metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­iodido(2,3,5,6-tetra-2-pyridyl­pyrazine-κ3N2,N1,N6)manganese(II) iodide monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 29 August 2011; accepted 30 August 2011; online 14 September 2011)

The asymmetric unit of the title compound, [MnI(C24H16N6)(H2O)2]I·H2O, consists of a cationic MnII complex, an I anion and a solvent water mol­ecule. In the complex, the MnII ion is six-coordinated in a considerably distorted octa­hedral environment defined by three N atoms of the tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine (tppz) ligand, one I anion and two O atoms of two water ligands. The dihedral angles between the pyridyl rings [maximum deviation = 0.034 (6) Å] and their carrier pyrazine ring [maximum deviation = 0.020 (6) Å] are 26.5 (2) and 27.0 (2)° for the coordinated pyridyl rings, and 51.3 (3) and 43.2 (2)° for the uncoordinated pyridyl rings. Inter­molecular O—H⋯O, O—H⋯N and O—H⋯I hydrogen bonds stabilize the crystal structure.

Related literature

For the crystal structures of mono- and dinuclear MnII complexes with tppz, see: Callejo et al. (2009[Callejo, L., De la Pinta, N., Vitoria, P. & Cortés, R. (2009). Acta Cryst. E65, m68-m69.]); Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 59-60.]).

[Scheme 1]

Experimental

Crystal data
  • [MnI(C24H16N6)(H2O)2]I·H2O

  • Mr = 751.22

  • Monoclinic, P 21

  • a = 7.977 (3) Å

  • b = 13.880 (5) Å

  • c = 12.134 (4) Å

  • β = 97.944 (7)°

  • V = 1330.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 200 K

  • 0.28 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 1.000

  • 9685 measured reflections

  • 5463 independent reflections

  • 4463 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.23

  • 5463 reflections

  • 325 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 2033 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.163 (6)
Mn1—O2 2.182 (6)
Mn1—N6 2.245 (7)
Mn1—N1 2.253 (7)
Mn1—N3 2.259 (7)
Mn1—I1 2.7772 (16)
N6—Mn1—N1 71.7 (3)
N1—Mn1—N3 71.4 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 1.92 2.726 (10) 160
O1—H1B⋯N2ii 0.84 2.10 2.890 (10) 156
O2—H2A⋯N4iii 0.84 2.04 2.876 (10) 174
O2—H2B⋯N5iii 0.84 2.03 2.834 (10) 160
O3—H3A⋯I1iv 0.84 2.88 3.615 (9) 148
O3—H3B⋯I2 0.84 2.83 3.646 (8) 163
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Mono- and dinuclear MnII complexes of 2,3,5,6-tetra-2-pyridylpyrazine (tppz; C24H16N6) ligand, such as [Mn(C2N3)(NO3)(tppz)(H2O)] (Callejo et al., 2009) and [Mn2Cl4(tppz)2] (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(tppz)(H2O)2]I.H2O, consists of a cationic MnII complex, an I- anion and a solvent water molecule (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted octahedral environment defined by three N atoms of the tridentate tppz ligand, one I- anion and two O atoms of two water ligands. The main contribution to the distortion is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans arrangement of the N3—Mn1—N6 bond [N3—Mn1—N6 = 143.1 (3)°]. The apical O1—Mn1—O2 and I1—Mn1—N1 bond angles are 167.0 (2)° and 173.04 (19)°, respectively. The three Mn—N(pyrazine or pyridyl) bond lengths are roughly equivalent and slightly longer than the Mn—O(H2O) bonds (Table 1). In the crystal structure, the pyrazine and pyridyl rings are nearly planar [maximum deviation = 0.020 (6) Å for pyrazine and 0.034 (6) Å for pyridyl]. The dihedral angles between the pyridyl rings and their carrier pyrazine ring are 26.5 (2)° and 27.0 (2)° for the coordinated pyridyl rings, and 51.3 (3)° and 43.2 (2)° for the uncoordinated pyridyl rings, respectively. The complex, anion and solvent water molecule are linked by intermolecular O—H···O, O—H···N and O—H···I hydrogen bonds (Fig. 2, Table 2). In addition, the complex displays numerous inter- and intramolecular π-π interactions between adjacent six-membered rings, the shortest ring centroid-centroid distance being 4.032 (5) Å.

Related literature top

For the crystal structures of mono- and dinuclear MnII complexes with tppz, see: Callejo et al. (2009); Ha (2011).

Experimental top

To a suspension of 2,3,5,6-tetra-2-pyridylpyrazine (0.1945 g, 0.501 mmol) in acetone (20 ml) was added MnI2 (0.1575 g, 0.510 mmol) in acetone (30 ml) and refluxed for 5 h. The formed precipitate was separated by filtration, washed with acetone and dried at 50 °C, to give an orange powder (0.0779 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a 2-butanone solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligands and solvent molecule were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (1.06 e Å-3) and the deepest hole (-1.41 e Å-3) in the difference Fourier map are located 2.23 Å and 0.80 Å from the I2 atom, respectively. The Flack parameter is -0.01 (4) in the final cycles of refinement.

Structure description top

Mono- and dinuclear MnII complexes of 2,3,5,6-tetra-2-pyridylpyrazine (tppz; C24H16N6) ligand, such as [Mn(C2N3)(NO3)(tppz)(H2O)] (Callejo et al., 2009) and [Mn2Cl4(tppz)2] (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(tppz)(H2O)2]I.H2O, consists of a cationic MnII complex, an I- anion and a solvent water molecule (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted octahedral environment defined by three N atoms of the tridentate tppz ligand, one I- anion and two O atoms of two water ligands. The main contribution to the distortion is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans arrangement of the N3—Mn1—N6 bond [N3—Mn1—N6 = 143.1 (3)°]. The apical O1—Mn1—O2 and I1—Mn1—N1 bond angles are 167.0 (2)° and 173.04 (19)°, respectively. The three Mn—N(pyrazine or pyridyl) bond lengths are roughly equivalent and slightly longer than the Mn—O(H2O) bonds (Table 1). In the crystal structure, the pyrazine and pyridyl rings are nearly planar [maximum deviation = 0.020 (6) Å for pyrazine and 0.034 (6) Å for pyridyl]. The dihedral angles between the pyridyl rings and their carrier pyrazine ring are 26.5 (2)° and 27.0 (2)° for the coordinated pyridyl rings, and 51.3 (3)° and 43.2 (2)° for the uncoordinated pyridyl rings, respectively. The complex, anion and solvent water molecule are linked by intermolecular O—H···O, O—H···N and O—H···I hydrogen bonds (Fig. 2, Table 2). In addition, the complex displays numerous inter- and intramolecular π-π interactions between adjacent six-membered rings, the shortest ring centroid-centroid distance being 4.032 (5) Å.

For the crystal structures of mono- and dinuclear MnII complexes with tppz, see: Callejo et al. (2009); Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Diaquaiodido(2,3,5,6-tetra-2-pyridylpyrazine- κ3N2,N1,N6)manganese(II) iodide monohydrate top
Crystal data top
[MnI(C24H16N6)(H2O)2]I·H2OF(000) = 726
Mr = 751.22Dx = 1.875 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5752 reflections
a = 7.977 (3) Åθ = 2.6–28.3°
b = 13.880 (5) ŵ = 2.85 mm1
c = 12.134 (4) ÅT = 200 K
β = 97.944 (7)°Plate, orange
V = 1330.5 (8) Å30.28 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
5463 independent reflections
Radiation source: fine-focus sealed tube4463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.828, Tmax = 1.000k = 1814
9685 measured reflectionsl = 1613
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.P)2 + 7.6642P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
5463 reflectionsΔρmax = 1.06 e Å3
325 parametersΔρmin = 1.41 e Å3
1 restraintAbsolute structure: Flack (1983); 2033 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
[MnI(C24H16N6)(H2O)2]I·H2OV = 1330.5 (8) Å3
Mr = 751.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.977 (3) ŵ = 2.85 mm1
b = 13.880 (5) ÅT = 200 K
c = 12.134 (4) Å0.28 × 0.20 × 0.12 mm
β = 97.944 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5463 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4463 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 1.000Rint = 0.030
9685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115Δρmax = 1.06 e Å3
S = 1.23Δρmin = 1.41 e Å3
5463 reflectionsAbsolute structure: Flack (1983); 2033 Friedel pairs
325 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.73505 (17)0.72431 (9)0.04312 (11)0.0215 (3)
I10.72966 (9)0.92402 (4)0.05631 (6)0.03842 (18)
O11.0067 (8)0.7096 (5)0.0533 (6)0.0328 (16)
H1A1.05370.67280.10320.049*
H1B1.06480.75080.02460.049*
O20.4663 (7)0.7099 (5)0.0564 (5)0.0263 (14)
H2A0.42950.73530.11110.039*
H2B0.41990.72710.00700.039*
N10.7180 (9)0.5642 (5)0.0129 (6)0.0187 (15)
N20.7871 (9)0.3757 (5)0.0207 (6)0.0233 (16)
N30.6873 (9)0.6981 (5)0.1423 (6)0.0207 (15)
N40.6763 (9)0.3041 (5)0.2331 (6)0.0247 (17)
N50.7592 (9)0.2438 (5)0.1416 (6)0.0242 (17)
N60.7658 (10)0.6496 (6)0.2088 (6)0.0238 (17)
C10.7137 (11)0.5310 (6)0.0902 (7)0.0193 (18)
C20.6586 (12)0.6064 (7)0.1792 (7)0.0230 (19)
C30.5767 (12)0.5849 (7)0.2810 (8)0.027 (2)
H30.55020.51990.30110.032*
C40.5320 (12)0.6590 (7)0.3557 (8)0.028 (2)
H40.47610.64540.42840.034*
C50.5696 (11)0.7531 (7)0.3233 (6)0.0245 (19)
H50.54550.80490.37430.029*
C60.6431 (12)0.7699 (7)0.2151 (8)0.027 (2)
H60.66310.83460.19120.033*
C70.7493 (10)0.4348 (7)0.1073 (8)0.0236 (19)
C80.7618 (12)0.3885 (6)0.2172 (8)0.0201 (18)
C90.8629 (11)0.4246 (8)0.2909 (7)0.0260 (18)
H90.92220.48360.27590.031*
C100.8765 (15)0.3728 (8)0.3881 (8)0.037 (3)
H100.94450.39570.44090.044*
C110.7875 (15)0.2869 (8)0.4052 (9)0.039 (3)
H110.79360.24990.47040.047*
C120.6904 (13)0.2556 (8)0.3268 (8)0.032 (2)
H120.63040.19660.33980.038*
C130.7855 (11)0.4058 (6)0.0817 (7)0.0183 (18)
C140.8309 (11)0.3302 (7)0.1689 (7)0.0241 (18)
C150.9449 (11)0.3464 (6)0.2615 (7)0.026 (2)
H150.99380.40830.27630.031*
C160.9871 (12)0.2702 (7)0.3332 (8)0.030 (2)
H161.06730.27880.39800.036*
C170.9129 (12)0.1821 (7)0.3106 (8)0.029 (2)
H170.93790.12960.36040.035*
C180.8011 (12)0.1713 (8)0.2139 (9)0.031 (2)
H180.75140.10980.19760.037*
C190.7492 (11)0.5042 (6)0.1010 (7)0.0212 (18)
C200.7376 (11)0.5527 (6)0.2092 (7)0.0203 (18)
C210.6956 (13)0.5065 (8)0.3028 (7)0.031 (2)
H210.66840.43990.30080.038*
C220.6940 (13)0.5593 (8)0.3988 (8)0.032 (2)
H220.66590.52910.46400.039*
C230.7325 (14)0.6542 (8)0.3998 (9)0.037 (2)
H230.73720.69020.46680.045*
C240.7651 (12)0.6983 (7)0.3031 (8)0.026 (2)
H240.78770.76560.30380.032*
I20.25693 (9)0.48423 (5)0.46473 (6)0.0427 (2)
O30.1465 (11)0.5575 (6)0.1752 (7)0.053 (2)
H3A0.21270.52450.14250.079*
H3B0.18940.55000.24190.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0255 (7)0.0152 (7)0.0231 (7)0.0003 (5)0.0012 (5)0.0020 (5)
I10.0437 (4)0.0208 (3)0.0499 (4)0.0005 (3)0.0033 (3)0.0050 (3)
O10.023 (3)0.029 (4)0.046 (4)0.002 (3)0.002 (3)0.015 (3)
O20.021 (3)0.033 (4)0.026 (3)0.002 (3)0.004 (3)0.003 (3)
N10.025 (4)0.012 (3)0.019 (4)0.007 (3)0.000 (3)0.007 (3)
N20.021 (4)0.024 (4)0.025 (4)0.005 (3)0.003 (3)0.005 (3)
N30.027 (4)0.010 (3)0.026 (4)0.000 (3)0.006 (3)0.002 (3)
N40.025 (4)0.023 (4)0.028 (4)0.002 (3)0.011 (3)0.010 (3)
N50.029 (4)0.019 (4)0.026 (4)0.002 (3)0.007 (3)0.001 (3)
N60.035 (5)0.023 (4)0.012 (3)0.006 (3)0.002 (3)0.001 (3)
C10.020 (4)0.015 (4)0.022 (4)0.004 (3)0.002 (3)0.006 (3)
C20.033 (5)0.022 (4)0.012 (4)0.001 (4)0.003 (4)0.002 (3)
C30.029 (5)0.025 (5)0.027 (5)0.004 (4)0.008 (4)0.002 (4)
C40.032 (5)0.022 (5)0.031 (5)0.001 (4)0.006 (4)0.006 (4)
C50.032 (5)0.035 (5)0.008 (4)0.005 (4)0.008 (3)0.000 (3)
C60.032 (5)0.015 (4)0.033 (5)0.003 (4)0.000 (4)0.002 (4)
C70.017 (4)0.018 (5)0.035 (5)0.001 (4)0.001 (3)0.002 (4)
C80.024 (5)0.013 (4)0.026 (5)0.005 (3)0.012 (4)0.001 (3)
C90.036 (5)0.015 (4)0.028 (4)0.006 (4)0.008 (4)0.001 (4)
C100.051 (7)0.045 (6)0.014 (4)0.004 (5)0.005 (4)0.001 (4)
C110.054 (7)0.038 (6)0.025 (5)0.010 (5)0.002 (5)0.013 (5)
C120.043 (6)0.033 (5)0.021 (5)0.003 (5)0.009 (4)0.007 (4)
C130.023 (4)0.009 (4)0.021 (4)0.001 (3)0.002 (3)0.001 (3)
C140.028 (4)0.020 (4)0.022 (4)0.002 (4)0.003 (3)0.000 (4)
C150.022 (4)0.021 (5)0.032 (5)0.001 (3)0.007 (4)0.005 (4)
C160.031 (5)0.024 (5)0.032 (5)0.004 (4)0.004 (4)0.004 (4)
C170.031 (5)0.032 (5)0.026 (5)0.010 (4)0.008 (4)0.007 (4)
C180.028 (5)0.029 (5)0.039 (6)0.001 (4)0.011 (4)0.005 (4)
C190.023 (4)0.019 (5)0.021 (4)0.003 (3)0.004 (3)0.006 (3)
C200.019 (4)0.019 (4)0.026 (5)0.000 (3)0.011 (3)0.002 (4)
C210.044 (6)0.033 (6)0.017 (4)0.005 (5)0.007 (4)0.000 (4)
C220.040 (6)0.038 (6)0.022 (5)0.002 (5)0.011 (4)0.009 (4)
C230.045 (6)0.038 (6)0.027 (5)0.002 (5)0.001 (5)0.010 (4)
C240.033 (5)0.017 (5)0.030 (5)0.005 (4)0.010 (4)0.003 (4)
I20.0438 (4)0.0399 (4)0.0443 (4)0.0125 (4)0.0054 (3)0.0141 (4)
O30.059 (6)0.046 (5)0.053 (5)0.013 (4)0.009 (4)0.013 (4)
Geometric parameters (Å, º) top
Mn1—O12.163 (6)C6—H60.9500
Mn1—O22.182 (6)C7—C81.497 (13)
Mn1—N62.245 (7)C8—C91.378 (12)
Mn1—N12.253 (7)C9—C101.399 (13)
Mn1—N32.259 (7)C9—H90.9500
Mn1—I12.7772 (16)C10—C111.389 (15)
O1—H1A0.8400C10—H100.9500
O1—H1B0.8400C11—C121.377 (15)
O2—H2A0.8400C11—H110.9500
O2—H2B0.8400C12—H120.9500
N1—C11.328 (10)C13—C191.423 (12)
N1—C191.350 (11)C13—C141.498 (12)
N2—C131.314 (11)C14—C151.362 (11)
N2—C71.334 (11)C15—C161.382 (13)
N3—C61.346 (11)C15—H150.9500
N3—C21.358 (11)C16—C171.369 (13)
N4—C121.339 (11)C16—H160.9500
N4—C81.356 (11)C17—C181.380 (13)
N5—C181.347 (12)C17—H170.9500
N5—C141.351 (12)C18—H180.9500
N6—C241.330 (11)C19—C201.489 (12)
N6—C201.363 (11)C20—C211.385 (12)
C1—C71.387 (11)C21—C221.377 (13)
C1—C21.525 (12)C21—H210.9500
C2—C31.349 (12)C22—C231.352 (15)
C3—C41.385 (13)C22—H220.9500
C3—H30.9500C23—C241.381 (14)
C4—C51.385 (13)C23—H230.9500
C4—H40.9500C24—H240.9500
C5—C61.381 (12)O3—H3A0.8400
C5—H50.9500O3—H3B0.8400
O1—Mn1—O2167.0 (2)C1—C7—C8126.0 (8)
O1—Mn1—N685.5 (3)N4—C8—C9123.4 (8)
O2—Mn1—N683.0 (3)N4—C8—C7113.8 (7)
O1—Mn1—N187.4 (3)C9—C8—C7122.6 (8)
O2—Mn1—N183.3 (3)C8—C9—C10118.7 (10)
N6—Mn1—N171.7 (3)C8—C9—H9120.6
O1—Mn1—N394.1 (3)C10—C9—H9120.6
O2—Mn1—N391.5 (2)C11—C10—C9118.0 (10)
N6—Mn1—N3143.1 (3)C11—C10—H10121.0
N1—Mn1—N371.4 (2)C9—C10—H10121.0
O1—Mn1—I196.54 (18)C12—C11—C10119.5 (9)
O2—Mn1—I193.67 (17)C12—C11—H11120.3
N6—Mn1—I1114.2 (2)C10—C11—H11120.3
N1—Mn1—I1173.04 (19)N4—C12—C11123.3 (10)
N3—Mn1—I1102.48 (18)N4—C12—H12118.4
Mn1—O1—H1A116.2C11—C12—H12118.4
Mn1—O1—H1B121.2N2—C13—C19119.3 (8)
H1A—O1—H1B119.7N2—C13—C14114.4 (7)
Mn1—O2—H2A118.3C19—C13—C14126.2 (8)
Mn1—O2—H2B102.7N5—C14—C15124.1 (9)
H2A—O2—H2B116.6N5—C14—C13113.3 (7)
C1—N1—C19120.6 (7)C15—C14—C13122.4 (8)
C1—N1—Mn1119.2 (6)C14—C15—C16118.0 (8)
C19—N1—Mn1118.6 (5)C14—C15—H15121.0
C13—N2—C7121.2 (8)C16—C15—H15121.0
C6—N3—C2117.4 (7)C17—C16—C15119.8 (8)
C6—N3—Mn1121.8 (6)C17—C16—H16120.1
C2—N3—Mn1118.5 (5)C15—C16—H16120.1
C12—N4—C8117.1 (8)C16—C17—C18118.6 (9)
C18—N5—C14116.4 (8)C16—C17—H17120.7
C24—N6—C20118.6 (8)C18—C17—H17120.7
C24—N6—Mn1121.5 (6)N5—C18—C17123.1 (10)
C20—N6—Mn1117.5 (6)N5—C18—H18118.5
N1—C1—C7119.7 (8)C17—C18—H18118.5
N1—C1—C2113.3 (7)N1—C19—C13118.8 (8)
C7—C1—C2126.9 (8)N1—C19—C20113.1 (7)
C3—C2—N3123.2 (8)C13—C19—C20128.1 (8)
C3—C2—C1123.5 (8)N6—C20—C21121.2 (8)
N3—C2—C1113.0 (7)N6—C20—C19114.3 (7)
C2—C3—C4118.9 (9)C21—C20—C19124.5 (8)
C2—C3—H3120.5C22—C21—C20118.6 (9)
C4—C3—H3120.5C22—C21—H21120.7
C3—C4—C5119.2 (9)C20—C21—H21120.7
C3—C4—H4120.4C23—C22—C21119.8 (9)
C5—C4—H4120.4C23—C22—H22120.1
C6—C5—C4118.4 (8)C21—C22—H22120.1
C6—C5—H5120.8C22—C23—C24119.6 (9)
C4—C5—H5120.8C22—C23—H23120.2
N3—C6—C5122.5 (8)C24—C23—H23120.2
N3—C6—H6118.8N6—C24—C23121.9 (9)
C5—C6—H6118.8N6—C24—H24119.0
N2—C7—C1120.2 (9)C23—C24—H24119.0
N2—C7—C8113.7 (8)H3A—O3—H3B100.9
O1—Mn1—N1—C186.0 (7)N1—C1—C7—C8175.3 (8)
O2—Mn1—N1—C1103.1 (7)C2—C1—C7—C88.2 (15)
N6—Mn1—N1—C1172.1 (7)C12—N4—C8—C91.2 (13)
N3—Mn1—N1—C19.2 (6)C12—N4—C8—C7176.0 (8)
O1—Mn1—N1—C1979.9 (6)N2—C7—C8—N451.0 (10)
O2—Mn1—N1—C1991.0 (6)C1—C7—C8—N4133.2 (9)
N6—Mn1—N1—C196.2 (6)N2—C7—C8—C9123.8 (10)
N3—Mn1—N1—C19175.1 (7)C1—C7—C8—C952.0 (14)
O1—Mn1—N3—C6106.4 (7)N4—C8—C9—C101.1 (14)
O2—Mn1—N3—C685.3 (7)C7—C8—C9—C10175.4 (9)
N6—Mn1—N3—C6165.7 (6)C8—C9—C10—C110.3 (15)
N1—Mn1—N3—C6167.8 (7)C9—C10—C11—C120.2 (15)
I1—Mn1—N3—C68.8 (7)C8—N4—C12—C110.7 (15)
O1—Mn1—N3—C291.2 (7)C10—C11—C12—N40.0 (16)
O2—Mn1—N3—C277.0 (7)C7—N2—C13—C192.5 (13)
N6—Mn1—N3—C23.3 (9)C7—N2—C13—C14180.0 (8)
N1—Mn1—N3—C25.4 (6)C18—N5—C14—C152.3 (14)
I1—Mn1—N3—C2171.1 (6)C18—N5—C14—C13176.9 (8)
O1—Mn1—N6—C24101.1 (7)N2—C13—C14—N542.3 (11)
O2—Mn1—N6—C2485.0 (7)C19—C13—C14—N5140.4 (9)
N1—Mn1—N6—C24170.2 (8)N2—C13—C14—C15132.4 (9)
N3—Mn1—N6—C24168.2 (6)C19—C13—C14—C1544.9 (14)
I1—Mn1—N6—C245.9 (8)N5—C14—C15—C161.4 (15)
O1—Mn1—N6—C2097.0 (7)C13—C14—C15—C16175.6 (9)
O2—Mn1—N6—C2077.0 (7)C14—C15—C16—C170.9 (14)
N1—Mn1—N6—C208.3 (6)C15—C16—C17—C182.1 (14)
N3—Mn1—N6—C206.2 (9)C14—N5—C18—C170.9 (14)
I1—Mn1—N6—C20167.9 (6)C16—C17—C18—N51.2 (15)
C19—N1—C1—C73.1 (13)C1—N1—C19—C133.1 (12)
Mn1—N1—C1—C7162.5 (6)Mn1—N1—C19—C13162.6 (6)
C19—N1—C1—C2173.9 (8)C1—N1—C19—C20176.1 (8)
Mn1—N1—C1—C220.5 (10)Mn1—N1—C19—C2018.2 (9)
C6—N3—C2—C35.4 (14)N2—C13—C19—N10.3 (13)
Mn1—N3—C2—C3157.7 (8)C14—C13—C19—N1176.9 (8)
C6—N3—C2—C1179.9 (8)N2—C13—C19—C20178.7 (8)
Mn1—N3—C2—C117.0 (10)C14—C13—C19—C204.0 (15)
N1—C1—C2—C3150.6 (9)C24—N6—C20—C215.2 (13)
C7—C1—C2—C326.1 (15)Mn1—N6—C20—C21157.3 (7)
N1—C1—C2—N324.1 (11)C24—N6—C20—C19177.2 (8)
C7—C1—C2—N3159.2 (9)Mn1—N6—C20—C1920.3 (10)
N3—C2—C3—C45.7 (15)N1—C19—C20—N624.9 (11)
C1—C2—C3—C4179.8 (9)C13—C19—C20—N6156.0 (9)
C2—C3—C4—C51.2 (14)N1—C19—C20—C21152.6 (9)
C3—C4—C5—C63.3 (13)C13—C19—C20—C2126.5 (15)
C2—N3—C6—C50.6 (13)N6—C20—C21—C224.5 (15)
Mn1—N3—C6—C5161.9 (7)C19—C20—C21—C22178.2 (9)
C4—C5—C6—N33.6 (14)C20—C21—C22—C230.2 (16)
C13—N2—C7—C12.6 (13)C21—C22—C23—C243.2 (16)
C13—N2—C7—C8178.6 (8)C20—N6—C24—C231.7 (14)
N1—C1—C7—N20.3 (13)Mn1—N6—C24—C23160.1 (8)
C2—C1—C7—N2176.2 (8)C22—C23—C24—N62.5 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.841.922.726 (10)160
O1—H1B···N2ii0.842.102.890 (10)156
O2—H2A···N4iii0.842.042.876 (10)174
O2—H2B···N5iii0.842.032.834 (10)160
O3—H3A···I1iv0.842.883.615 (9)148
O3—H3B···I20.842.833.646 (8)163
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formula[MnI(C24H16N6)(H2O)2]I·H2O
Mr751.22
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)7.977 (3), 13.880 (5), 12.134 (4)
β (°) 97.944 (7)
V3)1330.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.28 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.828, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9685, 5463, 4463
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.23
No. of reflections5463
No. of parameters325
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 1.41
Absolute structureFlack (1983); 2033 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O12.163 (6)Mn1—N12.253 (7)
Mn1—O22.182 (6)Mn1—N32.259 (7)
Mn1—N62.245 (7)Mn1—I12.7772 (16)
N6—Mn1—N171.7 (3)N1—Mn1—N371.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.841.922.726 (10)160.0
O1—H1B···N2ii0.842.102.890 (10)156.0
O2—H2A···N4iii0.842.042.876 (10)174.4
O2—H2B···N5iii0.842.032.834 (10)160.2
O3—H3A···I1iv0.842.883.615 (9)147.7
O3—H3B···I20.842.833.646 (8)163.1
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallejo, L., De la Pinta, N., Vitoria, P. & Cortés, R. (2009). Acta Cryst. E65, m68–m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 59–60.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds