organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

De­acetyl­nomilin monohydrate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of ­Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China, and bInfinitus (China) Company Ltd, Guangzhou 510665, People's Republic of China
*Correspondence e-mail: tliyl@jnu.edu.cn

(Received 26 July 2011; accepted 26 August 2011; online 3 September 2011)

In the title compound (systematic name 1-hy­droxy-1,2-dihydro­obacunoic acid 3,4-lactone monohydrate), C26H32O8·H2O, the dihedral angles between the planes of the ester groups and the furan plane are 43.06 (12) and 56.06 (7)°, while that between the furan plane and the keto group is 58.50 (9)°. The A/B, B/C and C/D ring junctions are all trans-fused. Inter­molecular O—H⋯O hydrogen bonds between the hy­droxy and carbonyl groups and the water mol­ecule give rise to a three-dimensional structure.

Related literature

For general background to the title compound, see: Dreyer (1965[Dreyer, D. L. (1965). J. Org. Chem. 30, 749-751.]); Munehiro et al. (1989[Munehiro, N., Satomi, N. & Tsunao, H. (1989). Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 22, 145-151.]). For the absolute configuration of (−)-nomilin, see: Zhang et al. (2006[Zhang, Y., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. E62, o2502-o2504.]). For details of ring conformations and puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32O8·H2O

  • Mr = 490.53

  • Orthorhombic, P 21 21 21

  • a = 10.6037 (2) Å

  • b = 13.6564 (3) Å

  • c = 16.2893 (4) Å

  • V = 2358.82 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.42 × 0.23 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.819, Tmax = 1.000

  • 5397 measured reflections

  • 3378 independent reflections

  • 3206 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.03

  • 3378 reflections

  • 329 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1213 Friedel pairs

  • Flack parameter: −0.19 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O9 0.82 2.04 2.817 (3) 158
O9—H9A⋯O6i 0.85 (1) 2.00 (1) 2.841 (3) 169 (4)
O9—H9B⋯O4ii 0.87 (5) 2.33 (5) 3.124 (3) 152 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound C26H32O8 . H2O (Fig. 1) is the monohydrate of deacetylnomilin (systematic name: 1-hydroxy-1,2-dihydroobacunoic acid 3,4 -lactone monohydrate), which was originally isolated from the seeds of the genera Citrus and Poncirus (Dreyer, 1965; Munehiro et al., 1989). With the present compound, which was isolated from the traditional Chinese medicine Pericarpium Citri Reticulatae, the dihedral angles between the planes of the ester groups and the furan plane are 43.06 (12)° and 56.06 (7)°, while that between the furan plane and the keto group is 58.50 (9)°. The title compound is composed of five rings, one seven–membered, one five-membered and three six–membered. The seven–membered ring (A) adopts a chair conformation as does the six–membered ring (B), which has puckering parameters (Cremer & Pople, 1975; Boeyens, 1978) Q = 0.588 (2) Å, θ = 5.2 (2)°, φ = 239 (2)°. The rings C and D adopt skew–boat conformations with puckering paramaters Q = 0.775 (2) Å, θ = 98.35 (15)°, φ = 94.92 (15)° and Q = 0.512 (2) Å, θ = 110.4 (2)°, φ = 92.9 (2)°, respectively. The A/B, B/C and C/D ring junctions are all trans- fused. Intermolecular O—H···O hydrogen bonds (Table 1) involving the hydroxy and carbonyl groups and the water molecule give a three-dimensional structure (Fig. 2). The absolute configuration determined for the parent (-)-nomilin (Zhang et al., 2006) was invoked, giving the assignments C1(S), C5(R), C8(R), C9(R), C10(S), C12(S), C13(S), C16(R), C17(R) for the 9 chiral centres in the molecule (using the numbering scheme employed in Fig. 1).

Related literature top

For general background to the title compound, see: Dreyer (1965); Munehiro et al. (1989). For the absolute configuration of (-)-nomilin, see: Zhang et al. (2006). For details of ring conformations and puckering parameters, see: Cremer & Pople (1975); Boeyens (1978).

Experimental top

The title compound was isolated from the traditional Chinese medicine Pericarpium Citri Reticulatae, 500g of which was extracted with boiling water, then concentrated by rotary evaporator. The crude extract was subjected to silica gel column chromatography, eluted using a methanol/chloroform gradient. Further purification of the cloroform/methanol (92/8) fraction by silica gel column chromatography with EtOAc/cyclohexane (35/65) gave the title compound (4 mg). Crystals of the title compound were obtained after slow evaporation of a methanolic solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å (alkenyl H), 0.96 Å (CH3), 0.97 Å (CH2), 0.98 Å (CH) and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) (alkenyl, methylene and methine) and = 1.5Ueq[C(methyl) and O]. The absolute structure determined for (-)-nomilin (Zhang et al., 2006) was invoked: the Flack parameter determined for the parent compound not being definitive [-0.19 (1) for 1213 Friedel pairs].

Structure description top

The title compound C26H32O8 . H2O (Fig. 1) is the monohydrate of deacetylnomilin (systematic name: 1-hydroxy-1,2-dihydroobacunoic acid 3,4 -lactone monohydrate), which was originally isolated from the seeds of the genera Citrus and Poncirus (Dreyer, 1965; Munehiro et al., 1989). With the present compound, which was isolated from the traditional Chinese medicine Pericarpium Citri Reticulatae, the dihedral angles between the planes of the ester groups and the furan plane are 43.06 (12)° and 56.06 (7)°, while that between the furan plane and the keto group is 58.50 (9)°. The title compound is composed of five rings, one seven–membered, one five-membered and three six–membered. The seven–membered ring (A) adopts a chair conformation as does the six–membered ring (B), which has puckering parameters (Cremer & Pople, 1975; Boeyens, 1978) Q = 0.588 (2) Å, θ = 5.2 (2)°, φ = 239 (2)°. The rings C and D adopt skew–boat conformations with puckering paramaters Q = 0.775 (2) Å, θ = 98.35 (15)°, φ = 94.92 (15)° and Q = 0.512 (2) Å, θ = 110.4 (2)°, φ = 92.9 (2)°, respectively. The A/B, B/C and C/D ring junctions are all trans- fused. Intermolecular O—H···O hydrogen bonds (Table 1) involving the hydroxy and carbonyl groups and the water molecule give a three-dimensional structure (Fig. 2). The absolute configuration determined for the parent (-)-nomilin (Zhang et al., 2006) was invoked, giving the assignments C1(S), C5(R), C8(R), C9(R), C10(S), C12(S), C13(S), C16(R), C17(R) for the 9 chiral centres in the molecule (using the numbering scheme employed in Fig. 1).

For general background to the title compound, see: Dreyer (1965); Munehiro et al. (1989). For the absolute configuration of (-)-nomilin, see: Zhang et al. (2006). For details of ring conformations and puckering parameters, see: Cremer & Pople (1975); Boeyens (1978).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing in the unit cell viewed down the a axis.
1-hydroxy-1,2-dihydroobacunoic acid 3,4-lactone monohydrate top
Crystal data top
C26H32O8·H2ODx = 1.381 Mg m3
Mr = 490.53Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 3366 reflections
a = 10.6037 (2) Åθ = 3.2–62.6°
b = 13.6564 (3) ŵ = 0.86 mm1
c = 16.2893 (4) ÅT = 298 K
V = 2358.82 (9) Å3Prism, colourless
Z = 40.42 × 0.23 × 0.20 mm
F(000) = 1048
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
3378 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3206 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 16.0288 pixels mm-1θmax = 62.7°, θmin = 4.2°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 159
Tmin = 0.819, Tmax = 1.000l = 1518
5397 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2836P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3378 reflectionsΔρmax = 0.14 e Å3
329 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1213 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.19 (1)
Crystal data top
C26H32O8·H2OV = 2358.82 (9) Å3
Mr = 490.53Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6037 (2) ŵ = 0.86 mm1
b = 13.6564 (3) ÅT = 298 K
c = 16.2893 (4) Å0.42 × 0.23 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
3378 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3206 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.019
5397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.17 e Å3
3378 reflectionsAbsolute structure: Flack (1983), 1213 Friedel pairs
329 parametersAbsolute structure parameter: 0.19 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14223 (12)1.05987 (10)0.53350 (8)0.0411 (3)
O30.23637 (13)0.84306 (10)0.45658 (8)0.0419 (3)
H30.25920.81590.41420.063*
O50.44209 (13)0.58155 (10)0.73498 (8)0.0427 (3)
O40.13428 (16)0.74314 (12)0.75935 (11)0.0580 (4)
O20.14192 (16)1.07137 (13)0.40087 (9)0.0592 (4)
O60.21183 (16)0.44886 (12)0.84070 (10)0.0594 (4)
O70.26007 (14)0.42551 (10)0.71158 (8)0.0462 (4)
O80.2620 (3)0.29900 (14)0.45914 (12)0.0827 (6)
C30.19938 (19)1.04622 (14)0.46131 (13)0.0402 (5)
C170.34443 (17)0.88604 (13)0.58418 (11)0.0311 (4)
C100.3221 (2)0.57743 (16)0.77603 (12)0.0428 (5)
H100.31200.61920.82450.051*
C20.3284 (2)1.00257 (14)0.45659 (13)0.0414 (4)
H2A0.38611.04390.48710.050*
H2B0.35551.00280.39970.050*
C50.22296 (17)0.92924 (13)0.62505 (10)0.0319 (4)
H50.15270.89620.59740.038*
C150.43123 (19)0.70549 (14)0.55659 (12)0.0381 (4)
H15A0.45170.73270.50320.046*
H15B0.50870.69960.58790.046*
C260.14800 (18)0.58545 (14)0.60780 (13)0.0418 (5)
H26A0.12910.65410.60510.063*
H26B0.10280.55650.65270.063*
H26C0.12310.55450.55740.063*
C110.2616 (2)0.48032 (15)0.77933 (13)0.0451 (5)
C160.33892 (17)0.77336 (13)0.60152 (11)0.0307 (4)
H160.25580.75350.58120.037*
C80.33860 (18)0.74107 (13)0.69383 (11)0.0331 (4)
C60.2122 (2)0.89767 (15)0.71652 (12)0.0422 (5)
H6A0.27920.92870.74760.051*
H6B0.13240.92080.73840.051*
C140.3705 (2)0.60464 (14)0.54619 (12)0.0403 (5)
H14A0.43640.55670.53670.048*
H14B0.31700.60580.49790.048*
C10.33849 (18)0.89800 (13)0.48969 (11)0.0341 (4)
H10.41630.86990.46740.041*
C70.2202 (2)0.78844 (15)0.72810 (11)0.0387 (4)
C190.1464 (2)0.35218 (16)0.56310 (17)0.0573 (6)
H190.07850.36260.59810.069*
C240.47170 (17)0.93032 (15)0.61138 (13)0.0405 (5)
H24A0.49210.98500.57680.061*
H24B0.53660.88160.60690.061*
H24C0.46560.95190.66730.061*
C90.33382 (18)0.62767 (14)0.69640 (11)0.0344 (4)
C130.29043 (17)0.57139 (14)0.62084 (11)0.0342 (4)
C230.0774 (2)1.06898 (17)0.66732 (13)0.0497 (5)
H23A0.04861.13250.65050.075*
H23B0.09911.07050.72450.075*
H23C0.01171.02180.65850.075*
C40.19324 (19)1.04057 (14)0.61709 (12)0.0374 (4)
C250.4526 (2)0.77543 (16)0.74614 (14)0.0465 (5)
H25A0.52960.75800.71880.070*
H25B0.44970.74440.79900.070*
H25C0.44910.84520.75300.070*
C180.2691 (2)0.39381 (14)0.57069 (13)0.0434 (5)
C210.3345 (3)0.35915 (16)0.50605 (15)0.0616 (7)
H210.41830.37430.49490.074*
C220.2986 (2)1.11287 (15)0.63681 (15)0.0493 (5)
H22A0.36601.10490.59800.074*
H22B0.32961.10070.69120.074*
H22C0.26651.17850.63360.074*
C200.1471 (3)0.29599 (17)0.49702 (18)0.0644 (7)
H200.07860.25940.47880.077*
C120.31795 (19)0.46163 (14)0.63545 (12)0.0392 (4)
H120.40950.45290.63960.047*
O90.3772 (3)0.74718 (16)0.33392 (16)0.0972 (8)
H9A0.351 (4)0.6885 (14)0.329 (3)0.146*
H9B0.431 (4)0.752 (3)0.293 (3)0.129 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (7)0.0466 (7)0.0392 (7)0.0056 (6)0.0025 (6)0.0043 (6)
O30.0418 (7)0.0472 (7)0.0365 (7)0.0089 (6)0.0064 (6)0.0033 (6)
O50.0352 (7)0.0476 (8)0.0453 (8)0.0078 (6)0.0121 (6)0.0058 (6)
O40.0504 (9)0.0554 (9)0.0682 (10)0.0080 (8)0.0211 (9)0.0130 (8)
O20.0604 (10)0.0724 (10)0.0448 (8)0.0074 (9)0.0090 (8)0.0125 (8)
O60.0657 (10)0.0636 (10)0.0488 (9)0.0012 (9)0.0103 (8)0.0182 (8)
O70.0538 (9)0.0401 (7)0.0448 (8)0.0002 (7)0.0012 (7)0.0086 (6)
O80.1235 (18)0.0628 (11)0.0619 (11)0.0171 (12)0.0025 (13)0.0107 (9)
C30.0456 (11)0.0362 (10)0.0387 (10)0.0033 (9)0.0035 (10)0.0041 (9)
C170.0256 (9)0.0340 (9)0.0338 (10)0.0016 (8)0.0032 (8)0.0022 (8)
C100.0459 (11)0.0495 (11)0.0330 (9)0.0060 (10)0.0050 (9)0.0049 (9)
C20.0401 (10)0.0445 (10)0.0395 (10)0.0049 (9)0.0026 (9)0.0041 (9)
C50.0283 (8)0.0353 (9)0.0320 (9)0.0001 (8)0.0007 (8)0.0029 (8)
C150.0347 (10)0.0404 (10)0.0391 (11)0.0046 (9)0.0038 (9)0.0005 (8)
C260.0360 (10)0.0377 (10)0.0517 (12)0.0021 (9)0.0112 (10)0.0027 (9)
C110.0423 (11)0.0496 (12)0.0433 (11)0.0088 (10)0.0030 (10)0.0117 (10)
C160.0245 (8)0.0372 (9)0.0302 (9)0.0006 (8)0.0006 (8)0.0012 (8)
C80.0326 (9)0.0368 (9)0.0300 (9)0.0011 (8)0.0035 (8)0.0002 (8)
C60.0470 (11)0.0459 (11)0.0337 (10)0.0104 (10)0.0053 (9)0.0024 (9)
C140.0487 (11)0.0353 (9)0.0369 (10)0.0055 (9)0.0032 (9)0.0011 (9)
C10.0277 (9)0.0394 (9)0.0351 (10)0.0059 (8)0.0017 (8)0.0001 (8)
C70.0415 (10)0.0451 (10)0.0295 (9)0.0036 (10)0.0006 (9)0.0033 (9)
C190.0556 (14)0.0407 (11)0.0755 (16)0.0016 (11)0.0116 (13)0.0010 (12)
C240.0288 (9)0.0427 (10)0.0501 (11)0.0054 (9)0.0061 (9)0.0001 (10)
C90.0279 (9)0.0414 (10)0.0337 (10)0.0067 (9)0.0058 (8)0.0039 (8)
C130.0317 (9)0.0358 (9)0.0351 (9)0.0034 (8)0.0035 (8)0.0017 (8)
C230.0533 (13)0.0476 (11)0.0481 (12)0.0155 (11)0.0057 (11)0.0003 (10)
C40.0370 (10)0.0397 (10)0.0356 (10)0.0029 (8)0.0044 (9)0.0008 (8)
C250.0497 (12)0.0471 (12)0.0427 (11)0.0013 (10)0.0168 (10)0.0013 (10)
C180.0516 (12)0.0306 (9)0.0479 (11)0.0008 (9)0.0073 (10)0.0048 (9)
C210.0777 (17)0.0480 (12)0.0590 (14)0.0140 (13)0.0107 (14)0.0097 (12)
C220.0537 (13)0.0368 (10)0.0574 (13)0.0023 (10)0.0100 (11)0.0068 (10)
C200.0799 (19)0.0411 (11)0.0721 (17)0.0100 (13)0.0256 (16)0.0015 (12)
C120.0370 (10)0.0391 (10)0.0413 (10)0.0040 (9)0.0010 (9)0.0065 (9)
O90.130 (2)0.0746 (14)0.0870 (15)0.0275 (14)0.0387 (15)0.0335 (12)
Geometric parameters (Å, º) top
O1—C31.336 (2)C8—C71.519 (3)
O1—C41.489 (2)C8—C91.550 (3)
O3—H30.8200C8—C251.552 (3)
O3—C11.424 (2)C6—H6A0.9700
O5—C101.439 (3)C6—H6B0.9700
O5—C91.452 (2)C6—C71.506 (3)
O4—C71.213 (3)C14—H14A0.9700
O2—C31.208 (2)C14—H14B0.9700
O6—C111.209 (3)C14—C131.551 (3)
O7—C111.333 (3)C1—H10.9800
O7—C121.469 (2)C19—H190.9300
O8—C211.360 (3)C19—C181.425 (3)
O8—C201.366 (4)C19—C201.322 (4)
C3—C21.495 (3)C24—H24A0.9600
C17—C51.565 (2)C24—H24B0.9600
C17—C161.566 (2)C24—H24C0.9600
C17—C11.549 (3)C9—C131.522 (3)
C17—C241.544 (2)C13—C121.546 (3)
C10—H100.9800C23—H23A0.9600
C10—C111.474 (3)C23—H23B0.9600
C10—C91.473 (3)C23—H23C0.9600
C2—H2A0.9700C23—C41.526 (3)
C2—H2B0.9700C4—C221.525 (3)
C2—C11.530 (3)C25—H25A0.9600
C5—H50.9800C25—H25B0.9600
C5—C61.555 (3)C25—H25C0.9600
C5—C41.558 (3)C18—C211.346 (3)
C15—H15A0.9700C18—C121.496 (3)
C15—H15B0.9700C21—H210.9300
C15—C161.534 (3)C22—H22A0.9600
C15—C141.530 (3)C22—H22B0.9600
C26—H26A0.9600C22—H22C0.9600
C26—H26B0.9600C20—H200.9300
C26—H26C0.9600C12—H120.9800
C26—C131.537 (3)O9—H9A0.854 (10)
C16—H160.9800O9—H9B0.87 (5)
C16—C81.567 (2)
C3—O1—C4127.99 (15)O3—C1—C17110.60 (15)
C1—O3—H3109.5O3—C1—C2107.78 (16)
C10—O5—C961.24 (12)O3—C1—H1107.1
C11—O7—C12120.34 (15)C17—C1—H1107.1
C21—O8—C20105.6 (2)C2—C1—C17116.82 (16)
O1—C3—C2121.08 (18)C2—C1—H1107.1
O2—C3—O1116.68 (18)O4—C7—C8123.90 (18)
O2—C3—C2122.2 (2)O4—C7—C6121.00 (19)
C5—C17—C16105.25 (14)C6—C7—C8115.01 (17)
C1—C17—C5110.46 (15)C18—C19—H19126.3
C1—C17—C16106.34 (14)C20—C19—H19126.3
C24—C17—C5116.71 (15)C20—C19—C18107.3 (3)
C24—C17—C16111.46 (15)C17—C24—H24A109.5
C24—C17—C1106.22 (15)C17—C24—H24B109.5
O5—C10—H10116.6C17—C24—H24C109.5
O5—C10—C11115.90 (18)H24A—C24—H24B109.5
O5—C10—C959.84 (12)H24A—C24—H24C109.5
C11—C10—H10116.6H24B—C24—H24C109.5
C9—C10—H10116.6O5—C9—C1058.92 (12)
C9—C10—C11119.22 (18)O5—C9—C8114.78 (16)
C3—C2—H2A108.6O5—C9—C13111.70 (15)
C3—C2—H2B108.6C10—C9—C8119.47 (17)
C3—C2—C1114.70 (17)C10—C9—C13116.83 (16)
H2A—C2—H2B107.6C13—C9—C8119.51 (15)
C1—C2—H2A108.6C26—C13—C14113.12 (16)
C1—C2—H2B108.6C26—C13—C12109.14 (16)
C17—C5—H5104.9C9—C13—C26110.22 (16)
C6—C5—C17111.32 (15)C9—C13—C14108.71 (15)
C6—C5—H5104.9C9—C13—C12107.95 (15)
C6—C5—C4109.59 (14)C12—C13—C14107.54 (15)
C4—C5—C17119.92 (15)H23A—C23—H23B109.5
C4—C5—H5104.9H23A—C23—H23C109.5
H15A—C15—H15B108.3H23B—C23—H23C109.5
C16—C15—H15A109.9C4—C23—H23A109.5
C16—C15—H15B109.9C4—C23—H23B109.5
C14—C15—H15A109.9C4—C23—H23C109.5
C14—C15—H15B109.9O1—C4—C5108.81 (14)
C14—C15—C16109.15 (16)O1—C4—C2398.80 (15)
H26A—C26—H26B109.5O1—C4—C22110.13 (16)
H26A—C26—H26C109.5C23—C4—C5111.49 (17)
H26B—C26—H26C109.5C22—C4—C5117.79 (16)
C13—C26—H26A109.5C22—C4—C23108.17 (17)
C13—C26—H26B109.5C8—C25—H25A109.5
C13—C26—H26C109.5C8—C25—H25B109.5
O6—C11—O7118.7 (2)C8—C25—H25C109.5
O6—C11—C10122.6 (2)H25A—C25—H25B109.5
O7—C11—C10118.69 (18)H25A—C25—H25C109.5
C17—C16—H16104.2H25B—C25—H25C109.5
C17—C16—C8116.73 (14)C19—C18—C12128.6 (2)
C15—C16—C17118.95 (15)C21—C18—C19105.2 (2)
C15—C16—H16104.2C21—C18—C12126.2 (2)
C15—C16—C8106.81 (15)O8—C21—H21124.4
C8—C16—H16104.2C18—C21—O8111.1 (2)
C7—C8—C16103.57 (15)C18—C21—H21124.4
C7—C8—C9112.87 (17)C4—C22—H22A109.5
C7—C8—C25108.27 (16)C4—C22—H22B109.5
C9—C8—C16107.88 (15)C4—C22—H22C109.5
C9—C8—C25108.22 (16)H22A—C22—H22B109.5
C25—C8—C16116.11 (16)H22A—C22—H22C109.5
C5—C6—H6A109.0H22B—C22—H22C109.5
C5—C6—H6B109.0O8—C20—H20124.6
H6A—C6—H6B107.8C19—C20—O8110.8 (2)
C7—C6—C5112.98 (16)C19—C20—H20124.6
C7—C6—H6A109.0O7—C12—C13112.14 (15)
C7—C6—H6B109.0O7—C12—C18104.05 (15)
C15—C14—H14A108.7O7—C12—H12108.4
C15—C14—H14B108.7C13—C12—H12108.4
C15—C14—C13114.03 (16)C18—C12—C13115.24 (16)
H14A—C14—H14B107.6C18—C12—H12108.4
C13—C14—H14A108.7H9A—O9—H9B102 (4)
C13—C14—H14B108.7
O1—C3—C2—C162.1 (2)C16—C8—C9—C10175.00 (16)
O5—C10—C11—O6136.4 (2)C16—C8—C9—C1318.7 (2)
O5—C10—C11—O744.6 (2)C8—C9—C13—C2670.9 (2)
O5—C10—C9—C8102.8 (2)C8—C9—C13—C1453.6 (2)
O5—C10—C9—C13100.31 (18)C8—C9—C13—C12169.94 (17)
O5—C9—C13—C26151.02 (16)C6—C5—C4—O1152.42 (15)
O5—C9—C13—C1484.47 (18)C6—C5—C4—C2344.5 (2)
O5—C9—C13—C1231.9 (2)C6—C5—C4—C2281.4 (2)
O2—C3—C2—C1118.3 (2)C14—C15—C16—C17150.82 (16)
C3—O1—C4—C561.7 (2)C14—C15—C16—C874.43 (19)
C3—O1—C4—C23178.13 (18)C14—C13—C12—O7172.34 (15)
C3—O1—C4—C2268.7 (2)C14—C13—C12—C1868.9 (2)
C3—C2—C1—O346.6 (2)C1—C17—C5—C6167.17 (16)
C3—C2—C1—C1778.6 (2)C1—C17—C5—C463.0 (2)
C17—C5—C6—C753.6 (2)C1—C17—C16—C1551.7 (2)
C17—C5—C4—O177.03 (19)C1—C17—C16—C8177.88 (15)
C17—C5—C4—C23175.05 (15)C7—C8—C9—O5128.10 (17)
C17—C5—C4—C2249.2 (2)C7—C8—C9—C1061.2 (2)
C17—C16—C8—C760.5 (2)C7—C8—C9—C1395.1 (2)
C17—C16—C8—C9179.60 (15)C19—C18—C21—O80.2 (3)
C17—C16—C8—C2558.0 (2)C19—C18—C12—O738.5 (3)
C10—O5—C9—C8110.76 (19)C19—C18—C12—C1384.7 (3)
C10—O5—C9—C13109.10 (18)C24—C17—C5—C671.4 (2)
C10—C9—C13—C2685.9 (2)C24—C17—C5—C458.4 (2)
C10—C9—C13—C14149.55 (17)C24—C17—C16—C1563.7 (2)
C10—C9—C13—C1233.2 (2)C24—C17—C16—C866.8 (2)
C5—C17—C16—C15168.90 (15)C24—C17—C1—O3168.87 (15)
C5—C17—C16—C860.7 (2)C24—C17—C1—C267.4 (2)
C5—C17—C1—O363.67 (19)C9—O5—C10—C11110.20 (19)
C5—C17—C1—C260.1 (2)C9—C10—C11—O6155.2 (2)
C5—C6—C7—O4120.2 (2)C9—C10—C11—O723.8 (3)
C5—C6—C7—C856.6 (2)C9—C8—C7—O44.7 (3)
C15—C16—C8—C7163.55 (15)C9—C8—C7—C6171.99 (16)
C15—C16—C8—C943.7 (2)C9—C13—C12—O755.2 (2)
C15—C16—C8—C2577.9 (2)C9—C13—C12—C18173.99 (17)
C15—C14—C13—C26100.8 (2)C4—O1—C3—O2176.60 (18)
C15—C14—C13—C922.0 (2)C4—O1—C3—C23.0 (3)
C15—C14—C13—C12138.65 (16)C4—C5—C6—C7171.35 (17)
C26—C13—C12—O764.6 (2)C25—C8—C7—O4115.1 (2)
C26—C13—C12—C1854.2 (2)C25—C8—C7—C668.2 (2)
C11—O7—C12—C1340.8 (2)C25—C8—C9—O58.3 (2)
C11—O7—C12—C18166.02 (17)C25—C8—C9—C1058.6 (2)
C11—C10—C9—O5104.7 (2)C25—C8—C9—C13145.11 (17)
C11—C10—C9—C8152.49 (18)C18—C19—C20—O81.1 (3)
C11—C10—C9—C134.4 (3)C21—O8—C20—C191.0 (3)
C16—C17—C5—C652.78 (18)C21—C18—C12—O7141.6 (2)
C16—C17—C5—C4177.44 (15)C21—C18—C12—C1395.2 (3)
C16—C17—C1—O350.0 (2)C20—O8—C21—C180.5 (3)
C16—C17—C1—C2173.79 (15)C20—C19—C18—C210.8 (3)
C16—C15—C14—C1338.0 (2)C20—C19—C18—C12179.3 (2)
C16—C8—C7—O4121.1 (2)C12—O7—C11—O6179.16 (18)
C16—C8—C7—C655.6 (2)C12—O7—C11—C100.1 (3)
C16—C8—C9—O5118.09 (16)C12—C18—C21—O8179.87 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O90.822.042.817 (3)158
O9—H9A···O6i0.85 (1)2.00 (1)2.841 (3)169 (4)
O9—H9B···O4ii0.87 (5)2.33 (5)3.124 (3)152 (4)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H32O8·H2O
Mr490.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.6037 (2), 13.6564 (3), 16.2893 (4)
V3)2358.82 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.42 × 0.23 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5397, 3378, 3206
Rint0.019
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.03
No. of reflections3378
No. of parameters329
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.17
Absolute structureFlack (1983), 1213 Friedel pairs
Absolute structure parameter0.19 (1)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O90.822.042.817 (3)158
O9—H9A···O6i0.854 (10)1.998 (13)2.841 (3)169 (4)
O9—H9B···O4ii0.87 (5)2.33 (5)3.124 (3)152 (4)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 81072535) and the Team Project of the Natural Science Foundation of Guangdong Province (No. 8351063201000003).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDreyer, D. L. (1965). J. Org. Chem. 30, 749–751.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMunehiro, N., Satomi, N. & Tsunao, H. (1989). Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 22, 145–151.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. E62, o2502–o2504.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds