organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3-{4-[(2-Hy­dr­oxy­benzyl­­idene)amino]-3-phenyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl}-1,3-di­phenyl­propan-1-one

aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 6 August 2011; accepted 29 August 2011; online 30 September 2011)

In the title compound, C30H24N4O2S, the four phenyl rings of the substituent groups make dihedral angles of 88.1 (2), 81.0 (2), 21.4 (2) and 44.6 (2)° with the triazole group. An intra­molecular hy­droxy–imino O—H⋯N hydrogen bond results in the formation of an approximately planar (r.m.s deviation = 0.0230 Å) six-membered ring.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]); Gao et al. (2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]); Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]); Zhao et al. (2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N4O2S

  • Mr = 504.59

  • Triclinic, [P \overline 1]

  • a = 6.770 (2) Å

  • b = 13.170 (5) Å

  • c = 14.851 (5) Å

  • α = 78.114 (12)°

  • β = 81.715 (15)°

  • γ = 87.318 (16)°

  • V = 1282.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.981

  • 16609 measured reflections

  • 6076 independent reflections

  • 3749 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 0.95

  • 6076 reflections

  • 338 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N4 1.00 (3) 1.73 (2) 2.6226 (19) 147.4 (19)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a continuation of the structural study by our group (Wang et al., 2011) of Mannich base derivatives synthesized by reactions of amino heterocycles and aromatic aldehydes, we present here the crystal structure of the title compound, the substituted 1,2,4-triazole-5(4H)-thione derivative C30 H24 N4 O2 S. The bond lengths and angles in this compound are found to have normal values, comparable with those reported in the related 1,2,4-triazole- 5(4H)-thione derivatives (Al-Tamimi et al., 2010; Fun et al. (2009); Tan et al. (2010); Wang et al., 2011;). The C1 and C2 atoms in the triazole ring show distorted Csp2 hybridization states with the bond angles of 102.24 (11)° (N2—C1—N3); 130.08 (11)° (N3—C1—S1); 109.77 (12)° (N1—C2—N3) and 127.77 (12) ° (N3—C2—C18), which are similar to those in the reported triazole derivatives (Zhao et al., 2010; Gao et al., 2011). There are four phenyl rings in the molecular structure. The four phenyl rings of the substituent groups (C1–C6, C12–C17, C18–C23 and C25–C30) make dihedral angles of 88.1 (2), 81.0 (2), 21.4 (2) and 135.4 (2)°, respectively, with the triazole group.

An intramolecular hydroxyl O—H···N hydrogen bond with the imino group results in the formation of a planar six-membered ring [r.m.s deviation = 0.0230 (2) Å].

Related literature top

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011); Zhao et al. (2010).

Experimental top

The title compound was synthesized with the reaction of 2-hydroxybenzaldehyde (2.0 mmol) and 3-(4-amino-3-phenyl-5-thioxo-4,5- dihydro-1H-1,2,4-triazol-1-yl)-1,3-diphenylpropan-1-one (2.0 mmol) by refluxing in ethanol. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colorless solid in 80% yield. Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform–ethanol (1:1).

Refinement top

The H atom of the hydroxy group was located in a difference electron density map and the atomic coordinates and isotropic thermal displacement parameter were allowed to refine freely. Other H atoms were positioned geometrically and refined as riding (C—H = 0.95–1.00 Å) on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In a continuation of the structural study by our group (Wang et al., 2011) of Mannich base derivatives synthesized by reactions of amino heterocycles and aromatic aldehydes, we present here the crystal structure of the title compound, the substituted 1,2,4-triazole-5(4H)-thione derivative C30 H24 N4 O2 S. The bond lengths and angles in this compound are found to have normal values, comparable with those reported in the related 1,2,4-triazole- 5(4H)-thione derivatives (Al-Tamimi et al., 2010; Fun et al. (2009); Tan et al. (2010); Wang et al., 2011;). The C1 and C2 atoms in the triazole ring show distorted Csp2 hybridization states with the bond angles of 102.24 (11)° (N2—C1—N3); 130.08 (11)° (N3—C1—S1); 109.77 (12)° (N1—C2—N3) and 127.77 (12) ° (N3—C2—C18), which are similar to those in the reported triazole derivatives (Zhao et al., 2010; Gao et al., 2011). There are four phenyl rings in the molecular structure. The four phenyl rings of the substituent groups (C1–C6, C12–C17, C18–C23 and C25–C30) make dihedral angles of 88.1 (2), 81.0 (2), 21.4 (2) and 135.4 (2)°, respectively, with the triazole group.

An intramolecular hydroxyl O—H···N hydrogen bond with the imino group results in the formation of a planar six-membered ring [r.m.s deviation = 0.0230 (2) Å].

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011); Zhao et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of a molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 55% probability level.
rac-3-{4-[(2-Hydroxybenzylidene)amino]-3-phenyl-5-sulfanylidene- 4,5-dihydro-1H-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one top
Crystal data top
C30H24N4O2SZ = 2
Mr = 504.59F(000) = 528
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.770 (2) ÅCell parameters from 4176 reflections
b = 13.170 (5) Åθ = 1.4–28.1°
c = 14.851 (5) ŵ = 0.16 mm1
α = 78.114 (12)°T = 113 K
β = 81.715 (15)°Prism, colorless
γ = 87.318 (16)°0.20 × 0.18 × 0.12 mm
V = 1282.0 (7) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6076 independent reflections
Radiation source: rotating anode3749 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.043
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.4°
φ and ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1717
Tmin = 0.968, Tmax = 0.981l = 1819
16609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
6076 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H24N4O2Sγ = 87.318 (16)°
Mr = 504.59V = 1282.0 (7) Å3
Triclinic, P1Z = 2
a = 6.770 (2) ÅMo Kα radiation
b = 13.170 (5) ŵ = 0.16 mm1
c = 14.851 (5) ÅT = 113 K
α = 78.114 (12)°0.20 × 0.18 × 0.12 mm
β = 81.715 (15)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6076 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3749 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.043
16609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.29 e Å3
6076 reflectionsΔρmin = 0.21 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.23731 (6)0.74106 (3)0.66002 (2)0.02837 (11)
O11.1833 (2)0.82091 (11)0.92569 (8)0.0578 (4)
O20.83353 (15)0.41453 (9)0.60325 (8)0.0347 (3)
H20.828 (3)0.470 (2)0.6402 (16)0.113 (9)*
N10.75550 (17)0.71629 (9)0.84047 (8)0.0248 (3)
N20.92480 (17)0.76425 (9)0.79086 (7)0.0227 (3)
N30.92676 (16)0.61510 (9)0.75493 (7)0.0212 (3)
N40.95198 (17)0.53608 (9)0.70367 (7)0.0224 (3)
C11.0334 (2)0.70663 (11)0.73499 (9)0.0223 (3)
C20.7565 (2)0.62593 (11)0.81636 (9)0.0218 (3)
C30.9499 (2)0.87572 (11)0.78459 (9)0.0233 (3)
H31.09500.89150.76660.028*
C40.8830 (2)0.90266 (11)0.87934 (9)0.0282 (3)
H4A0.88010.97900.87280.034*
H4B0.74570.87760.90230.034*
C51.0196 (3)0.85503 (12)0.95006 (11)0.0355 (4)
C60.9467 (3)0.85086 (12)1.05085 (10)0.0382 (4)
C70.7628 (3)0.89039 (14)1.08254 (11)0.0455 (5)
H70.67820.92431.03940.055*
C80.7012 (3)0.88071 (16)1.17744 (12)0.0597 (6)
H80.57430.90721.19930.072*
C90.8262 (4)0.83231 (17)1.23954 (13)0.0711 (7)
H90.78350.82451.30430.085*
C101.0123 (4)0.79515 (16)1.20885 (13)0.0680 (7)
H101.09890.76381.25210.082*
C111.0712 (3)0.80400 (13)1.11513 (11)0.0518 (5)
H111.19860.77781.09380.062*
C120.8368 (2)0.93823 (11)0.71014 (9)0.0240 (3)
C130.6371 (2)0.92297 (14)0.70853 (11)0.0398 (4)
H130.56710.87180.75530.048*
C140.5375 (3)0.98140 (14)0.63950 (12)0.0455 (5)
H140.40070.96900.63890.055*
C150.6345 (3)1.05683 (13)0.57213 (11)0.0400 (4)
H150.56451.09860.52640.048*
C160.8329 (3)1.07093 (14)0.57177 (12)0.0521 (5)
H160.90251.12150.52430.062*
C170.9338 (3)1.01215 (14)0.64007 (11)0.0447 (5)
H171.07211.02290.63860.054*
C180.5920 (2)0.55264 (11)0.84967 (9)0.0232 (3)
C190.6105 (2)0.44711 (12)0.84903 (10)0.0325 (4)
H190.73530.41870.82680.039*
C200.4476 (2)0.38335 (13)0.88066 (11)0.0381 (4)
H200.46090.31150.87940.046*
C210.2664 (2)0.42313 (13)0.91398 (10)0.0350 (4)
H210.15500.37910.93560.042*
C220.2481 (2)0.52800 (13)0.91564 (10)0.0318 (4)
H220.12370.55560.93920.038*
C230.4081 (2)0.59262 (12)0.88353 (9)0.0267 (3)
H230.39330.66450.88440.032*
C241.1334 (2)0.50562 (11)0.68280 (9)0.0227 (3)
H241.23830.53110.70770.027*
C251.1778 (2)0.43255 (11)0.62150 (9)0.0221 (3)
C261.0299 (2)0.39283 (11)0.58138 (10)0.0241 (3)
C271.0835 (2)0.32828 (12)0.51852 (10)0.0300 (4)
H270.98360.30180.49120.036*
C281.2809 (2)0.30257 (12)0.49579 (10)0.0338 (4)
H281.31620.25870.45240.041*
C291.4298 (2)0.33974 (13)0.53524 (11)0.0358 (4)
H291.56580.32090.51980.043*
C301.3763 (2)0.40458 (12)0.59726 (10)0.0303 (4)
H301.47730.43080.62400.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0274 (2)0.0312 (2)0.0263 (2)0.00792 (17)0.00275 (16)0.00803 (16)
O10.0705 (9)0.0658 (10)0.0453 (8)0.0350 (8)0.0258 (7)0.0258 (7)
O20.0215 (6)0.0371 (7)0.0515 (7)0.0004 (5)0.0089 (5)0.0206 (6)
N10.0280 (7)0.0198 (6)0.0251 (6)0.0032 (5)0.0028 (5)0.0047 (5)
N20.0278 (7)0.0175 (6)0.0221 (6)0.0035 (5)0.0009 (5)0.0047 (5)
N30.0226 (7)0.0191 (6)0.0225 (6)0.0021 (5)0.0007 (5)0.0078 (5)
N40.0251 (7)0.0198 (6)0.0236 (6)0.0014 (5)0.0000 (5)0.0096 (5)
C10.0259 (8)0.0215 (8)0.0205 (7)0.0013 (6)0.0057 (6)0.0049 (6)
C20.0240 (8)0.0194 (7)0.0207 (7)0.0012 (6)0.0005 (6)0.0040 (6)
C30.0277 (8)0.0173 (7)0.0253 (8)0.0048 (6)0.0026 (6)0.0047 (6)
C40.0402 (9)0.0197 (8)0.0260 (8)0.0002 (7)0.0060 (7)0.0072 (6)
C50.0568 (12)0.0214 (8)0.0319 (9)0.0065 (8)0.0132 (8)0.0101 (7)
C60.0720 (13)0.0184 (8)0.0267 (9)0.0022 (8)0.0124 (9)0.0060 (7)
C70.0737 (14)0.0363 (10)0.0284 (9)0.0090 (10)0.0047 (9)0.0107 (8)
C80.0915 (17)0.0539 (13)0.0347 (11)0.0183 (12)0.0057 (11)0.0172 (10)
C90.137 (2)0.0507 (14)0.0249 (10)0.0321 (15)0.0065 (13)0.0031 (10)
C100.132 (2)0.0381 (12)0.0351 (11)0.0064 (14)0.0262 (13)0.0014 (9)
C110.0972 (16)0.0258 (10)0.0354 (10)0.0024 (10)0.0230 (10)0.0042 (8)
C120.0305 (9)0.0191 (7)0.0238 (7)0.0030 (6)0.0042 (6)0.0067 (6)
C130.0358 (10)0.0415 (11)0.0363 (9)0.0082 (8)0.0037 (8)0.0066 (8)
C140.0349 (10)0.0502 (12)0.0492 (11)0.0031 (9)0.0146 (8)0.0018 (9)
C150.0531 (12)0.0288 (9)0.0403 (10)0.0004 (8)0.0211 (9)0.0020 (8)
C160.0608 (13)0.0387 (11)0.0505 (11)0.0201 (10)0.0215 (10)0.0191 (9)
C170.0413 (11)0.0404 (11)0.0488 (11)0.0176 (9)0.0163 (9)0.0102 (9)
C180.0278 (8)0.0205 (8)0.0205 (7)0.0030 (6)0.0005 (6)0.0036 (6)
C190.0320 (9)0.0239 (8)0.0378 (9)0.0032 (7)0.0070 (7)0.0051 (7)
C200.0455 (11)0.0235 (9)0.0433 (10)0.0108 (8)0.0063 (8)0.0082 (7)
C210.0347 (10)0.0381 (10)0.0300 (9)0.0178 (8)0.0036 (7)0.0037 (7)
C220.0268 (9)0.0382 (10)0.0283 (8)0.0036 (7)0.0030 (7)0.0058 (7)
C230.0283 (9)0.0254 (8)0.0252 (8)0.0012 (7)0.0002 (6)0.0048 (6)
C240.0224 (8)0.0233 (8)0.0232 (7)0.0013 (6)0.0033 (6)0.0061 (6)
C250.0220 (8)0.0226 (8)0.0220 (7)0.0013 (6)0.0005 (6)0.0067 (6)
C260.0222 (8)0.0237 (8)0.0267 (8)0.0010 (6)0.0033 (6)0.0057 (6)
C270.0351 (9)0.0273 (9)0.0314 (8)0.0008 (7)0.0103 (7)0.0110 (7)
C280.0414 (10)0.0326 (9)0.0296 (8)0.0026 (8)0.0004 (7)0.0150 (7)
C290.0253 (9)0.0417 (10)0.0428 (10)0.0041 (8)0.0012 (7)0.0193 (8)
C300.0223 (8)0.0345 (9)0.0370 (9)0.0011 (7)0.0041 (7)0.0136 (7)
Geometric parameters (Å, º) top
S1—C11.6608 (15)C13—C141.387 (2)
O1—C51.2104 (19)C13—H130.9500
O2—C261.3538 (17)C14—C151.371 (2)
O2—H21.00 (2)C14—H140.9500
N1—C21.3110 (17)C15—C161.364 (2)
N1—N21.3741 (16)C15—H150.9500
N2—C11.3551 (17)C16—C171.386 (2)
N2—C31.4681 (18)C16—H160.9500
N3—C21.3841 (17)C17—H170.9500
N3—C11.3910 (18)C18—C191.392 (2)
N3—N41.4015 (15)C18—C231.3958 (19)
N4—C241.2890 (17)C19—C201.385 (2)
C2—C181.4703 (19)C19—H190.9500
C3—C121.516 (2)C20—C211.377 (2)
C3—C41.5225 (19)C20—H200.9500
C3—H31.0000C21—C221.386 (2)
C4—C51.519 (2)C21—H210.9500
C4—H4A0.9900C22—C231.377 (2)
C4—H4B0.9900C22—H220.9500
C5—C61.498 (2)C23—H230.9500
C6—C71.383 (2)C24—C251.4493 (19)
C6—C111.394 (2)C24—H240.9500
C7—C81.392 (2)C25—C301.3923 (19)
C7—H70.9500C25—C261.4076 (19)
C8—C91.380 (3)C26—C271.3878 (19)
C8—H80.9500C27—C281.375 (2)
C9—C101.380 (3)C27—H270.9500
C9—H90.9500C28—C291.391 (2)
C10—C111.374 (2)C28—H280.9500
C10—H100.9500C29—C301.381 (2)
C11—H110.9500C29—H290.9500
C12—C131.380 (2)C30—H300.9500
C12—C171.381 (2)
C26—O2—H2105.6 (13)C14—C13—H13119.6
C2—N1—N2105.10 (11)C15—C14—C13120.74 (16)
C1—N2—N1113.68 (11)C15—C14—H14119.6
C1—N2—C3124.75 (12)C13—C14—H14119.6
N1—N2—C3119.92 (11)C16—C15—C14118.96 (16)
C2—N3—C1109.06 (11)C16—C15—H15120.5
C2—N3—N4122.82 (11)C14—C15—H15120.5
C1—N3—N4125.91 (11)C15—C16—C17120.56 (16)
C24—N4—N3115.83 (12)C15—C16—H16119.7
N2—C1—N3102.24 (11)C17—C16—H16119.7
N2—C1—S1127.65 (11)C12—C17—C16121.15 (16)
N3—C1—S1130.08 (11)C12—C17—H17119.4
N1—C2—N3109.77 (12)C16—C17—H17119.4
N1—C2—C18122.42 (12)C19—C18—C23119.04 (14)
N3—C2—C18127.77 (12)C19—C18—C2123.69 (14)
N2—C3—C12110.20 (11)C23—C18—C2117.27 (13)
N2—C3—C4109.44 (11)C20—C19—C18120.17 (15)
C12—C3—C4112.21 (12)C20—C19—H19119.9
N2—C3—H3108.3C18—C19—H19119.9
C12—C3—H3108.3C21—C20—C19120.59 (16)
C4—C3—H3108.3C21—C20—H20119.7
C5—C4—C3112.33 (13)C19—C20—H20119.7
C5—C4—H4A109.1C20—C21—C22119.37 (15)
C3—C4—H4A109.1C20—C21—H21120.3
C5—C4—H4B109.1C22—C21—H21120.3
C3—C4—H4B109.1C23—C22—C21120.75 (15)
H4A—C4—H4B107.9C23—C22—H22119.6
O1—C5—C6120.73 (15)C21—C22—H22119.6
O1—C5—C4120.89 (14)C22—C23—C18120.07 (15)
C6—C5—C4118.38 (15)C22—C23—H23120.0
C7—C6—C11119.05 (16)C18—C23—H23120.0
C7—C6—C5123.21 (15)N4—C24—C25120.16 (13)
C11—C6—C5117.73 (17)N4—C24—H24119.9
C6—C7—C8120.28 (18)C25—C24—H24119.9
C6—C7—H7119.9C30—C25—C26118.44 (13)
C8—C7—H7119.9C30—C25—C24118.69 (13)
C9—C8—C7119.4 (2)C26—C25—C24122.78 (13)
C9—C8—H8120.3O2—C26—C27118.16 (13)
C7—C8—H8120.3O2—C26—C25121.82 (13)
C10—C9—C8120.97 (19)C27—C26—C25120.02 (13)
C10—C9—H9119.5C28—C27—C26120.05 (14)
C8—C9—H9119.5C28—C27—H27120.0
C11—C10—C9119.3 (2)C26—C27—H27120.0
C11—C10—H10120.4C27—C28—C29121.10 (15)
C9—C10—H10120.4C27—C28—H28119.4
C10—C11—C6121.0 (2)C29—C28—H28119.4
C10—C11—H11119.5C30—C29—C28118.73 (15)
C6—C11—H11119.5C30—C29—H29120.6
C13—C12—C17117.74 (14)C28—C29—H29120.6
C13—C12—C3122.08 (13)C29—C30—C25121.65 (14)
C17—C12—C3120.17 (14)C29—C30—H30119.2
C12—C13—C14120.78 (15)C25—C30—H30119.2
C12—C13—H13119.6
C2—N1—N2—C10.44 (15)N2—C3—C12—C1352.78 (19)
C2—N1—N2—C3166.47 (11)C4—C3—C12—C1369.45 (18)
C2—N3—N4—C24150.62 (12)N2—C3—C12—C17126.17 (15)
C1—N3—N4—C2448.15 (18)C4—C3—C12—C17111.60 (16)
N1—N2—C1—N32.54 (15)C17—C12—C13—C141.0 (2)
C3—N2—C1—N3167.79 (12)C3—C12—C13—C14179.99 (15)
N1—N2—C1—S1175.64 (10)C12—C13—C14—C151.1 (3)
C3—N2—C1—S110.4 (2)C13—C14—C15—C162.6 (3)
C2—N3—C1—N23.62 (14)C14—C15—C16—C172.0 (3)
N4—N3—C1—N2167.00 (12)C13—C12—C17—C161.6 (3)
C2—N3—C1—S1174.50 (11)C3—C12—C17—C16179.37 (16)
N4—N3—C1—S111.1 (2)C15—C16—C17—C120.1 (3)
N2—N1—C2—N31.96 (15)N1—C2—C18—C19160.38 (14)
N2—N1—C2—C18175.88 (12)N3—C2—C18—C1922.2 (2)
C1—N3—C2—N13.66 (16)N1—C2—C18—C2319.7 (2)
N4—N3—C2—N1167.66 (12)N3—C2—C18—C23157.76 (13)
C1—N3—C2—C18174.03 (13)C23—C18—C19—C200.7 (2)
N4—N3—C2—C1810.0 (2)C2—C18—C19—C20179.24 (13)
C1—N2—C3—C1282.90 (17)C18—C19—C20—C210.7 (2)
N1—N2—C3—C1281.50 (15)C19—C20—C21—C220.0 (2)
C1—N2—C3—C4153.26 (13)C20—C21—C22—C230.7 (2)
N1—N2—C3—C442.35 (16)C21—C22—C23—C180.7 (2)
N2—C3—C4—C567.58 (16)C19—C18—C23—C220.0 (2)
C12—C3—C4—C5169.76 (12)C2—C18—C23—C22179.93 (13)
C3—C4—C5—O115.4 (2)N3—N4—C24—C25173.25 (12)
C3—C4—C5—C6164.39 (14)N4—C24—C25—C30177.34 (13)
O1—C5—C6—C7178.74 (16)N4—C24—C25—C260.9 (2)
C4—C5—C6—C71.5 (2)C30—C25—C26—O2178.39 (13)
O1—C5—C6—C111.7 (2)C24—C25—C26—O25.1 (2)
C4—C5—C6—C11178.03 (14)C30—C25—C26—C270.7 (2)
C11—C6—C7—C81.8 (3)C24—C25—C26—C27175.84 (13)
C5—C6—C7—C8177.74 (16)O2—C26—C27—C28178.70 (13)
C6—C7—C8—C90.7 (3)C25—C26—C27—C280.4 (2)
C7—C8—C9—C101.2 (3)C26—C27—C28—C290.4 (2)
C8—C9—C10—C111.9 (3)C27—C28—C29—C300.9 (2)
C9—C10—C11—C60.7 (3)C28—C29—C30—C250.6 (2)
C7—C6—C11—C101.1 (3)C26—C25—C30—C290.2 (2)
C5—C6—C11—C10178.46 (17)C24—C25—C30—C29176.46 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N41.00 (3)1.73 (2)2.6226 (19)147.4 (19)

Experimental details

Crystal data
Chemical formulaC30H24N4O2S
Mr504.59
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.770 (2), 13.170 (5), 14.851 (5)
α, β, γ (°)78.114 (12), 81.715 (15), 87.318 (16)
V3)1282.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16609, 6076, 3749
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 0.95
No. of reflections6076
No. of parameters338
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N41.00 (3)1.73 (2)2.6226 (19)147.4 (19)
 

Acknowledgements

We gratefully acknowledge support of this study by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds