metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ2-1,3-di-4-pyridyl­propane)(μ3-1,3-phenyl­enedi­acetato)­cadmium]

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: dongliu@chnu.edu.cn

(Received 12 September 2011; accepted 8 October 2011; online 12 October 2011)

In the title compound, [Cd(C10H8O4)(C13H14N2)]n, two symmetry-related Cd atoms are bridged by two carboxyl­ate O atoms into a binuclear Cd2 subunit around an inversion center. The Cd atom has a distorted penta­gonal–bipyramidal environment, defined by five O atoms from three different 1,3-phenylendiacetate (1,3-pda) ligands and two N atoms from two 1,3-di-4-pyridyl­propane (bpp) ligands. Each Cd2 subunit is linked to four different Cd2 subunits by four 1,3-pda ligands and four bpp ligands, forming a two-dimensional network with rhombic grids (12.50 × 12.50 Å2) extending along the ab plane.

Related literature

For a coordination polymer with a similar structure, see: Nagaraja et al. (2010[Nagaraja, C. M., Maji, T. K. & Rao, C. N. R. (2010). J. Mol. Struct. 976, 168-173.]). For another compound synthesized from the same components as the title compound, see: Zhang et al. (2009[Zhang, M. L., Li, D. S., Wang, J. J., Fu, F., Du, M., Zou, K. & Gao, X. M. (2009). Dalton Trans. pp. 5355-5364.]). For Cd—O and Cd—N bond lengths in related structures, see: Clegg et al. (1995[Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234-235.]); Tao et al. (2000[Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8O4)(C13H14N2)]

  • Mr = 502.84

  • Orthorhombic, P b c n

  • a = 22.573 (5) Å

  • b = 10.729 (2) Å

  • c = 17.024 (3) Å

  • V = 4123.0 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 223 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Rigaku MercuryCCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.772, Tmax = 0.811

  • 13963 measured reflections

  • 4693 independent reflections

  • 3718 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.108

  • S = 1.19

  • 4693 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of progress of crystal engineering, the appropriate choice of metal ions and organic building blocks is the most effective and facile method to assemble metal-organic compounds with various structures (Clegg et al., 1995; Nagaraja et al., 2010; Tao et al., 2000). In the past decade, rigid dicaboxylate and dipyridyl ligands have been widely employed as organic linkers to afford coordination polymers (Tao et al., 2000). Recently, flexible dicaboxylate and dipyridyl ligands have also been used to bond with metal ions (Nagaraja et al., 2010). And the complexes assembled by flexible ligands usually exhibit different structures with those of the complexes assembled by rigid ligands. In this work, we employed Cd(NO3)2 and two flexible ligands (1,3-phenylendiacetic acid, 1,3-pda, and 1,3-di-4-pyridylpropane, bpp) as our system and obtained the title compound.

As shown in Fig. 1, the symmetry-unique Cd atom is located in a pentagonal-bipyramidal environment, coordinated by five O atoms from three different 1,3-pda ligands at the equatorial sites and two N atoms from two bpp ligands at the axial sites. The Cd1–O [2.302 (3)–2.662 (3) Å] and Cd–N [2.319 (4)–2.320 (4) Å] distances are consistent with those previously observed in the related reported complexes (Clegg et al., 1995; Tao et al., 2000). Two symmetry related Cd atoms (Cd1 and Cd1i; symmetry code: (i) -x + 1, -y, -z) are bridged by two carboxylate O atoms into a binuclear Cd2 subunit around an inversion center. Each Cd2 subunit is linked to four different Cd2 subunits by four 1,3-pda ligands and four bpp ligands forming a two-dimensional (4,4) network with rhombic grids (12.50 × 12.50 Å2) extending along the ab plane (Fig. 2).

It should be noted that the complex [Cd2(1,3-pda)2(bpp)3]n (Zhang et al., 2009) was synthesized from the same components as the title compound. However, its structure is completely different.

Related literature top

For a coordination polymer with the similar structure, see: Nagaraja et al. (2010). For another compound synthesized from the same components as the title compound, see: Zhang et al. (2009). For Cd—O and Cd—N bond lengths in related structures, see: Clegg et al. (1995); Tao et al. (2000).

Experimental top

Cd(NO3)2.4H2O (31 mg, 0.1 mmol), 1,3-phenylenediacetic acid (19 mg, 0.1 mmol), 1,3-di-4-pyridylpropane (20 mg, 0.1 mmol), 1.5 ml of H2O and 1.5 mL of EtOH were loaded to a 10 mL Pyrex glass tube. The tube was sealed and heated in an oven to 438 K for three days, and then cooled to ambient temperature at a rate of 5 K/h to form colourless blocks of the title compound, which were washed with ethanol and dried in air. Yield: 39 mg (78% yield based on Cd). Anal. calcd. for C23H22CdN2O4: C, 54.94; H, 4.41; N, 5.57. Found: C, 55.06; H, 4.22; N, 5.61. IR (KBr, cm-1): 1606 (s), 1558 (s), 1540 (s), 1418 (m), 1395 (s), 1323 (m), 1217 (m), 1108 (m), 1068 (w), 1016 (m), 960 (s), 879 (m), 834 (s), 782 (s), 724 (s), 610 (m), 556 (s).

Refinement top

All H atoms were placed in geometrically idealized positions (C–H = 0.94 Å for phenyl/pyridyl groups and C–H = 0.98 Å for methylene groups) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Coordination environment of Cd(II) in the title compound with nonhydrogen atoms represented by thermal ellipsoids at 30% probability level, hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry codes: (i) x + 1/2, - y + 1/2, - z; (ii) - x + 1/2, y - 1/2, z; (iii) x - 1/2, - y + 1/2, - z.]
[Figure 2] Fig. 2. View of the two-dimensional network of the title compound extending along the ab plane.
Poly[(µ2-1,3-di-4-pyridylpropane)(µ3-1,3-phenylenediacetato)cadmium] top
Crystal data top
[Cd(C10H8O4)(C13H14N2)]F(000) = 2032
Mr = 502.84Dx = 1.620 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9088 reflections
a = 22.573 (5) Åθ = 3.1–27.5°
b = 10.729 (2) ŵ = 1.09 mm1
c = 17.024 (3) ÅT = 223 K
V = 4123.0 (14) Å3Block, colourless
Z = 80.25 × 0.25 × 0.20 mm
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
4693 independent reflections
Radiation source: fine-focus sealed tube3718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 2529
Tmin = 0.772, Tmax = 0.811k = 1312
13963 measured reflectionsl = 1222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0287P)2 + 4.0115P]
where P = (Fo2 + 2Fc2)/3
4693 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(C10H8O4)(C13H14N2)]V = 4123.0 (14) Å3
Mr = 502.84Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 22.573 (5) ŵ = 1.09 mm1
b = 10.729 (2) ÅT = 223 K
c = 17.024 (3) Å0.25 × 0.25 × 0.20 mm
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
4693 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3718 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.811Rint = 0.044
13963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.19Δρmax = 0.65 e Å3
4693 reflectionsΔρmin = 0.51 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.434747 (13)0.10920 (3)0.01591 (2)0.03461 (12)
N10.49203 (16)0.2373 (3)0.0952 (3)0.0393 (10)
N20.86922 (15)0.4861 (3)0.0701 (2)0.0377 (9)
O10.36029 (14)0.1141 (3)0.1164 (2)0.0498 (9)
O20.35892 (13)0.2637 (3)0.0268 (2)0.0445 (9)
O30.01992 (13)0.4305 (3)0.0605 (2)0.0441 (9)
O40.02352 (13)0.2645 (3)0.1068 (2)0.0525 (10)
C10.5298 (2)0.1956 (4)0.1497 (3)0.0451 (13)
H10.53150.10930.15890.054*
C20.5662 (2)0.2722 (4)0.1930 (3)0.0436 (12)
H20.59210.23830.23060.052*
C30.56421 (18)0.4001 (4)0.1806 (3)0.0401 (11)
C40.5244 (2)0.4433 (4)0.1251 (4)0.0511 (14)
H40.52090.52930.11580.061*
C50.4898 (2)0.3602 (4)0.0834 (4)0.0509 (14)
H50.46370.39150.04520.061*
C60.60680 (19)0.4873 (4)0.2199 (3)0.0451 (13)
H6A0.61530.45880.27340.054*
H6B0.58980.57120.22270.054*
C70.6637 (2)0.4890 (5)0.1712 (4)0.0548 (15)
H7A0.67910.40380.16820.066*
H7B0.65370.51530.11770.066*
C80.71221 (19)0.5728 (5)0.2018 (3)0.0478 (13)
H8A0.70040.66020.19590.057*
H8B0.71870.55630.25770.057*
C90.76871 (19)0.5497 (4)0.1569 (3)0.0403 (11)
C100.8003 (2)0.4414 (5)0.1711 (3)0.0580 (15)
H100.78790.38710.21120.070*
C110.8494 (2)0.4124 (5)0.1272 (4)0.0554 (15)
H110.86970.33780.13780.066*
C120.8391 (2)0.5898 (4)0.0562 (3)0.0453 (13)
H120.85270.64360.01640.054*
C130.7890 (2)0.6227 (4)0.0970 (4)0.0520 (14)
H130.76860.69590.08350.062*
C140.22719 (18)0.2311 (4)0.1101 (3)0.0332 (10)
C150.21730 (19)0.1230 (4)0.0675 (3)0.0370 (11)
H150.24950.07780.04720.044*
C160.16009 (19)0.0817 (4)0.0549 (3)0.0405 (11)
H160.15360.00890.02550.049*
C170.1124 (2)0.1464 (4)0.0851 (3)0.0419 (12)
H170.07380.11670.07640.050*
C180.12081 (18)0.2547 (4)0.1281 (3)0.0353 (10)
C190.17839 (18)0.2964 (4)0.1378 (3)0.0352 (10)
H190.18470.37210.16430.042*
C200.28893 (18)0.2752 (4)0.1328 (3)0.0438 (12)
H20A0.29460.25990.18910.053*
H20B0.29110.36540.12440.053*
C210.33970 (19)0.2138 (4)0.0882 (4)0.0428 (13)
C220.06922 (18)0.3252 (5)0.1653 (3)0.0408 (11)
H22A0.05560.28020.21210.049*
H22B0.08270.40800.18190.049*
C230.01800 (18)0.3392 (4)0.1080 (3)0.0356 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02357 (18)0.03206 (18)0.0482 (2)0.00165 (13)0.00060 (14)0.00333 (15)
N10.033 (2)0.0329 (19)0.052 (3)0.0006 (17)0.0019 (18)0.0084 (18)
N20.0289 (18)0.039 (2)0.045 (3)0.0011 (17)0.0029 (17)0.0001 (18)
O10.0412 (18)0.0419 (18)0.066 (3)0.0078 (16)0.0093 (17)0.0030 (17)
O20.0383 (18)0.0419 (18)0.053 (3)0.0065 (15)0.0058 (16)0.0010 (17)
O30.0397 (18)0.0367 (16)0.056 (3)0.0065 (14)0.0099 (16)0.0124 (16)
O40.0305 (17)0.0446 (18)0.082 (3)0.0066 (15)0.0007 (17)0.0119 (18)
C10.038 (3)0.042 (3)0.055 (4)0.001 (2)0.002 (2)0.002 (2)
C20.035 (2)0.048 (3)0.048 (3)0.000 (2)0.005 (2)0.005 (2)
C30.029 (2)0.045 (3)0.046 (3)0.000 (2)0.007 (2)0.013 (2)
C40.045 (3)0.032 (2)0.077 (5)0.001 (2)0.007 (3)0.005 (3)
C50.039 (3)0.045 (3)0.069 (4)0.002 (2)0.011 (3)0.001 (3)
C60.038 (3)0.048 (3)0.049 (4)0.007 (2)0.002 (2)0.014 (2)
C70.040 (3)0.061 (3)0.064 (4)0.008 (3)0.011 (3)0.021 (3)
C80.040 (3)0.052 (3)0.052 (4)0.006 (2)0.008 (2)0.012 (2)
C90.036 (2)0.042 (3)0.042 (3)0.008 (2)0.002 (2)0.006 (2)
C100.067 (3)0.061 (3)0.046 (4)0.012 (3)0.016 (3)0.025 (3)
C110.051 (3)0.057 (3)0.059 (4)0.013 (3)0.009 (3)0.017 (3)
C120.049 (3)0.035 (2)0.051 (4)0.003 (2)0.018 (2)0.007 (2)
C130.051 (3)0.039 (3)0.066 (4)0.011 (2)0.015 (3)0.010 (3)
C140.030 (2)0.038 (2)0.032 (3)0.0020 (19)0.0026 (19)0.0021 (19)
C150.036 (2)0.032 (2)0.042 (3)0.0040 (19)0.003 (2)0.004 (2)
C160.040 (3)0.036 (2)0.045 (3)0.004 (2)0.000 (2)0.005 (2)
C170.029 (2)0.046 (3)0.051 (4)0.001 (2)0.002 (2)0.007 (2)
C180.031 (2)0.042 (2)0.033 (3)0.008 (2)0.001 (2)0.008 (2)
C190.034 (2)0.036 (2)0.036 (3)0.0040 (19)0.002 (2)0.0005 (19)
C200.030 (2)0.046 (3)0.056 (4)0.002 (2)0.005 (2)0.014 (2)
C210.028 (2)0.040 (3)0.061 (4)0.001 (2)0.001 (2)0.012 (2)
C220.029 (2)0.055 (3)0.038 (3)0.012 (2)0.003 (2)0.005 (2)
C230.026 (2)0.038 (2)0.043 (3)0.007 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
Cd1—O3i2.302 (3)C7—H7B0.9800
Cd1—N2ii2.319 (4)C8—C91.507 (6)
Cd1—N12.320 (4)C8—H8A0.9800
Cd1—O3iii2.360 (3)C8—H8B0.9800
Cd1—O22.390 (3)C9—C131.365 (7)
Cd1—O12.399 (3)C9—C101.384 (7)
N1—C51.334 (6)C10—C111.372 (7)
N1—C11.337 (6)C10—H100.9400
N2—C121.325 (6)C11—H110.9400
N2—C111.331 (6)C12—C131.373 (7)
N2—Cd1iii2.319 (4)C12—H120.9400
O1—C211.260 (6)C13—H130.9400
O2—C211.252 (6)C14—C151.385 (6)
O3—C231.272 (5)C14—C191.388 (6)
O3—Cd1iv2.302 (3)C14—C201.522 (6)
O3—Cd1ii2.360 (3)C15—C161.382 (6)
O4—C231.233 (5)C15—H150.9400
C1—C21.376 (6)C16—C171.379 (6)
C1—H10.9400C16—H160.9400
C2—C31.389 (6)C17—C181.387 (7)
C2—H20.9400C17—H170.9400
C3—C41.383 (7)C18—C191.384 (6)
C3—C61.499 (6)C18—C221.526 (6)
C4—C51.381 (7)C19—H190.9400
C4—H40.9400C20—C211.524 (6)
C5—H50.9400C20—H20A0.9800
C6—C71.528 (7)C20—H20B0.9800
C6—H6A0.9800C22—C231.520 (6)
C6—H6B0.9800C22—H22A0.9800
C7—C81.510 (6)C22—H22B0.9800
C7—H7A0.9800
O3i—Cd1—N2ii97.16 (12)C7—C8—H8B109.7
O3i—Cd1—N193.09 (13)H8A—C8—H8B108.2
N2ii—Cd1—N1169.74 (13)C13—C9—C10116.0 (4)
O3i—Cd1—O3iii70.69 (13)C13—C9—C8124.7 (5)
N2ii—Cd1—O3iii95.28 (13)C10—C9—C8119.0 (5)
N1—Cd1—O3iii88.49 (13)C11—C10—C9120.8 (5)
O3i—Cd1—O2150.50 (12)C11—C10—H10119.6
N2ii—Cd1—O284.15 (12)C9—C10—H10119.6
N1—Cd1—O286.72 (12)N2—C11—C10122.3 (5)
O3iii—Cd1—O2138.71 (11)N2—C11—H11118.8
O3i—Cd1—O195.43 (11)C10—C11—H11118.8
N2ii—Cd1—O190.74 (13)N2—C12—C13123.2 (5)
N1—Cd1—O187.86 (13)N2—C12—H12118.4
O3iii—Cd1—O1165.43 (12)C13—C12—H12118.4
O2—Cd1—O155.08 (12)C9—C13—C12120.5 (5)
C5—N1—C1117.3 (4)C9—C13—H13119.7
C5—N1—Cd1118.5 (3)C12—C13—H13119.7
C1—N1—Cd1124.1 (3)C15—C14—C19118.2 (4)
C12—N2—C11117.2 (4)C15—C14—C20122.7 (4)
C12—N2—Cd1iii125.8 (3)C19—C14—C20118.9 (4)
C11—N2—Cd1iii114.4 (3)C16—C15—C14120.0 (4)
C21—O1—Cd190.3 (3)C16—C15—H15120.0
C21—O2—Cd190.9 (3)C14—C15—H15120.0
C23—O3—Cd1iv150.1 (3)C17—C16—C15120.6 (4)
C23—O3—Cd1ii100.6 (3)C17—C16—H16119.7
Cd1iv—O3—Cd1ii109.31 (13)C15—C16—H16119.7
N1—C1—C2123.6 (4)C16—C17—C18120.8 (4)
N1—C1—H1118.2C16—C17—H17119.6
C2—C1—H1118.2C18—C17—H17119.6
C1—C2—C3119.2 (5)C19—C18—C17117.5 (4)
C1—C2—H2120.4C19—C18—C22120.5 (4)
C3—C2—H2120.4C17—C18—C22122.0 (4)
C4—C3—C2117.1 (4)C18—C19—C14122.8 (4)
C4—C3—C6120.8 (4)C18—C19—H19118.6
C2—C3—C6121.9 (5)C14—C19—H19118.6
C5—C4—C3120.1 (4)C14—C20—C21115.3 (4)
C5—C4—H4119.9C14—C20—H20A108.4
C3—C4—H4119.9C21—C20—H20A108.4
N1—C5—C4122.6 (5)C14—C20—H20B108.4
N1—C5—H5118.7C21—C20—H20B108.4
C4—C5—H5118.7H20A—C20—H20B107.5
C3—C6—C7107.7 (4)O2—C21—O1123.6 (4)
C3—C6—H6A110.2O2—C21—C20119.4 (4)
C7—C6—H6A110.2O1—C21—C20117.0 (5)
C3—C6—H6B110.2O2—C21—Cd161.6 (2)
C7—C6—H6B110.2O1—C21—Cd162.0 (2)
H6A—C6—H6B108.5C20—C21—Cd1176.5 (4)
C8—C7—C6115.5 (4)C23—C22—C18111.3 (4)
C8—C7—H7A108.4C23—C22—H22A109.4
C6—C7—H7A108.4C18—C22—H22A109.4
C8—C7—H7B108.4C23—C22—H22B109.4
C6—C7—H7B108.4C18—C22—H22B109.4
H7A—C7—H7B107.5H22A—C22—H22B108.0
C9—C8—C7110.0 (4)O4—C23—O3121.1 (4)
C9—C8—H8A109.7O4—C23—C22121.7 (4)
C7—C8—H8A109.7O3—C23—C22117.3 (4)
C9—C8—H8B109.7
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O4)(C13H14N2)]
Mr502.84
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)223
a, b, c (Å)22.573 (5), 10.729 (2), 17.024 (3)
V3)4123.0 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerRigaku MercuryCCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.772, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
13963, 4693, 3718
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.108, 1.19
No. of reflections4693
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.51

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (600581).

References

First citationClegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234–235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNagaraja, C. M., Maji, T. K. & Rao, C. N. R. (2010). J. Mol. Struct. 976, 168–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.  Web of Science CSD CrossRef Google Scholar
First citationZhang, M. L., Li, D. S., Wang, J. J., Fu, F., Du, M., Zou, K. & Gao, X. M. (2009). Dalton Trans. pp. 5355–5364.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds