organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-3,4′,6,7-tetra­meth­­oxy­flavone

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tliyl@jnu.edu.cn

(Received 4 September 2011; accepted 19 September 2011; online 30 September 2011)

The title compound, C19H18O7 [systematic name 5-hy­droxy-3,6,7-tri­meth­­oxy-2-(4-meth­oxy­phen­yl)-4H-1-benzopyran-4-one], is a flavonoid which was isolated from the traditional Chinese medicine Laggera alata. The benzene ring of the benzopyran­one unit forms dihedral angles of 1.72 (3) and 37.39 (5)° with the pyran ring and the substituent benzene ring, respectively. The mol­ecular conformation is stabilized by an intra­molecular phenol O—H⋯Oketone hydrogen bond.

Related literature

For general background to the synthesis and isolation of the title compound, see: Goldsworthy & Robert (1936[Goldsworthy, L. J. & Robert, R. (1936). J. Am. Chem. Soc. 58, 46-49.]); Sy & Brown (1998[Sy, L. K. & Brown, G. D. (1998). Phytochem. 7, 1207-1211.]); Yang et al. (2007[Yang, G. Z., Li, Y. F., Yu, X. & Mei, Z. N. (2007). Acta Pharm. Sin. 5, 511-515.]); Masateru et al. (2009[Masateru, O., Yumiko, N., Tsuyoshi, I., Ryota, T., Masafumi, O., Junei, K., Hitoshi, Y. & Toshihiro, N. (2009). Chem. Pharm. Bull. 10, 1132-1135.]). For its anti-hepatotoxic activity, see: Chhaya & Mishra (2007[Chhaya, G. & Mishra, S. H. (2007). Pharmacologyonline 1, 391-399.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O7

  • Mr = 358.33

  • Monoclinic, P 21 /c

  • a = 16.6029 (3) Å

  • b = 7.40255 (12) Å

  • c = 14.8666 (3) Å

  • β = 110.487 (2)°

  • V = 1711.60 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.596, Tmax = 1.000

  • 5568 measured reflections

  • 2681 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 2681 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5 0.82 1.89 2.6157 (16) 147

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, the flavonoid C19H18O7 [systematic name 5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one], (Fig. 1) was originally sythesised from trimethoxyacetophenone (Goldsworthy & Robert, 1936). It was also isolated from Artemisia annua (Sy & Brown, 1998), Laggera pterodonta (Yang et al., 2007) and Aites agnus-castus (Masateru et al., 2009). The flavonoid was also proved to possess significant anti-hepatotoxic activity (Chhaya et al., 2007). The present compound was isolated from the traditional Chinese medicine Laggera alata. In the crystal structure, the dihedral angle between the plane of the benzene ring A and the pyran plane C is 1.72 (3)°, while that between the benzene ring A and the phenyl ring B is 37.39 (5)°. The molecular conformation is stabilized by an intramolecular phenol O—H···Oketone hydrogen-bonding interaction (Table 1).

Related literature top

For general background to the synthesis and isolation of the title compound, see: Goldsworthy & Robert (1936); Sy & Brown (1998); Yang et al. (2007); Masateru et al. (2009). For its anti-hepatotoxic activity, see: Chhaya & Mishra (2007).

Experimental top

The title compound was isolated from the herbs of the traditional Chinese medicine Laggera alata. The herbs of Laggera alata (5 kg) was extracted with 95% ethanol at room temperature and the extracted solution was concentrated by rotary evaporator. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. The title compound (50 mg) was isolated from the petroleum ether fraction using silica gel column chromatography and crystals were obtained after slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) ,0.93 Å (aryl H) and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) (aryl H) and = 1.5Ueq[C(methyl) and O].

Structure description top

The title compound, the flavonoid C19H18O7 [systematic name 5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one], (Fig. 1) was originally sythesised from trimethoxyacetophenone (Goldsworthy & Robert, 1936). It was also isolated from Artemisia annua (Sy & Brown, 1998), Laggera pterodonta (Yang et al., 2007) and Aites agnus-castus (Masateru et al., 2009). The flavonoid was also proved to possess significant anti-hepatotoxic activity (Chhaya et al., 2007). The present compound was isolated from the traditional Chinese medicine Laggera alata. In the crystal structure, the dihedral angle between the plane of the benzene ring A and the pyran plane C is 1.72 (3)°, while that between the benzene ring A and the phenyl ring B is 37.39 (5)°. The molecular conformation is stabilized by an intramolecular phenol O—H···Oketone hydrogen-bonding interaction (Table 1).

For general background to the synthesis and isolation of the title compound, see: Goldsworthy & Robert (1936); Sy & Brown (1998); Yang et al. (2007); Masateru et al. (2009). For its anti-hepatotoxic activity, see: Chhaya & Mishra (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
5-Hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one top
Crystal data top
C19H18O7F(000) = 752
Mr = 358.33Dx = 1.391 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 16.6029 (3) ÅCell parameters from 3031 reflections
b = 7.40255 (12) Åθ = 3.2–62.6°
c = 14.8666 (3) ŵ = 0.90 mm1
β = 110.487 (2)°T = 295 K
V = 1711.60 (6) Å3Block, colourless
Z = 40.26 × 0.21 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
2681 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2380 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 16.0288 pixels mm-1θmax = 62.7°, θmin = 5.7°
ω scansh = 1918
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.596, Tmax = 1.000l = 1217
5568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2624P]
where P = (Fo2 + 2Fc2)/3
2681 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H18O7V = 1711.60 (6) Å3
Mr = 358.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.6029 (3) ŵ = 0.90 mm1
b = 7.40255 (12) ÅT = 295 K
c = 14.8666 (3) Å0.26 × 0.21 × 0.18 mm
β = 110.487 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2380 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 1.000Rint = 0.016
5568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2681 reflectionsΔρmin = 0.13 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48173 (9)0.62713 (18)0.35189 (9)0.0426 (3)
H10.48270.62470.41480.051*
C20.55652 (9)0.65137 (18)0.33208 (9)0.0426 (3)
C30.55508 (9)0.65911 (18)0.23692 (10)0.0437 (3)
C40.47856 (10)0.63752 (18)0.16217 (9)0.0452 (4)
C50.40106 (9)0.60851 (18)0.18019 (9)0.0425 (3)
C60.40584 (9)0.60677 (17)0.27555 (9)0.0400 (3)
C70.31987 (10)0.58282 (19)0.10407 (10)0.0470 (4)
C80.24726 (9)0.55273 (19)0.13451 (10)0.0463 (4)
C90.25552 (9)0.55542 (18)0.22864 (9)0.0426 (3)
C100.18754 (9)0.54065 (19)0.27030 (9)0.0438 (3)
C110.19372 (9)0.6426 (2)0.35134 (10)0.0471 (4)
H110.24130.71670.37860.057*
C120.13104 (9)0.6358 (2)0.39175 (10)0.0512 (4)
H120.13630.70580.44550.061*
C130.05974 (9)0.5249 (2)0.35272 (10)0.0502 (4)
C140.05317 (10)0.4198 (2)0.27362 (12)0.0581 (4)
H140.00630.34320.24780.070*
C150.11659 (10)0.4286 (2)0.23276 (11)0.0553 (4)
H150.11140.35810.17920.066*
C160.64117 (10)0.6460 (3)0.49839 (11)0.0672 (5)
H16A0.62280.52600.50650.101*
H16B0.60500.73240.51400.101*
H16C0.69960.66300.54020.101*
C170.67982 (12)0.5470 (3)0.21626 (15)0.0744 (5)
H17A0.64670.46440.16760.112*
H17B0.69830.48790.27760.112*
H17C0.72920.58600.20200.112*
C180.15121 (13)0.3816 (3)0.00626 (14)0.0818 (6)
H18A0.17590.40020.04250.123*
H18B0.09050.36170.02340.123*
H18C0.17730.27820.04420.123*
C190.07302 (12)0.4180 (3)0.36159 (15)0.0807 (6)
H19A0.10540.44870.29610.121*
H19B0.10840.43410.40010.121*
H19C0.05490.29420.36500.121*
O10.33340 (6)0.58608 (13)0.29847 (6)0.0426 (3)
O20.63532 (6)0.67071 (15)0.40059 (7)0.0525 (3)
O30.62890 (7)0.69783 (14)0.21861 (7)0.0529 (3)
O40.47794 (8)0.64402 (17)0.07088 (7)0.0620 (3)
H40.42880.62810.03340.093*
O50.31225 (8)0.58768 (17)0.01722 (7)0.0616 (3)
O60.16597 (7)0.53866 (16)0.06686 (7)0.0587 (3)
O70.00047 (7)0.53200 (18)0.39654 (8)0.0674 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (8)0.0430 (8)0.0356 (7)0.0008 (6)0.0155 (6)0.0017 (6)
C20.0492 (8)0.0354 (7)0.0431 (7)0.0009 (6)0.0160 (6)0.0014 (6)
C30.0547 (8)0.0332 (7)0.0489 (8)0.0023 (6)0.0253 (7)0.0009 (6)
C40.0654 (9)0.0362 (7)0.0389 (7)0.0008 (6)0.0243 (7)0.0009 (6)
C50.0552 (8)0.0343 (7)0.0380 (7)0.0016 (6)0.0165 (6)0.0008 (5)
C60.0486 (8)0.0334 (7)0.0396 (7)0.0022 (6)0.0175 (6)0.0026 (5)
C70.0626 (9)0.0394 (7)0.0359 (7)0.0056 (7)0.0132 (6)0.0033 (6)
C80.0513 (8)0.0415 (8)0.0394 (7)0.0053 (6)0.0074 (6)0.0014 (6)
C90.0469 (8)0.0343 (7)0.0410 (7)0.0030 (6)0.0084 (6)0.0001 (6)
C100.0448 (7)0.0396 (7)0.0418 (7)0.0011 (6)0.0086 (6)0.0013 (6)
C110.0455 (8)0.0488 (8)0.0424 (7)0.0076 (6)0.0096 (6)0.0027 (6)
C120.0533 (8)0.0552 (9)0.0432 (7)0.0080 (7)0.0143 (6)0.0058 (7)
C130.0476 (8)0.0517 (9)0.0487 (8)0.0052 (7)0.0139 (6)0.0020 (7)
C140.0525 (9)0.0538 (9)0.0633 (9)0.0156 (7)0.0143 (7)0.0097 (8)
C150.0593 (9)0.0490 (9)0.0544 (8)0.0080 (7)0.0159 (7)0.0123 (7)
C160.0522 (9)0.0982 (14)0.0450 (8)0.0076 (9)0.0092 (7)0.0153 (9)
C170.0725 (12)0.0621 (11)0.1037 (14)0.0102 (9)0.0500 (11)0.0093 (10)
C180.0770 (12)0.0918 (15)0.0642 (11)0.0132 (11)0.0088 (9)0.0287 (10)
C190.0579 (10)0.0963 (15)0.0901 (13)0.0257 (10)0.0288 (9)0.0111 (12)
O10.0438 (5)0.0456 (5)0.0367 (5)0.0003 (4)0.0121 (4)0.0005 (4)
O20.0473 (6)0.0639 (7)0.0455 (5)0.0059 (5)0.0154 (4)0.0045 (5)
O30.0624 (6)0.0430 (6)0.0640 (6)0.0042 (5)0.0357 (5)0.0008 (5)
O40.0791 (8)0.0728 (8)0.0406 (5)0.0097 (6)0.0290 (5)0.0025 (5)
O50.0754 (7)0.0706 (8)0.0348 (5)0.0027 (6)0.0141 (5)0.0057 (5)
O60.0545 (6)0.0664 (7)0.0439 (6)0.0046 (5)0.0029 (5)0.0018 (5)
O70.0587 (7)0.0816 (9)0.0676 (7)0.0227 (6)0.0294 (6)0.0130 (6)
Geometric parameters (Å, º) top
C1—H10.9300C12—C131.390 (2)
C1—C21.3845 (19)C13—C141.382 (2)
C1—C61.3774 (19)C13—O71.3580 (18)
C2—C31.408 (2)C14—H140.9300
C2—O21.3552 (17)C14—C151.389 (2)
C3—C41.373 (2)C15—H150.9300
C3—O31.3755 (17)C16—H16A0.9600
C4—C51.419 (2)C16—H16B0.9600
C4—O41.3543 (17)C16—H16C0.9600
C5—C61.3920 (19)C16—O21.4347 (18)
C5—C71.437 (2)C17—H17A0.9600
C6—O11.3685 (16)C17—H17B0.9600
C7—C81.446 (2)C17—H17C0.9600
C7—O51.2531 (17)C17—O31.408 (2)
C8—C91.358 (2)C18—H18A0.9600
C8—O61.3761 (17)C18—H18B0.9600
C9—C101.469 (2)C18—H18C0.9600
C9—O11.3644 (16)C18—O61.438 (2)
C10—C111.395 (2)C19—H19A0.9600
C10—C151.388 (2)C19—H19B0.9600
C11—H110.9300C19—H19C0.9600
C11—C121.373 (2)C19—O71.424 (2)
C12—H120.9300O4—H40.8200
C2—C1—H1121.0O7—C13—C14125.10 (14)
C6—C1—H1121.0C13—C14—H14120.0
C6—C1—C2117.96 (12)C13—C14—C15119.95 (14)
C1—C2—C3121.20 (13)C15—C14—H14120.0
O2—C2—C1123.76 (12)C10—C15—C14121.25 (14)
O2—C2—C3115.04 (12)C10—C15—H15119.4
C4—C3—C2119.61 (13)C14—C15—H15119.4
C4—C3—O3120.00 (12)H16A—C16—H16B109.5
O3—C3—C2120.30 (13)H16A—C16—H16C109.5
C3—C4—C5120.51 (12)H16B—C16—H16C109.5
O4—C4—C3119.16 (13)O2—C16—H16A109.5
O4—C4—C5120.33 (13)O2—C16—H16B109.5
C4—C5—C7122.26 (12)O2—C16—H16C109.5
C6—C5—C4117.47 (13)H17A—C17—H17B109.5
C6—C5—C7120.26 (13)H17A—C17—H17C109.5
C1—C6—C5123.22 (13)H17B—C17—H17C109.5
O1—C6—C1115.93 (11)O3—C17—H17A109.5
O1—C6—C5120.85 (12)O3—C17—H17B109.5
C5—C7—C8115.41 (12)O3—C17—H17C109.5
O5—C7—C5122.41 (14)H18A—C18—H18B109.5
O5—C7—C8122.18 (13)H18A—C18—H18C109.5
C9—C8—C7121.73 (13)H18B—C18—H18C109.5
C9—C8—O6118.29 (14)O6—C18—H18A109.5
O6—C8—C7119.66 (12)O6—C18—H18B109.5
C8—C9—C10128.17 (13)O6—C18—H18C109.5
C8—C9—O1120.90 (13)H19A—C19—H19B109.5
O1—C9—C10110.79 (11)H19A—C19—H19C109.5
C11—C10—C9119.26 (12)H19B—C19—H19C109.5
C15—C10—C9122.96 (13)O7—C19—H19A109.5
C15—C10—C11117.78 (14)O7—C19—H19B109.5
C10—C11—H11119.3O7—C19—H19C109.5
C12—C11—C10121.36 (13)C9—O1—C6120.71 (10)
C12—C11—H11119.3C2—O2—C16116.96 (11)
C11—C12—H12119.9C3—O3—C17115.09 (12)
C11—C12—C13120.29 (14)C4—O4—H4109.5
C13—C12—H12119.9C8—O6—C18115.31 (13)
C14—C13—C12119.34 (14)C13—O7—C19118.32 (13)
O7—C13—C12115.55 (13)
C1—C2—C3—C41.7 (2)C8—C9—C10—C11142.84 (15)
C1—C2—C3—O3174.72 (12)C8—C9—C10—C1537.3 (2)
C1—C2—O2—C166.5 (2)C8—C9—O1—C62.98 (19)
C1—C6—O1—C9176.54 (12)C9—C8—O6—C18119.21 (16)
C2—C1—C6—C50.3 (2)C9—C10—C11—C12178.80 (13)
C2—C1—C6—O1178.99 (12)C9—C10—C15—C14179.31 (14)
C2—C3—C4—C50.3 (2)C10—C9—O1—C6179.13 (11)
C2—C3—C4—O4179.58 (13)C10—C11—C12—C130.5 (2)
C2—C3—O3—C1788.51 (17)C11—C10—C15—C140.8 (2)
C3—C2—O2—C16174.02 (14)C11—C12—C13—C140.9 (2)
C3—C4—C5—C61.3 (2)C11—C12—C13—O7178.28 (14)
C3—C4—C5—C7179.12 (13)C12—C13—C14—C151.4 (2)
C4—C3—O3—C1795.05 (17)C12—C13—O7—C19178.35 (16)
C4—C5—C6—C11.7 (2)C13—C14—C15—C100.5 (3)
C4—C5—C6—O1177.63 (11)C14—C13—O7—C192.6 (2)
C4—C5—C7—C8179.28 (13)C15—C10—C11—C121.3 (2)
C4—C5—C7—O51.3 (2)O1—C9—C10—C1132.96 (17)
C5—C6—O1—C94.11 (18)O1—C9—C10—C15146.90 (14)
C5—C7—C8—C92.3 (2)O2—C2—C3—C4178.76 (12)
C5—C7—C8—O6175.71 (12)O2—C2—C3—O34.78 (19)
C6—C1—C2—C31.4 (2)O3—C3—C4—C5176.13 (12)
C6—C1—C2—O2179.15 (13)O3—C3—C4—O44.0 (2)
C6—C5—C7—C81.2 (2)O4—C4—C5—C6178.79 (13)
C6—C5—C7—O5178.25 (13)O4—C4—C5—C70.8 (2)
C7—C5—C6—C1178.74 (12)O5—C7—C8—C9177.12 (14)
C7—C5—C6—O12.0 (2)O5—C7—C8—O63.7 (2)
C7—C8—C9—C10175.13 (13)O6—C8—C9—C101.6 (2)
C7—C8—C9—O10.3 (2)O6—C8—C9—O1173.81 (12)
C7—C8—O6—C1867.14 (19)O7—C13—C14—C15177.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.821.892.6157 (16)147

Experimental details

Crystal data
Chemical formulaC19H18O7
Mr358.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.6029 (3), 7.40255 (12), 14.8666 (3)
β (°) 110.487 (2)
V3)1711.60 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.90
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.596, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5568, 2681, 2380
Rint0.016
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections2681
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.821.892.6157 (16)147.2
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 81072535) and the Team Project of the Natural Science Foundation of Guangdong Province (No. 8351063201000003).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationChhaya, G. & Mishra, S. H. (2007). Pharmacologyonline 1, 391–399.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldsworthy, L. J. & Robert, R. (1936). J. Am. Chem. Soc. 58, 46–49.  Google Scholar
First citationMasateru, O., Yumiko, N., Tsuyoshi, I., Ryota, T., Masafumi, O., Junei, K., Hitoshi, Y. & Toshihiro, N. (2009). Chem. Pharm. Bull. 10, 1132–1135.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSy, L. K. & Brown, G. D. (1998). Phytochem. 7, 1207–1211.  Google Scholar
First citationYang, G. Z., Li, Y. F., Yu, X. & Mei, Z. N. (2007). Acta Pharm. Sin. 5, 511–515.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds