organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-3-{4-[(4-Nitro­benzyl­­idene)amino]-3-phenyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl}-1,3-di­phenyl­propan-1-one

aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 6 August 2011; accepted 29 August 2011; online 30 September 2011)

In the title mol­ecule, C30H23N5O3S, the 1,2,4-triazole ring is approximately planar (r.m.s. deviation = 0.006 Å), and forms dihedral angles of 66.0 (2), 65.1 (2), 30.1 (2) and 28.1 (2)° with the four phenyl rings. The phenyl ring of the benzyl group directly attached to the triazole ring is almost perpendicular to the nitro­phenyl ring, making a dihedral angle of 84.9 (2)°.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]); Gao et al. (2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]); Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]); Zhao et al. (2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]).

[Scheme 1]

Experimental

Crystal data
  • C30H23N5O3S

  • Mr = 533.59

  • Monoclinic, P 21 /c

  • a = 13.3303 (13) Å

  • b = 21.832 (2) Å

  • c = 9.2773 (9) Å

  • β = 98.213 (3)°

  • V = 2672.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.981

  • 27241 measured reflections

  • 6372 independent reflections

  • 5124 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 1.10

  • 6372 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a continuation of the structural study by our group of Mannich base derivatives synthesized by the reaction of amino heterocycles and aromatic aldehydes (Wang et al., 2011), we present here the crystal structure of the title compound, C30H23N5O3S.

In this compound the bond lengths and angles are comparable with those reported in the related 1,2,4-triazole-5(4H)-thione derivatives (Al-Tamimi et al., 2010; Fun et al., 2009; Tan et al., 2010; Wang et al., 2011). The 1,2,4-triazole ring is planar with an r.m.s 0.0055 (2) Å and a maximium deviation of 0.0083 (2) Å for atom N3. The C1 and C2 atoms of the 1,2,4-triazole ring show distorted Csp2 hybridization states with bond angles of 102.69 (13)° (N1—C1—N3); 131.16 (12)° (N3—C1—S1); 110.38 (13)° (N2—C2—N3) and 126.98 (14)° (N3—C2—C25), which are similar to those in the other reported triazole derivatives (Zhao et al., 2010; Gao et al., 2011). The 1,2,4-triazole ring forms dihedral angles of 114.0 (2), 114.9 (2), 151.9 (2)° and 149.9 (2)° with the phenyl rings C6—C11, C12—C17 and C25—C30 and the nitrophenyl ring C19—C24. The phenyl ring of the benzyl group attached to atom N1 of the triazole ring (C12—C17) is almost perpendicular to the nitrophenyl ring, with a dihedral angle of 95.1 (2)°.

Related literature top

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011); Zhao et al. (2010).

Experimental top

The title compound was synthesized in the reaction of 4-nitrobenzaldehyde (2.0 mmol) and 3-(4-amino-3-phenyl-5-thioxo-4,5- dihydro-1H-1,2,4-triazol-1-yl)-1,3-diphenylpropan-1-one (2.0 mmol), by refluxing in ethanol. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colorless solid in 66% yield. Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform–ethanol (1:1).

Refinement top

Hydrogen atoms were positioned geometrically and refined as riding (C—H = 0.95-1.00 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In a continuation of the structural study by our group of Mannich base derivatives synthesized by the reaction of amino heterocycles and aromatic aldehydes (Wang et al., 2011), we present here the crystal structure of the title compound, C30H23N5O3S.

In this compound the bond lengths and angles are comparable with those reported in the related 1,2,4-triazole-5(4H)-thione derivatives (Al-Tamimi et al., 2010; Fun et al., 2009; Tan et al., 2010; Wang et al., 2011). The 1,2,4-triazole ring is planar with an r.m.s 0.0055 (2) Å and a maximium deviation of 0.0083 (2) Å for atom N3. The C1 and C2 atoms of the 1,2,4-triazole ring show distorted Csp2 hybridization states with bond angles of 102.69 (13)° (N1—C1—N3); 131.16 (12)° (N3—C1—S1); 110.38 (13)° (N2—C2—N3) and 126.98 (14)° (N3—C2—C25), which are similar to those in the other reported triazole derivatives (Zhao et al., 2010; Gao et al., 2011). The 1,2,4-triazole ring forms dihedral angles of 114.0 (2), 114.9 (2), 151.9 (2)° and 149.9 (2)° with the phenyl rings C6—C11, C12—C17 and C25—C30 and the nitrophenyl ring C19—C24. The phenyl ring of the benzyl group attached to atom N1 of the triazole ring (C12—C17) is almost perpendicular to the nitrophenyl ring, with a dihedral angle of 95.1 (2)°.

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011); Zhao et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of a molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.
rac-3-{4-[(4-Nitrobenzylidene)amino]-3-phenyl-5-sulfanylidene- 4,5-dihydro-1H-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one top
Crystal data top
C30H23N5O3SF(000) = 1112
Mr = 533.59Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8592 reflections
a = 13.3303 (13) Åθ = 1.5–27.9°
b = 21.832 (2) ŵ = 0.16 mm1
c = 9.2773 (9) ÅT = 113 K
β = 98.213 (3)°Prism, colorless
V = 2672.2 (4) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6372 independent reflections
Radiation source: rotating anode5124 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.5°
φ and ω scansh = 1517
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2728
Tmin = 0.968, Tmax = 0.981l = 1212
27241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.1147P]
where P = (Fo2 + 2Fc2)/3
6372 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C30H23N5O3SV = 2672.2 (4) Å3
Mr = 533.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3303 (13) ŵ = 0.16 mm1
b = 21.832 (2) ÅT = 113 K
c = 9.2773 (9) Å0.20 × 0.18 × 0.12 mm
β = 98.213 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6372 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
5124 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.040
27241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
6372 reflectionsΔρmin = 0.25 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40778 (3)0.258871 (19)0.46718 (5)0.03324 (14)
O10.33880 (9)0.08657 (5)0.76721 (14)0.0346 (3)
O20.05157 (12)0.41949 (7)0.22517 (19)0.0649 (5)
O30.07948 (10)0.33342 (7)0.34027 (17)0.0545 (4)
N10.41855 (9)0.13669 (6)0.49993 (14)0.0250 (3)
N20.37677 (10)0.08227 (6)0.44644 (15)0.0273 (3)
N30.30586 (9)0.16063 (6)0.32011 (14)0.0265 (3)
N40.23159 (10)0.18795 (7)0.22006 (15)0.0305 (3)
N50.03993 (11)0.36460 (8)0.23724 (19)0.0440 (4)
C10.37777 (12)0.18629 (7)0.42770 (17)0.0258 (3)
C20.30761 (12)0.09772 (7)0.33837 (18)0.0268 (4)
C30.49357 (11)0.13916 (7)0.63312 (17)0.0244 (3)
H30.46770.16790.70330.029*
C40.50513 (11)0.07593 (7)0.70349 (17)0.0252 (3)
H4A0.52310.04620.63070.030*
H4B0.56210.07720.78460.030*
C50.41174 (12)0.05325 (7)0.76135 (17)0.0255 (3)
C60.41222 (11)0.01130 (7)0.81389 (16)0.0246 (3)
C70.50162 (12)0.04455 (7)0.84342 (17)0.0264 (3)
H70.56400.02650.82790.032*
C80.50025 (13)0.10395 (7)0.89538 (18)0.0306 (4)
H80.56170.12650.91510.037*
C90.40986 (13)0.13060 (8)0.91858 (19)0.0332 (4)
H90.40910.17150.95340.040*
C100.32011 (14)0.09748 (8)0.89083 (19)0.0342 (4)
H100.25800.11550.90790.041*
C110.32128 (12)0.03833 (8)0.83847 (18)0.0305 (4)
H110.25980.01590.81900.037*
C120.59542 (11)0.16257 (7)0.60266 (17)0.0244 (3)
C130.64074 (12)0.14022 (8)0.48742 (18)0.0305 (4)
H130.60570.11140.42190.037*
C140.73711 (13)0.15985 (8)0.4674 (2)0.0363 (4)
H140.76790.14420.38880.044*
C150.78809 (13)0.20224 (8)0.5621 (2)0.0358 (4)
H150.85360.21600.54820.043*
C160.74310 (13)0.22440 (8)0.67691 (19)0.0335 (4)
H160.77830.25320.74240.040*
C170.64733 (12)0.20516 (7)0.69740 (18)0.0291 (4)
H170.61690.22100.77610.035*
C180.23453 (13)0.24544 (9)0.1994 (2)0.0375 (4)
H180.28620.26960.25320.045*
C190.15729 (12)0.27428 (9)0.0914 (2)0.0363 (4)
C200.09104 (13)0.24006 (8)0.0091 (2)0.0359 (4)
H200.09120.19660.00370.043*
C210.02564 (13)0.26954 (9)0.1159 (2)0.0368 (4)
H210.01850.24690.18580.044*
C220.02605 (12)0.33251 (8)0.1185 (2)0.0356 (4)
C230.08666 (13)0.36786 (9)0.0181 (2)0.0427 (5)
H230.08280.41130.02060.051*
C240.15371 (13)0.33767 (9)0.0872 (2)0.0422 (5)
H240.19740.36080.15680.051*
C250.24185 (12)0.05265 (8)0.25380 (19)0.0321 (4)
C260.22312 (14)0.00168 (8)0.3235 (2)0.0435 (5)
H260.25050.00770.42270.052*
C270.16458 (16)0.04698 (9)0.2484 (3)0.0564 (6)
H270.15260.08430.29590.068*
C280.12366 (15)0.03807 (10)0.1051 (3)0.0564 (6)
H280.08290.06910.05440.068*
C290.14132 (14)0.01515 (10)0.0354 (2)0.0497 (6)
H290.11240.02100.06330.060*
C300.20157 (13)0.06087 (9)0.1082 (2)0.0394 (5)
H300.21510.09740.05890.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0366 (3)0.0258 (2)0.0356 (3)0.00011 (17)0.00091 (18)0.00255 (18)
O10.0319 (6)0.0328 (6)0.0388 (7)0.0046 (5)0.0042 (5)0.0019 (5)
O20.0617 (10)0.0478 (9)0.0783 (12)0.0076 (8)0.0139 (8)0.0202 (8)
O30.0449 (8)0.0643 (10)0.0487 (9)0.0034 (7)0.0129 (7)0.0094 (7)
N10.0259 (7)0.0233 (7)0.0240 (7)0.0000 (5)0.0030 (5)0.0019 (5)
N20.0260 (7)0.0266 (7)0.0273 (7)0.0003 (5)0.0034 (5)0.0049 (6)
N30.0228 (7)0.0326 (8)0.0226 (7)0.0029 (5)0.0017 (5)0.0005 (6)
N40.0257 (7)0.0405 (8)0.0237 (7)0.0052 (6)0.0020 (5)0.0046 (6)
N50.0315 (8)0.0484 (10)0.0501 (11)0.0016 (7)0.0006 (7)0.0160 (8)
C10.0236 (8)0.0310 (9)0.0221 (8)0.0022 (6)0.0015 (6)0.0023 (6)
C20.0232 (8)0.0315 (9)0.0251 (8)0.0021 (6)0.0010 (6)0.0042 (7)
C30.0258 (8)0.0240 (8)0.0217 (8)0.0005 (6)0.0020 (6)0.0011 (6)
C40.0259 (8)0.0253 (8)0.0230 (8)0.0001 (6)0.0017 (6)0.0005 (6)
C50.0275 (8)0.0259 (8)0.0213 (8)0.0014 (6)0.0027 (6)0.0023 (6)
C60.0281 (8)0.0258 (8)0.0191 (8)0.0018 (6)0.0009 (6)0.0032 (6)
C70.0287 (8)0.0267 (8)0.0232 (8)0.0023 (6)0.0018 (6)0.0020 (6)
C80.0348 (9)0.0290 (8)0.0274 (9)0.0017 (7)0.0026 (7)0.0002 (7)
C90.0447 (10)0.0267 (8)0.0278 (9)0.0052 (7)0.0041 (7)0.0005 (7)
C100.0352 (9)0.0357 (9)0.0321 (10)0.0100 (7)0.0055 (7)0.0012 (8)
C110.0273 (8)0.0347 (9)0.0288 (9)0.0013 (7)0.0019 (7)0.0030 (7)
C120.0269 (8)0.0221 (8)0.0225 (8)0.0005 (6)0.0026 (6)0.0025 (6)
C130.0334 (9)0.0311 (9)0.0255 (9)0.0055 (7)0.0004 (7)0.0050 (7)
C140.0378 (10)0.0422 (10)0.0298 (9)0.0041 (8)0.0085 (7)0.0060 (8)
C150.0314 (9)0.0401 (10)0.0359 (10)0.0073 (8)0.0049 (7)0.0011 (8)
C160.0332 (9)0.0298 (9)0.0360 (10)0.0072 (7)0.0003 (7)0.0045 (7)
C170.0316 (9)0.0283 (8)0.0268 (8)0.0016 (7)0.0015 (7)0.0048 (7)
C180.0290 (9)0.0465 (11)0.0358 (10)0.0001 (8)0.0003 (7)0.0075 (8)
C190.0250 (9)0.0456 (11)0.0376 (10)0.0017 (7)0.0023 (7)0.0116 (8)
C200.0309 (9)0.0395 (10)0.0368 (10)0.0007 (7)0.0029 (7)0.0073 (8)
C210.0254 (9)0.0463 (11)0.0384 (10)0.0004 (8)0.0034 (7)0.0045 (8)
C220.0217 (8)0.0459 (11)0.0384 (10)0.0008 (7)0.0014 (7)0.0124 (8)
C230.0324 (10)0.0420 (11)0.0523 (12)0.0025 (8)0.0010 (8)0.0139 (9)
C240.0327 (10)0.0443 (11)0.0464 (12)0.0056 (8)0.0054 (8)0.0087 (9)
C250.0236 (8)0.0375 (10)0.0331 (9)0.0050 (7)0.0031 (7)0.0122 (8)
C260.0400 (11)0.0356 (10)0.0498 (12)0.0003 (8)0.0109 (9)0.0092 (9)
C270.0500 (13)0.0375 (11)0.0750 (16)0.0032 (9)0.0141 (11)0.0136 (11)
C280.0390 (11)0.0530 (13)0.0705 (16)0.0023 (10)0.0148 (10)0.0310 (12)
C290.0320 (10)0.0686 (15)0.0441 (12)0.0096 (10)0.0092 (8)0.0259 (11)
C300.0292 (9)0.0521 (11)0.0348 (10)0.0064 (8)0.0034 (7)0.0142 (9)
Geometric parameters (Å, º) top
S1—C11.6622 (16)C12—C171.394 (2)
O1—C51.2218 (18)C13—C141.392 (2)
O2—N51.215 (2)C13—H130.9500
O3—N51.229 (2)C14—C151.386 (2)
N1—C11.3466 (19)C14—H140.9500
N1—N21.3745 (17)C15—C161.382 (2)
N1—C31.4754 (18)C15—H150.9500
N2—C21.3058 (19)C16—C171.383 (2)
N3—C21.383 (2)C16—H160.9500
N3—N41.3911 (17)C17—H170.9500
N3—C11.3984 (19)C18—C191.471 (2)
N4—C181.271 (2)C18—H180.9500
N5—C221.483 (2)C19—C241.385 (3)
C2—C251.468 (2)C19—C201.405 (2)
C3—C121.515 (2)C20—C211.382 (2)
C3—C41.525 (2)C20—H200.9500
C3—H31.0000C21—C221.375 (2)
C4—C51.508 (2)C21—H210.9500
C4—H4A0.9900C22—C231.379 (3)
C4—H4B0.9900C23—C241.392 (2)
C5—C61.491 (2)C23—H230.9500
C6—C71.389 (2)C24—H240.9500
C6—C111.396 (2)C25—C261.390 (3)
C7—C81.385 (2)C25—C301.392 (2)
C7—H70.9500C26—C271.384 (3)
C8—C91.382 (2)C26—H260.9500
C8—H80.9500C27—C281.377 (3)
C9—C101.390 (2)C27—H270.9500
C9—H90.9500C28—C291.367 (3)
C10—C111.381 (2)C28—H280.9500
C10—H100.9500C29—C301.394 (3)
C11—H110.9500C29—H290.9500
C12—C131.389 (2)C30—H300.9500
C1—N1—N2113.68 (12)C12—C13—H13119.8
C1—N1—C3124.37 (13)C14—C13—H13119.8
N2—N1—C3121.68 (12)C15—C14—C13119.95 (16)
C2—N2—N1105.02 (12)C15—C14—H14120.0
C2—N3—N4120.35 (12)C13—C14—H14120.0
C2—N3—C1108.21 (12)C16—C15—C14119.68 (16)
N4—N3—C1130.87 (13)C16—C15—H15120.2
C18—N4—N3119.33 (14)C14—C15—H15120.2
O2—N5—O3124.84 (16)C15—C16—C17120.68 (15)
O2—N5—C22117.86 (17)C15—C16—H16119.7
O3—N5—C22117.30 (15)C17—C16—H16119.7
N1—C1—N3102.69 (13)C16—C17—C12120.07 (16)
N1—C1—S1126.13 (12)C16—C17—H17120.0
N3—C1—S1131.16 (12)C12—C17—H17120.0
N2—C2—N3110.38 (13)N4—C18—C19119.45 (16)
N2—C2—C25122.63 (15)N4—C18—H18120.3
N3—C2—C25126.98 (14)C19—C18—H18120.3
N1—C3—C12111.99 (12)C24—C19—C20119.79 (16)
N1—C3—C4109.89 (12)C24—C19—C18117.69 (16)
C12—C3—C4110.29 (12)C20—C19—C18122.47 (17)
N1—C3—H3108.2C21—C20—C19120.06 (17)
C12—C3—H3108.2C21—C20—H20120.0
C4—C3—H3108.2C19—C20—H20120.0
C5—C4—C3114.30 (13)C22—C21—C20118.34 (17)
C5—C4—H4A108.7C22—C21—H21120.8
C3—C4—H4A108.7C20—C21—H21120.8
C5—C4—H4B108.7C21—C22—C23123.43 (16)
C3—C4—H4B108.7C21—C22—N5118.82 (16)
H4A—C4—H4B107.6C23—C22—N5117.74 (16)
O1—C5—C6120.97 (15)C22—C23—C24117.70 (18)
O1—C5—C4121.53 (14)C22—C23—H23121.2
C6—C5—C4117.49 (13)C24—C23—H23121.2
C7—C6—C11119.18 (15)C19—C24—C23120.59 (17)
C7—C6—C5121.46 (14)C19—C24—H24119.7
C11—C6—C5119.33 (14)C23—C24—H24119.7
C8—C7—C6120.30 (15)C26—C25—C30119.43 (16)
C8—C7—H7119.8C26—C25—C2117.15 (16)
C6—C7—H7119.8C30—C25—C2123.37 (17)
C9—C8—C7120.23 (16)C27—C26—C25120.1 (2)
C9—C8—H8119.9C27—C26—H26120.0
C7—C8—H8119.9C25—C26—H26120.0
C8—C9—C10119.91 (16)C28—C27—C26120.1 (2)
C8—C9—H9120.0C28—C27—H27119.9
C10—C9—H9120.0C26—C27—H27119.9
C11—C10—C9119.93 (16)C29—C28—C27120.39 (19)
C11—C10—H10120.0C29—C28—H28119.8
C9—C10—H10120.0C27—C28—H28119.8
C10—C11—C6120.44 (16)C28—C29—C30120.36 (19)
C10—C11—H11119.8C28—C29—H29119.8
C6—C11—H11119.8C30—C29—H29119.8
C13—C12—C17119.23 (15)C25—C30—C29119.60 (19)
C13—C12—C3121.66 (13)C25—C30—H30120.2
C17—C12—C3119.01 (14)C29—C30—H30120.2
C12—C13—C14120.38 (15)
C1—N1—N2—C20.32 (18)N1—C3—C12—C17136.38 (14)
C3—N1—N2—C2173.93 (14)C4—C3—C12—C17100.89 (16)
C2—N3—N4—C18176.27 (16)C17—C12—C13—C140.4 (2)
C1—N3—N4—C1813.5 (3)C3—C12—C13—C14176.07 (15)
N2—N1—C1—N30.65 (17)C12—C13—C14—C150.4 (3)
C3—N1—C1—N3174.72 (13)C13—C14—C15—C160.5 (3)
N2—N1—C1—S1177.81 (12)C14—C15—C16—C170.6 (3)
C3—N1—C1—S13.7 (2)C15—C16—C17—C120.6 (2)
C2—N3—C1—N11.33 (17)C13—C12—C17—C160.5 (2)
N4—N3—C1—N1172.49 (15)C3—C12—C17—C16176.08 (14)
C2—N3—C1—S1177.02 (14)N3—N4—C18—C19178.74 (15)
N4—N3—C1—S15.9 (3)N4—C18—C19—C24170.56 (18)
N1—N2—C2—N31.19 (18)N4—C18—C19—C2011.9 (3)
N1—N2—C2—C25177.76 (15)C24—C19—C20—C212.9 (3)
N4—N3—C2—N2173.91 (13)C18—C19—C20—C21174.62 (17)
C1—N3—C2—N21.65 (19)C19—C20—C21—C221.3 (3)
N4—N3—C2—C255.0 (2)C20—C21—C22—C231.6 (3)
C1—N3—C2—C25177.24 (16)C20—C21—C22—N5176.85 (16)
C1—N1—C3—C1269.61 (19)O2—N5—C22—C21168.08 (18)
N2—N1—C3—C12116.77 (15)O3—N5—C22—C2111.4 (3)
C1—N1—C3—C4167.44 (14)O2—N5—C22—C2313.4 (3)
N2—N1—C3—C46.2 (2)O3—N5—C22—C23167.13 (17)
N1—C3—C4—C565.96 (17)C21—C22—C23—C242.8 (3)
C12—C3—C4—C5170.10 (12)N5—C22—C23—C24175.60 (17)
C3—C4—C5—O18.9 (2)C20—C19—C24—C231.6 (3)
C3—C4—C5—C6172.12 (13)C18—C19—C24—C23176.04 (18)
O1—C5—C6—C7163.09 (15)C22—C23—C24—C191.2 (3)
C4—C5—C6—C715.9 (2)N2—C2—C25—C2626.7 (2)
O1—C5—C6—C1114.8 (2)N3—C2—C25—C26152.10 (18)
C4—C5—C6—C11166.23 (14)N2—C2—C25—C30150.80 (17)
C11—C6—C7—C80.6 (2)N3—C2—C25—C3030.4 (3)
C5—C6—C7—C8178.48 (15)C30—C25—C26—C270.2 (3)
C6—C7—C8—C90.1 (2)C2—C25—C26—C27177.80 (17)
C7—C8—C9—C100.5 (3)C25—C26—C27—C280.8 (3)
C8—C9—C10—C110.8 (3)C26—C27—C28—C290.7 (3)
C9—C10—C11—C60.4 (3)C27—C28—C29—C300.4 (3)
C7—C6—C11—C100.3 (2)C26—C25—C30—C291.4 (3)
C5—C6—C11—C10178.26 (15)C2—C25—C30—C29178.79 (16)
N1—C3—C12—C1347.16 (19)C28—C29—C30—C251.5 (3)
C4—C3—C12—C1375.57 (18)

Experimental details

Crystal data
Chemical formulaC30H23N5O3S
Mr533.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)13.3303 (13), 21.832 (2), 9.2773 (9)
β (°) 98.213 (3)
V3)2672.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
27241, 6372, 5124
Rint0.040
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.10
No. of reflections6372
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support of this study by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds