organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6,6-Tri­methyl­cyclo­hexene-1-carbaldehyde oxime

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and cDepartment of Chemistry, National Institute of Technology, Karaikal 609 605, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 6 September 2011; accepted 16 September 2011; online 30 September 2011)

In the crystal of the title compound C10H17NO, synthesized by the reaction of β-cyclo­citral with hydroxyl­amine hydro­chloride, inversion-related mol­ecules are linked by a pair of O—H⋯N hydrogen-bonding inter­actions between the oxime functionalities, forming R22(6) loops. The molecular conformation is stabilized by intra­molecular methyl C—H⋯N inter­actions. The cyclohexene ring has the typical half-chair conformation.

Related literature

For applications of oximes in organic syntheses, see: Cerny et al. (1969[Cerny, M., Malek, J., Capka, M. & Chvalowsky, V. (1969). Collect. Czech. Chem. Commun. 34, 1025-1032.]); Donaruma & Heldt (1960[Donaruma, L. G. & Heldt, W. Z. (1960). Org. React. 11, 1-156.]); Kutney et al. (1992[Kutney, J. P., Gunning, P. J., Clewley, R. G., Somerville, J. & Rettig, S. J. (1992). Can. J. Chem. 70, 2094-2114.]); Touster (1953[Touster, O. (1953). Org. React. 7, 327-377.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17NO

  • Mr = 167.25

  • Triclinic, [P \overline 1]

  • a = 7.5670 (3) Å

  • b = 7.7208 (3) Å

  • c = 9.3072 (4) Å

  • α = 81.212 (3)°

  • β = 76.590 (3)°

  • γ = 71.385 (3)°

  • V = 499.43 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.09 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.994, Tmax = 0.997

  • 13971 measured reflections

  • 3341 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.191

  • S = 1.06

  • 3341 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.86 (3) 2.02 (3) 2.8346 (18) 158 (2)
C9—H9A⋯N1 0.96 2.57 3.1979 (19) 123
C10—H10A⋯N1 0.96 2.43 3.0762 (17) 125
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

An oxime is an important functional group in organic chemistry because it is not only used as an efficient protecting group for carbonyls but also may be used for the purification of carbonyl compounds (Donaruma & Heldt, 1960). Moreover oximes are used for the preparation of many compounds such as amines by reduction (Cerny et al., 1969), nitro compounds by oxidation, amides by the Beckmann rearrangement and carbonyl compounds from non carbonyl compounds (Touster, 1953). The title compound C10H17NO is a key intermediate in the synthesis of aroma compounds such as β-cyclogeranyl nitrile which can be used for the synthesis of the important aroma compound β-damascone (Kutney et al., 1992). Herein, we report the crystal structure of the title compound (Fig. 1) in which each molecule is connected to an inversion-related molecule through O—H···N hydrogen bonds, (Table 1) forming a cyclic dimer [graph-set R22(6) (Etter et al., 1990; Bernstein et al., 1995] (Fig. 2). These cyclic DA—AD (Donor Acceptor–Acceptor Donor) interactions involving pairs of O—H···N hydrogen bonds between the oxime functionalities are similar to the O—H···O interactions observed in carboxylic acid dimers. The crystal structure is stabilized by intramolecular methyl C—H···Noxime hydrogen-bonding interactions.

Related literature top

For applications of oximes in organic syntheses, see: Cerny et al. (1969); Donaruma & Heldt (1960); Kutney et al. (1992); Touster (1953). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 4.6 g (0.065 mol) of hydroxylamine hydrochloride in 50 ml of H2O and 10 g (0.065 mol) of β-cyclocitral, a solution of 3.5 g (0.033 mol) of sodium carbonate in 15 ml of H2O was added dropwise. The mixture was stirred at room temperature for ten minutes and the solid product which formed was collected and recrystallized from hexane.

Refinement top

The H atoms attached to C7 and O1 were located from a difference Fourier map and were refined freely. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) except for the methyl hydrogen atoms which were refined with Uiso(H) set at 1.5Ueq(C).

Structure description top

An oxime is an important functional group in organic chemistry because it is not only used as an efficient protecting group for carbonyls but also may be used for the purification of carbonyl compounds (Donaruma & Heldt, 1960). Moreover oximes are used for the preparation of many compounds such as amines by reduction (Cerny et al., 1969), nitro compounds by oxidation, amides by the Beckmann rearrangement and carbonyl compounds from non carbonyl compounds (Touster, 1953). The title compound C10H17NO is a key intermediate in the synthesis of aroma compounds such as β-cyclogeranyl nitrile which can be used for the synthesis of the important aroma compound β-damascone (Kutney et al., 1992). Herein, we report the crystal structure of the title compound (Fig. 1) in which each molecule is connected to an inversion-related molecule through O—H···N hydrogen bonds, (Table 1) forming a cyclic dimer [graph-set R22(6) (Etter et al., 1990; Bernstein et al., 1995] (Fig. 2). These cyclic DA—AD (Donor Acceptor–Acceptor Donor) interactions involving pairs of O—H···N hydrogen bonds between the oxime functionalities are similar to the O—H···O interactions observed in carboxylic acid dimers. The crystal structure is stabilized by intramolecular methyl C—H···Noxime hydrogen-bonding interactions.

For applications of oximes in organic syntheses, see: Cerny et al. (1969); Donaruma & Heldt (1960); Kutney et al. (1992); Touster (1953). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The centrosymmetric R22(6) hydrogen-bonded dimer units, with hydrogen bonds shown as dashed lines. For symmetry code (i), see Table 1.
2,6,6-Trimethylcyclohexene-1-carbaldehyde oxime top
Crystal data top
C10H17NOZ = 2
Mr = 167.25F(000) = 184
Triclinic, P1Dx = 1.112 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5670 (3) ÅCell parameters from 3341 reflections
b = 7.7208 (3) Åθ = 2.3–33.0°
c = 9.3072 (4) ŵ = 0.07 mm1
α = 81.212 (3)°T = 296 K
β = 76.590 (3)°Prism, colourless
γ = 71.385 (3)°0.09 × 0.06 × 0.05 mm
V = 499.43 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 33.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.994, Tmax = 0.997k = 1111
13971 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.036P]
where P = (Fo2 + 2Fc2)/3
3341 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C10H17NOγ = 71.385 (3)°
Mr = 167.25V = 499.43 (4) Å3
Triclinic, P1Z = 2
a = 7.5670 (3) ÅMo Kα radiation
b = 7.7208 (3) ŵ = 0.07 mm1
c = 9.3072 (4) ÅT = 296 K
α = 81.212 (3)°0.09 × 0.06 × 0.05 mm
β = 76.590 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2134 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 0.997Rint = 0.022
13971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
3341 reflectionsΔρmin = 0.14 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60371 (16)0.14350 (15)0.37650 (16)0.0794 (5)
N10.67895 (14)0.00174 (14)0.37695 (13)0.0552 (4)
C10.94463 (15)0.11492 (15)0.25083 (13)0.0425 (3)
C21.12581 (16)0.05523 (17)0.17581 (14)0.0492 (3)
C31.26022 (18)0.1703 (2)0.1444 (2)0.0680 (5)
C41.1923 (2)0.3358 (2)0.2335 (2)0.0772 (6)
C50.9848 (2)0.42925 (19)0.2342 (2)0.0656 (5)
C60.85762 (15)0.30698 (15)0.30624 (14)0.0458 (3)
C70.83019 (17)0.01188 (16)0.27932 (16)0.0505 (4)
C81.2169 (2)0.1322 (2)0.11773 (18)0.0689 (5)
C90.8338 (2)0.2967 (2)0.47500 (17)0.0641 (5)
C100.66297 (19)0.40088 (18)0.26268 (19)0.0627 (5)
H10.509 (3)0.126 (3)0.450 (3)0.107 (7)*
H3A1.278800.211800.039800.0820*
H3B1.382500.094300.165300.0820*
H4A1.211500.297600.334400.0930*
H4B1.265000.420700.190300.0930*
H5A0.967600.467600.132900.0790*
H5B0.944500.538500.287200.0790*
H70.866 (2)0.116 (2)0.2260 (19)0.074 (5)*
H8A1.290700.212200.185900.1030*
H8B1.298100.121400.022900.1030*
H8C1.119600.181800.107500.1030*
H9A0.754500.220100.520800.0960*
H9B0.775800.417600.507800.0960*
H9C0.956100.245800.502200.0960*
H10A0.578500.328500.305500.0940*
H10B0.678100.412300.156700.0940*
H10C0.610800.520500.298700.0940*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0698 (7)0.0627 (6)0.1080 (10)0.0392 (5)0.0201 (6)0.0293 (6)
N10.0466 (5)0.0490 (5)0.0702 (8)0.0218 (4)0.0031 (5)0.0113 (5)
C10.0377 (5)0.0448 (5)0.0424 (6)0.0118 (4)0.0047 (4)0.0018 (4)
C20.0404 (5)0.0555 (6)0.0453 (7)0.0109 (5)0.0021 (5)0.0023 (5)
C30.0404 (6)0.0793 (9)0.0796 (11)0.0225 (6)0.0014 (6)0.0022 (8)
C40.0539 (8)0.0782 (10)0.1078 (14)0.0362 (7)0.0069 (8)0.0105 (9)
C50.0586 (8)0.0526 (7)0.0853 (11)0.0243 (6)0.0051 (7)0.0019 (7)
C60.0399 (5)0.0433 (5)0.0530 (7)0.0131 (4)0.0055 (5)0.0046 (5)
C70.0459 (6)0.0439 (6)0.0588 (8)0.0136 (4)0.0000 (5)0.0105 (5)
C80.0548 (7)0.0692 (9)0.0673 (10)0.0053 (6)0.0068 (7)0.0172 (7)
C90.0694 (8)0.0688 (8)0.0574 (8)0.0237 (7)0.0063 (7)0.0171 (7)
C100.0491 (7)0.0496 (7)0.0859 (11)0.0041 (5)0.0184 (7)0.0100 (6)
Geometric parameters (Å, º) top
O1—N11.4113 (16)C4—H4A0.9700
O1—H10.86 (3)C4—H4B0.9700
N1—C71.2714 (18)C5—H5A0.9700
C1—C61.5334 (16)C5—H5B0.9700
C1—C71.4608 (18)C7—H70.942 (15)
C1—C21.3530 (18)C8—H8A0.9600
C2—C81.5136 (19)C8—H8B0.9600
C2—C31.506 (2)C8—H8C0.9600
C3—C41.514 (2)C9—H9A0.9600
C4—C51.503 (2)C9—H9B0.9600
C5—C61.534 (2)C9—H9C0.9600
C6—C91.532 (2)C10—H10A0.9600
C6—C101.538 (2)C10—H10B0.9600
C3—H3A0.9700C10—H10C0.9600
C3—H3B0.9700
N1—O1—H1103.3 (15)H4A—C4—H4B108.00
O1—N1—C7111.09 (11)C4—C5—H5A109.00
C2—C1—C6122.81 (11)C4—C5—H5B109.00
C6—C1—C7119.71 (10)C6—C5—H5A109.00
C2—C1—C7117.48 (11)C6—C5—H5B109.00
C1—C2—C8124.63 (12)H5A—C5—H5B108.00
C3—C2—C8112.81 (12)N1—C7—H7113.3 (10)
C1—C2—C3122.55 (12)C1—C7—H7121.4 (10)
C2—C3—C4113.94 (13)C2—C8—H8A109.00
C3—C4—C5109.66 (13)C2—C8—H8B109.00
C4—C5—C6113.33 (12)C2—C8—H8C109.00
C1—C6—C9110.71 (10)H8A—C8—H8B109.00
C1—C6—C10110.80 (10)H8A—C8—H8C109.00
C5—C6—C9109.05 (12)H8B—C8—H8C109.00
C5—C6—C10106.66 (11)C6—C9—H9A109.00
C9—C6—C10109.18 (11)C6—C9—H9B109.00
C1—C6—C5110.33 (10)C6—C9—H9C109.00
N1—C7—C1125.29 (12)H9A—C9—H9B109.00
C2—C3—H3A109.00H9A—C9—H9C109.00
C2—C3—H3B109.00H9B—C9—H9C110.00
C4—C3—H3A109.00C6—C10—H10A109.00
C4—C3—H3B109.00C6—C10—H10B109.00
H3A—C3—H3B108.00C6—C10—H10C109.00
C3—C4—H4A110.00H10A—C10—H10B110.00
C3—C4—H4B110.00H10A—C10—H10C109.00
C5—C4—H4A110.00H10B—C10—H10C109.00
C5—C4—H4B110.00
O1—N1—C7—C1179.61 (12)C7—C1—C6—C1049.10 (16)
C6—C1—C2—C32.0 (2)C2—C1—C7—N1161.31 (13)
C6—C1—C2—C8179.34 (12)C6—C1—C7—N118.5 (2)
C7—C1—C2—C3177.72 (13)C1—C2—C3—C413.8 (2)
C7—C1—C2—C80.89 (19)C8—C2—C3—C4165.00 (13)
C2—C1—C6—C513.24 (17)C2—C3—C4—C544.02 (19)
C2—C1—C6—C9107.58 (14)C3—C4—C5—C661.57 (18)
C2—C1—C6—C10131.13 (13)C4—C5—C6—C145.18 (17)
C7—C1—C6—C5167.00 (12)C4—C5—C6—C976.62 (16)
C7—C1—C6—C972.19 (15)C4—C5—C6—C10165.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.86 (3)2.02 (3)2.8346 (18)158 (2)
C9—H9A···N10.962.573.1979 (19)123
C10—H10A···N10.962.433.0762 (17)125
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H17NO
Mr167.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5670 (3), 7.7208 (3), 9.3072 (4)
α, β, γ (°)81.212 (3), 76.590 (3), 71.385 (3)
V3)499.43 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.09 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.994, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
13971, 3341, 2134
Rint0.022
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.191, 1.06
No. of reflections3341
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.86 (3)2.02 (3)2.8346 (18)158 (2)
C9—H9A···N10.962.573.1979 (19)123
C10—H10A···N10.962.433.0762 (17)125
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

PTM and SJJ thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerny, M., Malek, J., Capka, M. & Chvalowsky, V. (1969). Collect. Czech. Chem. Commun. 34, 1025–1032.  CAS Google Scholar
First citationDonaruma, L. G. & Heldt, W. Z. (1960). Org. React. 11, 1–156.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKutney, J. P., Gunning, P. J., Clewley, R. G., Somerville, J. & Rettig, S. J. (1992). Can. J. Chem. 70, 2094–2114.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouster, O. (1953). Org. React. 7, 327–377.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds