organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2852-o2853

Methyl (9aR*,10S*,11R*,13aS*,13bS*)-9-oxo-6,7,9,9a,10,11-hexa­hydro-5H,13bH-11,13a-ep­­oxy­pyrrolo­[2′,1′:3,4][1,4]diazepino[2,1-a]iso­indole-10-carboxyl­ate

aDepartment of Chemistry, University of Douala, Faculty of Sciences, PO Box 24157, Douala, Republic of Cameroon, bDepartment of Organic Chemistry, Russian Peoples' Friendship University, 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 8 September 2011; accepted 30 September 2011; online 5 October 2011)

The title compound, C17H18N2O4, is the methyl ester of the adduct of intra­molecular Diels–Alder reaction between maleic anhydride and 1-(2-fur­yl)-2,3,4,5-tetra­hydro-1H-pyrrolo­[1,2-a][1,4]diazepine. The mol­ecule comprises a fused penta­cyclic system containing four five-membered rings (viz. pyrrole, 2-pyrrolidinone, tetra­hydro­furan and dihydro­furan) and one seven-membered ring (1,4-diazepane). The pyrrole ring is approximately planar (r.m.s. deviation = 0.003 Å) while the 2-pyrrolidinone, tetra­hydro­furan and dihydro­furan five-membered rings have the usual envelope conformations. The central seven-membered diazepane ring adopts a boat conformation. In the crystal, mol­ecules are bound by weak inter­molecular C—H⋯O hydrogen-bonding inter­actions into zigzag chains propagating in [010]. In the crystal packing, the chains are stacked along the a axis.

Related literature

For reviews on the synthesis of isoindoles, see: Jones & Chapman (1996[Jones, G. B. & Chapman, B. J. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol. 2, p. 1. Oxford: Pergamon.]); Donohoe (2000[Donohoe, T. J. (2000). Science of Synthesis, edited by E. J. Thomas, Vol. 10, p. 653. Stuttgart: Georg Thieme Verlag.]). For reviews on intra­molecular cyclo­addition reactions of α,β-unsaturated acid anhydrides to furfuryl­amines (IMDAF reactions), see: Vogel et al. (1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.]); Zubkov et al. (2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.]). For related compounds, see: Zubkov et al. (2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.], 2010[Zubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063-2066.], 2011[Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67. In the press, doi: 10.1016/j.tet.2011.09.099.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Monoclinic, P 21 /n

  • a = 11.5817 (12) Å

  • b = 9.0152 (10) Å

  • c = 14.8607 (16) Å

  • β = 112.749 (2)°

  • V = 1430.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 17904 measured reflections

  • 4167 independent reflections

  • 3685 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.00

  • 4167 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H9A⋯O1i 1.00 2.43 3.4334 (13) 180
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last ten years our group have developed an effective strategy for the synthesis of isoindoles (Donohoe, 2000; Jones & Chapman, 1996) and 3,6a-epoxyisoindoles (Vogel et al., 1999) annulated with various heterocycles (Zubkov et al., 2009, 2010, 2011). This strategy was based on the intramolecular cycloaddition reaction of α,β-unsaturated acid anhydrides to furfurylamines (IMDAF) (Zubkov et al., 2005).

This article describes the synthesis of a novel heterocyclic pyrrolo[2',1':3,4][1,4]diazepino[2,1-a]isoindole system, which can be easily obtained using the IMDAF reaction between maleic anhydride and 1-(2-furyl)-2,3,4,5-tetrahydro-1H-pyrrolo[1,2-a][1,4]diazepine (Zubkov et al., 2011).

The molecule of compound (I), C17H18N2O4, comprises a fused pentacyclic system containing four five-membered rings (pyrrole, 2-pyrrolidinone, tetrahydrofuran and dihydrofuran) and one seven-membered ring (1,4-diazepane) (Figure 1). The pyrrole ring is planar, and the 2-pyrrolidinone, tetrahydrofuran and dihydrofuran five-membered rings have usual envelope conformations. The central seven-membered diazepane ring adopts a boat conformation. The nitrogen N4 atom has a trigonal-planar geometry (sum of the bond angles is 360.0°), whereas the nitrogen N8 atom is slightly pyramidalized (sum of the bond angles is 359.1°). The boat bottom of the diazepane ring (N4–C6–C7–C13C) is practically perpendicular to the base plane of the pyrrolidinone ring (N8–C9–C13A–C13B) (the dihedral angle is 85.52 (4)°).

The molecule of (I) possesses five asymmetric centers at the C9A, C10, C11, C13A and C13B carbon atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-9 AR*,10S*,11R*,13 AS*,13BS*.

In the crystal, the molecules of (I) are bound by the weak intermolecular C–H···O hydrogen bonding interactions into the zigzag-like chains toward [010] (Figure 2, Table 1). The crystal packing of the chains is stacking along the a axis (Figure 2).

Related literature top

For reviews on the synthesis of isoindoles, see: Jones & Chapman (1996); Donohoe (2000). For reviews on intramolecular cycloaddition reactions of α,β-unsaturated acid anhydrides to furfurylamines (IMDAF reactions), see: Vogel et al. (1999); Zubkov et al. (2005). For related compounds, see: Zubkov et al. (2009, 2010, 2011).

Experimental top

A solution of the acid (2.0 g, 6.7 mmol) in methanol (40 ml) was refluxed for 6 h in the presence of catalytic amount of concentrated H2SO4 (monitoring by TLC until disappearance of the starting compound sport, eluent – EtOAc, Sorbfil) (Figure 3). At the end of the reaction, the clear brown solution was poured into water (250 ml) and extracted with CHCl3 (3×70 ml). The extract was dried over MgSO4 and concentrated in vacuo. The crude ester was recrystallized from a mixture of PrOH–DMF to give the title compound as colourless prisms. Yield 30%. The single crystals of the product were obtained by slow crystallization from methanol (yield 52%). M.p.= 458–460 K. Rf 0.51 (ethyl acetate, Sorbfil).

Refinement top

The hydrogen atoms were placed in calculated positions with C–H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-groups and Uiso(H) = 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) along the a axis. Dashed lines indicate the weak intermolecular C—H···O hydrogen bonding interactions.
[Figure 3] Fig. 3. Esterification of 11,13a-epoxypyrrolo[2',1':3,4][1,4]diazepino[2,1-a]isoindole-10-carboxylic acid.
Methyl (9aR*,10S*,11R*,13aS*,13bS*)- 9-oxo-6,7,9,9a,10,11-hexahydro-5H,13bH-11,13a- epoxypyrrolo[2',1':3,4][1,4]diazepino[2,1-a]isoindole-10-carboxylate top
Crystal data top
C17H18N2O4F(000) = 664
Mr = 314.33Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7472 reflections
a = 11.5817 (12) Åθ = 2.7–32.6°
b = 9.0152 (10) ŵ = 0.11 mm1
c = 14.8607 (16) ÅT = 100 K
β = 112.749 (2)°Prism, colourless
V = 1430.9 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4167 independent reflections
Radiation source: fine-focus sealed tube3685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.969, Tmax = 0.979k = 1212
17904 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.545P]
where P = (Fo2 + 2Fc2)/3
4167 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H18N2O4V = 1430.9 (3) Å3
Mr = 314.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5817 (12) ŵ = 0.11 mm1
b = 9.0152 (10) ÅT = 100 K
c = 14.8607 (16) Å0.30 × 0.20 × 0.20 mm
β = 112.749 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4167 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3685 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.028
17904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
4167 reflectionsΔρmin = 0.25 e Å3
209 parameters
Special details top

Experimental. IR (KBr), ν (cm-1): 3406, 1737, 1690; 1H NMR (CDCl3, 600 MHz, 300 K): δ = 1.83 (m, 1H, H6A), 2.16 (m, 1H, H6B), 2.78 (d, 1H, H9A, J9A,10 = 8.9), 2.84 (ddd, 1H, H6, J7B,6B = 6.9, J7B,6A = 10.6, J7,7 = 17.9), 2.91 (d, 1H, H10, J9A,10 = 8.9), 3.79 (s, 3H, CO2Me), 3.81 (ddd, 1H, H5B, J5B,6A = 5.8, J5B,6B = 8.3, J5,5 = 14.2), 4.02 (br. dd, 1H, H5A, J5A,6 = 8.3, J5,5 = 14.2), 4.55 (ddd, 1H, H7A, J7A,6A = 5.1, J7A,6B = 12.7, J7,7 = 17.9), 5.12 (d, 1H, H11, J11,12 = 1.7), 5.47 (s, 1H, H13B), 6.06 (dd, 1H, H2, J2,3 = 2.2, J1,2 = 3.4), 6.17 (dd, 1H, H1, J1,3 = 1.7, J1,2 = 3.4), 6.40 (dd, 1H, H12, J11,12 = 1.7, J12,13 = 5.8), 6.55 (dd, 1H, H3, J1,3 = 1.7, J2,3 = 2.2), 6.59 (d, 1H, H13, J12,13 = 5.8). EI—MS (70 eV) m/z (rel. intensity): 300 [M]+ (84), 282 (5), 271 (15), 254 (73), 237 (20), 225 (66), 211 (12), 202 (100), 187 (26), 172 (19), 158 (6), 144 (6), 135 (31), 106 (33), 98 (30), 91 (23), 79 (65), 54 (60), 43 (55). Anal. Calcd for C17H18N2O4: C, 64.96; H, 5.77; N, 8.91. Found: C, 64.88; H, 5.53; N, 8.66.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21252 (7)0.13743 (9)0.19684 (5)0.01893 (16)
O20.12840 (7)0.15880 (8)0.04077 (6)0.01879 (15)
O30.00054 (7)0.29911 (8)0.00561 (6)0.01676 (15)
C10.72407 (9)0.21971 (11)0.19832 (7)0.01507 (18)
H10.76580.30840.22800.018*
C20.77184 (9)0.10722 (12)0.15513 (7)0.01717 (19)
H20.85100.10730.14980.021*
C30.68230 (9)0.00134 (11)0.12259 (7)0.01630 (19)
H30.68920.09060.09110.020*
N40.58103 (8)0.04029 (9)0.14314 (6)0.01360 (16)
C50.46763 (9)0.04890 (11)0.12104 (7)0.01633 (18)
H5A0.47170.13600.08180.020*
H5B0.39400.01100.08110.020*
C60.44989 (9)0.10258 (11)0.21236 (7)0.01676 (19)
H6A0.51280.18020.24460.020*
H6B0.36580.14790.19300.020*
C70.46293 (9)0.02321 (11)0.28511 (7)0.01455 (18)
H7A0.41170.00040.32330.017*
H7B0.55140.03020.33120.017*
N80.42359 (7)0.16558 (9)0.23701 (6)0.01275 (15)
C90.30159 (9)0.20771 (10)0.19421 (7)0.01331 (17)
C9A0.29876 (8)0.35968 (10)0.14869 (7)0.01202 (17)
H9A0.29560.44040.19390.014*
C100.20435 (8)0.39060 (10)0.04251 (7)0.01249 (17)
H100.16060.48720.03930.015*
C110.29855 (8)0.40367 (10)0.00989 (7)0.01305 (17)
H110.26020.39130.08240.016*
C120.37240 (9)0.54653 (11)0.02527 (7)0.01537 (18)
H120.36260.63680.00990.018*
C130.45390 (9)0.51866 (10)0.11585 (7)0.01456 (18)
H130.51580.58350.15820.017*
C13A0.42597 (8)0.36124 (10)0.13604 (6)0.01148 (17)
C13B0.51312 (8)0.26159 (10)0.21615 (6)0.01180 (17)
H13B0.55930.32340.27500.014*
C13C0.60588 (8)0.17628 (10)0.18918 (6)0.01212 (17)
O140.38943 (6)0.29270 (7)0.04125 (5)0.01203 (14)
C140.11017 (8)0.26807 (10)0.00121 (7)0.01313 (17)
C150.09493 (10)0.18619 (12)0.03298 (9)0.0222 (2)
H15A0.17450.22350.03320.033*
H15B0.07000.09720.00790.033*
H15C0.10490.16150.09980.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0149 (3)0.0210 (4)0.0219 (3)0.0005 (3)0.0083 (3)0.0055 (3)
O20.0196 (3)0.0164 (3)0.0230 (4)0.0020 (3)0.0111 (3)0.0050 (3)
O30.0122 (3)0.0144 (3)0.0241 (3)0.0005 (2)0.0075 (3)0.0001 (3)
C10.0129 (4)0.0176 (4)0.0145 (4)0.0001 (3)0.0051 (3)0.0006 (3)
C20.0154 (4)0.0220 (5)0.0155 (4)0.0049 (4)0.0074 (3)0.0020 (4)
C30.0209 (5)0.0159 (4)0.0138 (4)0.0062 (4)0.0086 (3)0.0015 (3)
N40.0158 (4)0.0116 (4)0.0135 (3)0.0007 (3)0.0058 (3)0.0009 (3)
C50.0183 (4)0.0132 (4)0.0156 (4)0.0027 (3)0.0045 (3)0.0025 (3)
C60.0168 (4)0.0127 (4)0.0199 (4)0.0014 (3)0.0060 (4)0.0012 (3)
C70.0144 (4)0.0142 (4)0.0139 (4)0.0012 (3)0.0043 (3)0.0036 (3)
N80.0122 (3)0.0126 (3)0.0141 (3)0.0007 (3)0.0058 (3)0.0022 (3)
C90.0144 (4)0.0145 (4)0.0117 (4)0.0013 (3)0.0058 (3)0.0003 (3)
C9A0.0122 (4)0.0120 (4)0.0124 (4)0.0016 (3)0.0054 (3)0.0001 (3)
C100.0123 (4)0.0113 (4)0.0138 (4)0.0015 (3)0.0049 (3)0.0002 (3)
C110.0133 (4)0.0125 (4)0.0136 (4)0.0016 (3)0.0054 (3)0.0013 (3)
C120.0169 (4)0.0118 (4)0.0192 (4)0.0003 (3)0.0090 (3)0.0021 (3)
C130.0160 (4)0.0107 (4)0.0187 (4)0.0010 (3)0.0085 (3)0.0008 (3)
C13A0.0125 (4)0.0106 (4)0.0119 (4)0.0001 (3)0.0053 (3)0.0015 (3)
C13B0.0113 (4)0.0119 (4)0.0120 (4)0.0003 (3)0.0044 (3)0.0010 (3)
C13C0.0127 (4)0.0119 (4)0.0114 (4)0.0009 (3)0.0042 (3)0.0004 (3)
O140.0134 (3)0.0115 (3)0.0109 (3)0.0019 (2)0.0044 (2)0.0006 (2)
C140.0126 (4)0.0140 (4)0.0125 (4)0.0017 (3)0.0047 (3)0.0024 (3)
C150.0159 (4)0.0197 (5)0.0320 (5)0.0038 (4)0.0105 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1—C91.2241 (12)N8—C13B1.4728 (12)
O2—C141.2069 (12)C9—C9A1.5227 (13)
O3—C141.3417 (11)C9A—C13A1.5557 (13)
O3—C151.4482 (12)C9A—C101.5584 (13)
C1—C13C1.3790 (13)C9A—H9A1.0000
C1—C21.4217 (13)C10—C141.5113 (13)
C1—H10.9500C10—C111.5709 (13)
C2—C31.3709 (15)C10—H101.0000
C2—H20.9500C11—O141.4379 (11)
C3—N41.3735 (12)C11—C121.5224 (13)
C3—H30.9500C11—H111.0000
N4—C13C1.3790 (12)C12—C131.3355 (13)
N4—C51.4648 (12)C12—H120.9500
C5—C61.5276 (14)C13—C13A1.5112 (13)
C5—H5A0.9900C13—H130.9500
C5—H5B0.9900C13A—O141.4437 (11)
C6—C71.5335 (14)C13A—C13B1.5211 (12)
C6—H6A0.9900C13B—C13C1.4964 (12)
C6—H6B0.9900C13B—H13B1.0000
C7—N81.4540 (12)C15—H15A0.9800
C7—H7A0.9900C15—H15B0.9800
C7—H7B0.9900C15—H15C0.9800
N8—C91.3602 (12)
C14—O3—C15115.05 (8)C14—C10—C9A114.31 (7)
C13C—C1—C2107.32 (9)C14—C10—C11111.46 (7)
C13C—C1—H1126.3C9A—C10—C1199.53 (7)
C2—C1—H1126.3C14—C10—H10110.4
C3—C2—C1107.17 (9)C9A—C10—H10110.4
C3—C2—H2126.4C11—C10—H10110.4
C1—C2—H2126.4O14—C11—C12102.00 (7)
C2—C3—N4108.73 (8)O14—C11—C10101.10 (7)
C2—C3—H3125.6C12—C11—C10107.40 (7)
N4—C3—H3125.6O14—C11—H11114.9
C3—N4—C13C108.72 (8)C12—C11—H11114.9
C3—N4—C5124.67 (8)C10—C11—H11114.9
C13C—N4—C5126.59 (8)C13—C12—C11105.73 (8)
N4—C5—C6113.07 (8)C13—C12—H12127.1
N4—C5—H5A109.0C11—C12—H12127.1
C6—C5—H5A109.0C12—C13—C13A104.76 (8)
N4—C5—H5B109.0C12—C13—H13127.6
C6—C5—H5B109.0C13A—C13—H13127.6
H5A—C5—H5B107.8O14—C13A—C13102.28 (7)
C5—C6—C7112.43 (8)O14—C13A—C13B111.49 (7)
C5—C6—H6A109.1C13—C13A—C13B125.58 (8)
C7—C6—H6A109.1O14—C13A—C9A100.37 (7)
C5—C6—H6B109.1C13—C13A—C9A108.53 (7)
C7—C6—H6B109.1C13B—C13A—C9A105.84 (7)
H6A—C6—H6B107.8N8—C13B—C13C113.03 (8)
N8—C7—C6112.31 (8)N8—C13B—C13A101.75 (7)
N8—C7—H7A109.1C13C—C13B—C13A114.94 (7)
C6—C7—H7A109.1N8—C13B—H13B108.9
N8—C7—H7B109.1C13C—C13B—H13B108.9
C6—C7—H7B109.1C13A—C13B—H13B108.9
H7A—C7—H7B107.9N4—C13C—C1108.06 (8)
C9—N8—C7123.21 (8)N4—C13C—C13B123.79 (8)
C9—N8—C13B115.22 (8)C1—C13C—C13B128.00 (9)
C7—N8—C13B120.66 (7)C11—O14—C13A95.53 (6)
O1—C9—N8125.20 (9)O2—C14—O3123.77 (9)
O1—C9—C9A127.32 (9)O2—C14—C10124.95 (9)
N8—C9—C9A107.40 (8)O3—C14—C10111.22 (8)
C9—C9A—C13A101.72 (7)O3—C15—H15A109.5
C9—C9A—C10119.79 (8)O3—C15—H15B109.5
C13A—C9A—C10101.68 (7)H15A—C15—H15B109.5
C9—C9A—H9A110.9O3—C15—H15C109.5
C13A—C9A—H9A110.9H15A—C15—H15C109.5
C10—C9A—H9A110.9H15B—C15—H15C109.5
C13C—C1—C2—C30.86 (11)C10—C9A—C13A—C1370.29 (8)
C1—C2—C3—N40.56 (11)C9—C9A—C13A—C13B28.44 (9)
C2—C3—N4—C13C0.05 (10)C10—C9A—C13A—C13B152.58 (7)
C2—C3—N4—C5178.73 (8)C9—N8—C13B—C13C133.68 (8)
C3—N4—C5—C6114.00 (10)C7—N8—C13B—C13C35.75 (11)
C13C—N4—C5—C664.44 (12)C9—N8—C13B—C13A9.87 (10)
N4—C5—C6—C749.81 (11)C7—N8—C13B—C13A159.56 (8)
C5—C6—C7—N830.48 (11)O14—C13A—C13B—N884.63 (8)
C6—C7—N8—C980.15 (11)C13—C13A—C13B—N8151.13 (8)
C6—C7—N8—C13B88.42 (10)C9A—C13A—C13B—N823.60 (9)
C7—N8—C9—O15.44 (15)O14—C13A—C13B—C13C37.88 (10)
C13B—N8—C9—O1174.58 (9)C13—C13A—C13B—C13C86.36 (11)
C7—N8—C9—C9A177.68 (8)C9A—C13A—C13B—C13C146.11 (8)
C13B—N8—C9—C9A8.54 (10)C3—N4—C13C—C10.50 (10)
O1—C9—C9A—C13A160.63 (9)C5—N4—C13C—C1178.15 (9)
N8—C9—C9A—C13A22.59 (9)C3—N4—C13C—C13B175.47 (8)
O1—C9—C9A—C1049.71 (13)C5—N4—C13C—C13B5.89 (14)
N8—C9—C9A—C10133.51 (8)C2—C1—C13C—N40.83 (10)
C9—C9A—C10—C147.94 (11)C2—C1—C13C—C13B174.91 (9)
C13A—C9A—C10—C14118.89 (8)N8—C13B—C13C—N429.70 (12)
C9—C9A—C10—C11110.93 (9)C13A—C13B—C13C—N486.51 (11)
C13A—C9A—C10—C110.01 (8)N8—C13B—C13C—C1155.17 (9)
C14—C10—C11—O1484.18 (8)C13A—C13B—C13C—C188.61 (11)
C9A—C10—C11—O1436.79 (8)C12—C11—O14—C13A49.61 (8)
C14—C10—C11—C12169.35 (7)C10—C11—O14—C13A61.07 (7)
C9A—C10—C11—C1269.68 (8)C13—C13A—O14—C1151.18 (8)
O14—C11—C12—C1330.93 (9)C13B—C13A—O14—C11172.30 (7)
C10—C11—C12—C1374.90 (9)C9A—C13A—O14—C1160.57 (7)
C11—C12—C13—C13A1.82 (10)C15—O3—C14—O23.79 (14)
C12—C13—C13A—O1433.99 (9)C15—O3—C14—C10178.93 (8)
C12—C13—C13A—C13B162.06 (9)C9A—C10—C14—O284.24 (11)
C12—C13—C13A—C9A71.52 (9)C11—C10—C14—O227.65 (13)
C9—C9A—C13A—O1487.60 (7)C9A—C10—C14—O398.52 (9)
C10—C9A—C13A—O1436.53 (8)C11—C10—C14—O3149.60 (8)
C9—C9A—C13A—C13165.57 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9A···O1i1.002.433.4334 (13)180
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.5817 (12), 9.0152 (10), 14.8607 (16)
β (°) 112.749 (2)
V3)1430.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17904, 4167, 3685
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.00
No. of reflections4167
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9A···O1i1.002.433.4334 (13)180
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonohoe, T. J. (2000). Science of Synthesis, edited by E. J. Thomas, Vol. 10, p. 653. Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationJones, G. B. & Chapman, B. J. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. R. Katrizky, C. W. Rees & E. F. V. Scriven, Vol. 2, p. 1. Oxford: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063–2066.  Web of Science CrossRef Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67. In the press, doi: 10.1016/j.tet.2011.09.099.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2852-o2853
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds