 (14)0.0005 (16)0.0027 (13)0.0022 (13)
C30.0303 (17)0.0330 (18)0.0371 (17)0.0016 (15)0.0012 (13)0.0011 (14)
C40.0320 (16)0.0287 (17)0.0308 (16)0.0020 (14)0.0026 (12)0.0035 (13)
C50.0403 (18)0.0312 (18)0.0257 (15)0.0023 (15)0.0015 (13)0.0001 (13)
C60.0346 (18)0.0283 (17)0.0301 (15)0.0007 (14)0.0000 (13)0.0031 (12)
N10.0463 (18)0.0298 (15)0.0367 (15)0.0001 (14)0.0049 (13)0.0033 (13)
O10.099 (2)0.0583 (19)0.0333 (14)0.0236 (17)0.0009 (14)0.0090 (13)
O20.0610 (17)0.0369 (15)0.0537 (15)0.0135 (14)0.0044 (13)0.0066 (12)
C70.0341 (18)0.037 (2)0.0277 (16)0.0001 (15)0.0005 (13)0.0016 (13)
O30.085 (2)0.0503 (15)0.0244 (12)0.0198 (15)0.0099 (12)0.0062 (11)
N20.0453 (16)0.0324 (15)0.0220 (12)0.0026 (13)0.0077 (11)0.0010 (11)
C80.0286 (17)0.0346 (18)0.0233 (14)0.0032 (14)0.0019 (12)0.0037 (12)
C90.0314 (17)0.0344 (18)0.0240 (15)0.0012 (14)0.0021 (12)0.0000 (13)
C100.0269 (17)0.0427 (18)0.0182 (12)0.0047 (14)0.0033 (12)0.0011 (13)
C110.0304 (17)0.0335 (19)0.0312 (16)0.0005 (15)0.0003 (13)0.0033 (14)
C120.0384 (19)0.0336 (18)0.0337 (16)0.0003 (15)0.0013 (14)0.0027 (14)
C130.0346 (18)0.0376 (18)0.0232 (14)0.0045 (15)0.0032 (13)0.0017 (13)
N30.0336 (15)0.0445 (18)0.0251 (12)0.0069 (14)0.0066 (11)0.0053 (13)
O40.0796 (19)0.0431 (15)0.0297 (12)0.0025 (14)0.0110 (12)0.0067 (11)
O50.0541 (16)0.0731 (19)0.0356 (12)0.0159 (15)0.0163 (11)0.0044 (13)
Geometric parameters (Å, º) top
C1—C21.405 (5)N2—C81.426 (4)
C1—C61.415 (4)N2—H2N0.8800
C1—C71.520 (4)C8—C131.407 (4)
C2—C31.403 (4)C8—C91.407 (4)
C2—H20.9500C9—C101.391 (4)
C3—C41.399 (4)C9—H90.9500
C3—H30.9500C10—C111.391 (4)
C4—C51.393 (4)C10—N31.493 (4)
C4—N11.494 (4)C11—C121.401 (4)
C5—C61.398 (4)C11—H110.9500
C5—H50.9500C12—C131.390 (4)
C6—H60.9500C12—H120.9500
N1—O21.232 (4)C13—H130.9500
N1—O11.240 (4)N3—O51.230 (3)
C7—O31.235 (4)N3—O41.240 (4)
C7—N21.378 (4)
C2—C1—C6120.0 (3)C7—N2—C8127.6 (3)
C2—C1—C7116.4 (2)C7—N2—H2N116.2
C6—C1—C7123.5 (3)C8—N2—H2N116.2
C3—C2—C1120.3 (3)C13—C8—C9119.5 (3)
C3—C2—H2119.8C13—C8—N2117.9 (2)
C1—C2—H2119.8C9—C8—N2122.6 (3)
C4—C3—C2118.1 (3)C10—C9—C8117.4 (3)
C4—C3—H3120.9C10—C9—H9121.3
C2—C3—H3120.9C8—C9—H9121.3
C5—C4—C3123.0 (3)C9—C10—C11124.7 (2)
C5—C4—N1118.9 (2)C9—C10—N3117.7 (3)
C3—C4—N1118.1 (3)C11—C10—N3117.6 (3)
C4—C5—C6118.4 (3)C10—C11—C12116.7 (3)
C4—C5—H5120.8C10—C11—H11121.6
C6—C5—H5120.8C12—C11—H11121.6
C5—C6—C1120.2 (3)C13—C12—C11120.9 (3)
C5—C6—H6119.9C13—C12—H12119.6
C1—C6—H6119.9C11—C12—H12119.6
O2—N1—O1123.7 (3)C12—C13—C8120.9 (3)
O2—N1—C4118.6 (3)C12—C13—H13119.6
O1—N1—C4117.7 (3)C8—C13—H13119.6
O3—C7—N2123.0 (3)O5—N3—O4123.1 (3)
O3—C7—C1120.2 (3)O5—N3—C10118.4 (3)
N2—C7—C1116.8 (3)O4—N3—C10118.5 (3)
C6—C1—C2—C31.4 (4)O3—C7—N2—C83.5 (5)
C7—C1—C2—C3177.5 (3)C1—C7—N2—C8175.1 (3)
C1—C2—C3—C41.2 (5)C7—N2—C8—C13178.0 (3)
C2—C3—C4—C50.6 (5)C7—N2—C8—C93.1 (5)
C2—C3—C4—N1179.8 (3)C13—C8—C9—C100.1 (4)
C3—C4—C5—C60.1 (5)N2—C8—C9—C10178.7 (3)
N1—C4—C5—C6179.3 (3)C8—C9—C10—C110.4 (4)
C4—C5—C6—C10.2 (5)C8—C9—C10—N3178.9 (3)
C2—C1—C6—C50.8 (5)C9—C10—C11—C120.5 (4)
C7—C1—C6—C5176.7 (3)N3—C10—C11—C12179.0 (3)
C5—C4—N1—O2169.1 (3)C10—C11—C12—C130.2 (5)
C3—C4—N1—O210.1 (4)C11—C12—C13—C80.3 (5)
C5—C4—N1—O111.0 (4)C9—C8—C13—C120.4 (5)
C3—C4—N1—O1169.8 (3)N2—C8—C13—C12178.4 (3)
C2—C1—C7—O319.7 (5)C9—C10—N3—O5165.8 (3)
C6—C1—C7—O3156.3 (3)C11—C10—N3—O512.8 (4)
C2—C1—C7—N2161.6 (3)C9—C10—N3—O413.9 (4)
C6—C1—C7—N222.4 (4)C11—C10—N3—O4167.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.375 (4)153
C5—H5···O3ii0.952.383.263 (4)155
C13—H13···O5iii0.952.513.421 (4)162
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC13H9N3O5
Mr287.23
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)3.8878 (6), 21.686 (3), 7.3919 (11)
β (°) 90.294 (11)
V3)623.20 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART X2S benchtop
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.737, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3940, 1136, 1008
Rint0.032
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.07
No. of reflections1136
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: APEX2 and GIS (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), and POV-RAY (Cason, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.375 (4)153.4
C5—H5···O3ii0.952.383.263 (4)155.1
C13—H13···O5iii0.952.513.421 (4)161.6
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x1, y, z1.
 

Acknowledgements

This work was supported in part by the National Science Foundation through grant CHE-0532510.

References

First citationAdams, H., Bernad, P. L. Jr, Eggleston, D. S., Haltiwanger, R. C., Harris, K. D. M., Hembury, G. A., Hunter, C. A., Livingstone, D. J., Kariuki, B. M. & McCabe, J. F. (2001). Chem. Commun. pp. 1500–1501.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, GIS, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Australia.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHariharan, M. & Srinivasan, R. (1990). Acta Cryst. C46, 1056–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKang, S.-B., Yim, H.-S., Won, J.-E., Kim, M.-J., Kim, J.-J., Kim, H.-K., Lee, S.-G. & Yoon, Y.-J. (2008). Bull. Korean Chem. Soc. 29, 1025–1032.  CAS Google Scholar
First citationKichitaro, T. (1954). Yakugaku Zasshi, 73, 810–817.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNovozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel'skii, V. K. (1986). Zh. Strukt. Khim. 27, 169–175.  CAS Google Scholar
First citationPidcock, E. (2005). Chem. Commun. pp. 3457–3459.  Web of Science CSD CrossRef Google Scholar
First citationShchel'tsyn, V. K., Vaisman, I. L., Gitis, S. S., Kozhevnikova, N. L. & Ovchinnikova, L. A. (1972). Sin. Anal. Strukt. Org. Soedin. 4, 46–50.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480–3485.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds